PD - 95869 IRF9910 HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box VDSS 20V Q1 13.4m:@VGS = 10V Q2 9.3m:@VGS = 10V 6 ' * ' 6 ' * ' Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating ID RDS(on) max 10A 12A SO-8 Absolute Maximum Ratings Parameter Q1 Max. Q2 Max. VDS Drain-to-Source Voltage 20 VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 ID @ TA = 25°C IDM Continuous Drain Current, VGS @ 10V Pulsed Drain Current ID @ TA = 70°C c PD @TA = 25°C Power Dissipation PD @TA = 70°C Power Dissipation TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range Units V 10 12 8.3 9.9 83 98 A W 2.0 1.3 W/°C °C 0.016 -55 to + 150 Thermal Resistance Typ. Max. Units RθJL Junction-to-Drain Lead Parameter ––– 20 °C/W RθJA Junction-to-Ambient ––– 62.5 fg Notes through are on page 10 www.irf.com 1 04/28/04 IRF9910 Static @ T J = 25°C (unless otherwise specified) Parameter BV DSS ∆ΒV DSS /∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient R DS(on) Static Drain-to-Source On-Resistance Q1&Q2 Q1 Q2 Q1 Q2 V GS(th) ∆V GS(th)/∆TJ Gate Threshold Voltage Gate Threshold Voltage Coefficient I DSS Drain-to-Source Leakage Current I GSS gfs Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Qg Total Gate Charge Q gs1 Pre-Vth Gate-to-Source Charge Q gs2 Post-Vth Gate-to-Source Charge Q gd Gate-to-Drain Charge Q godr Gate Charge Overdrive Q sw Switch Charge (Q gs2 + Q gd) Q oss Output Charge t d(on) Turn-On Delay Time tr Rise Time t d(off) Turn-Off Delay Time tf Fall Time C iss Input Capacitance C oss Output Capacitance C rss Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. Typ. Max. Units 20 ––– ––– ––– ––– ––– ––– 1.65 ––– ––– ––– ––– ––– ––– 19 27 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.0061 0.014 10.7 14.6 7.4 9.1 ––– -4.9 -5.0 ––– ––– ––– ––– ––– ––– 7.4 15 2.6 4.3 0.85 1.4 2.5 5.4 1.5 3.9 3.4 6.8 4.0 8.7 6.3 8.3 10 14 9.2 15 4.5 7.5 900 1860 290 600 140 310 ––– ––– ––– 13.4 18.3 9.3 11.3 2.55 ––– ––– 1.0 100 100 -100 ––– ––– 11 23 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– V V/°C mΩ V mV/°C µA nA S nC Conditions V GS = 0V, ID = 250µA Reference to 25°C, ID = 1mA e e e e V GS = 10V, ID = 10A V GS = 4.5V, ID = 8.3A V GS = 10V, ID = 12A V GS = 4.5V, ID = 9.8A V DS = V GS , ID = 250µA V DS = 16V, V GS = 0V V DS = 16V, V GS = 0V, TJ = 125°C V GS = 20V V GS = -20V V DS = 10V, ID = 8.3A V DS = 10V, ID = 9.8A Q1 V DS = 10V V GS = 4.5V, ID = 8.3A Q2 V DS = 10V V GS = 4.5V, ID = 9.8A nC V DS = 10V, V GS = 0V Q1 V DD = 16V, V GS = 4.5V ID = 8.3A ns Q2 V DD = 16V, V GS = 4.5V ID = 9.8A Clamped Inductive Load pF V GS = 0V V DS = 10V ƒ = 1.0MHz Avalanche Characteristics Parameter Single Pulse Avalanche Energy E AS Avalanche Current I AR Diode Characteristics Param eter c V SD Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage t rr Reverse Recovery Time Q rr Reverse Recovery Charge IS I SM 2 c d Typ. Q1 Max. Q2 Max. Units ––– ––– 33 8.3 26 9.8 mJ A Min. Typ. Max. Units Q1&Q2 ––– ––– 2.5 A Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 11 16 3.1 4.9 83 98 1.0 1.0 17 24 4.7 7.3 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, I S = 8.3A, V GS = 0V TJ = 25°C, I S = 9.8A, V GS = 0V Q1 TJ = 25°C, I F = 8.3A, V DD = 10V, di/dt = 100A/µs Q2 TJ = 25°C, I F = 9.8A, V DD = 10V, di/dt = 100A/µs D