PD - 97066A IRF7907PbF HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box 30V ID RDS(on) max Q1 16.4m:@VGS = 10V Q2 11.8m:@VGS = 10V 6 ' * ' 6 ' * ' Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l 100% Tested for RG l Lead-Free VDSS 9.1A 11A SO-8 Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current c Q1 Max. Q2 Max. Units V 30 ± 20 9.1 7.3 76 2.0 1.3 11 8.8 85 