e e S e e www.irf.com IRF9910 Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 10000 VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TOP 1000 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 10000 BOTTOM 10 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 2.5V 0.01 0.1 1 10 1000 100 1 2.5V 0.1 ≤60µs PULSE WIDTH Tj = 25°C 0.01 100 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 10000 10000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) BOTTOM 10 V DS, Drain-to-Source Voltage (V) VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TOP 1000 BOTTOM 100 10 1 2.5V ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 0.1 1 10 1000 T = 25°C J V = 10V DS ≤60µs PULSE WIDTH 0.1 3 4 5 6 VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 2.5V 1 ≤60µs PULSE WIDTH Tj = 150°C 0.1 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics ID, Drain-to-Source Current (Α) T = 150°C J 10 2 10 0.1 V DS, Drain-to-Source Voltage (V) 1 BOTTOM 100 100 100 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V TOP Fig 3. Typical Output Characteristics ID, Drain-to-Source Current (Α) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V TOP 100 10 T = 25°C J T = 150°C J 1 V = 10V DS ≤ 60µs PULSE WIDTH 0.1 1 2 3 4 5 VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 3 IRF9910 Typical Characteristics Q2 - Synchronous FET Q1 - Control FET VGS = 0V, C, Capacitance(pF) C C C 1000 C iss rss oss =C =C =C gs 100000 f = 1 MHZ + C gd , C ds gd ds +C gd iss C oss C C oss =C =C gd ds +C gd iss C oss C rss 100 10 I = 8.3A D V = 16V DS V = 10V DS 4.0 3.0 2.0 1.0 0.0 OPERATION IN THIS AREA LIMITED BY R (on) DS 100 10 100µsec 1msec 10msec 1 T = 25°C A Tj = 150°C Single Pulse 0.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area I = 9.8A D 5.0 V = 16V DS V = 10V DS 4.0 3.0 2.0 1.0 0.0 0 5 10 15 20 QG Total Gate Charge (nC) Fig. 10. Gate-to-Source Voltage vs Typical Gate Charge ID, Drain-to-Source Current (A) 1000 100 6.0 0 1 2 3 4 5 6 7 8 9 10 QG Total Gate Charge (nC) Fig. 9. Gate-to-Source Voltage vs Typical Gate Charge 10 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance Vs.Drain-to-Source Voltage VGS, Gate-to-Source Voltage (V) 6.0 5.0 1 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance Vs.Drain-to-Source Voltage VGS, Gate-to-Source Voltage (V) C 1000 rss rss 1 ID, Drain-to-Source Current (A) C 10000 100 4 VGS = 0V, f = 1 MHZ C =C + C , C SHORTED iss gs gd ds SHORTED C, Capacitance(pF) 10000 1000 OPERATION IN THIS AREA LIMITED BY R (on) DS 100 10 100µsec 1msec 10msec 1 T = 25°C A Tj = 150°C Single Pulse 0.1 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com IRF9910 Typical Characteristics Q1 - Control FET Q2 - Synchronous FET R DS(on) , Drain-to-Source On Resistance R DS(on) , Drain-to-Source On Resistance 1.5 (Normalized) = 10A D V = 10V GS (Normalized) I 1.0 0.5 I = 12A D V = 10V GS 1.0 0.5 -60 -40 -20 0 20 40 60 80 100120140160 -60 -40 -20 0 20 40 60 80 100120140160 TJ , Junction Temperature (°C) TJ , Junction Temperature (°C) Fig 13. Normalized On-Resistance vs. Temperature Fig 14. Normalized On-Resistance vs. Temperature 100 100 ISD, Reverse Drain Current (A) ISD, Reverse Drain Current (A) 1.5 T = 150°C J 10 T = 25°C J 1 T = 150°C J 10 T = 25°C J 1 V = 0V GS V = 0V GS 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 VSD, Source-to-Drain Voltage (V) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 15. Typical Source-Drain Diode Forward Voltage 40 R DS(on), Drain-to -Source On Resistance (m Ω) R , Drain-to -Source On Resistance (m Ω) DS(on) Fig 16. Typical Source-Drain Diode Forward Voltage I = 10A D 35 30 25 T = 125°C J 20 15 10 TJ = 25°C 5 0 2 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 17. Typical On-Resistance vs. Gate Voltage www.irf.com 25 ID = 12A 20 15 T = 125°C J 10 T = 25°C J 5 0 2 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 18. Typical On-Resistance vs. Gate Voltage 5 IRF9910 Typical Characteristics Q2 - Synchronous FET 12 14 10 12 ID , Drain Current (A) ID , Drain Current (A) Q1 - Control FET 8 6 4 2 10 8 6 4 2 0 0 25 50 75 100 125 150 25 TA , Ambient Temperature (°C) Fig 19. Maximum Drain Current vs. Ambient Temperature VGS(th) Gate threshold Voltage (V) 2.0 ID = 250µA 1.5 125 150 2.0 ID = 250µA 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 -75 -50 -25 TJ , Temperature ( °C ) I TOP BOTTOM 100 D 2.2A 2.6A 8.3A 80 60 40 20 0 25 50 75 100 125 25 50 75 100 125 150 Fig 22. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 140 120 0 TJ , Temperature ( °C ) Fig 21. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 100 2.5 1.0 150 Starting TJ , Junction Temperature (°C) Fig 23. Maximum Avalanche Energy vs. Drain Current 6 75 Fig 20. Maximum Drain Current vs. Ambient Temperature 2.5 VGS(th) Gate threshold Voltage (V) 50 TA , Ambient Temperature (°C) 120 I TOP 100 BOTTOM D 5.5A 6.2A 9.8A 80 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 24. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF9910 100 Thermal Response ( Z thJA ) D = 0.50 0.20 0.10 0.05 10 0.02 0.01 1 τJ 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri τi (sec) 1.688 0.000230 14.468 0.105807 30.264 1.001500 16.106 29.90000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Current Regulator Same Type as D.U.T. 50KΩ V(BR)DSS 12V .2µF .3µF tp 15V D.U.T. DRIVER L VDS + V - DS VGS D.U.T RG + - VDD IAS 20V VGS tp 3mA A 0.01Ω I AS IG ID Current Sampling Resistors Fig 26. Unclamped Inductive Test Circuit and Waveform Fig 27. Gate Charge Test Circuit LD VDS VDS + 90% V DD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 28. Switching Time Test Circuit www.irf.com 10% VGS td(on) tr td(off) tf Fig 29. Switching Time Waveforms 7 IRF9910 D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + V DD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 30. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 31. Gate Charge Waveform 8 www.irf.com IRF9910 SO-8 Package Details Dimensions are shown in millimeters (inches) ' ',0 % $ $ + >@ ( $ ;E >@ $ 0,//,0(7(56 0,1 0$; $ E F ' ( H %$6,& %$6,& H + %$6,& %$6,& . / \ $ ; H H ,1&+(6 0,1 0$; .[ & \ >@ ;/ ;F & $ % 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( )22735,17 ;>@ >@ ;>@ ;>@ SO-8 Part Marking (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 www.irf.com <:: ;;;; ) '$7(&2'(<:: < /$67',*,72)7+(<($5 :: :((. /27&2'( 3$57180%(5 9 IRF9910 SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, Q1: L = 0.95mH RG = 25Ω, IAS = 8.3A; Q2: L = 0.54mH RG = 25Ω, IAS = 9.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/04 10 www.irf.com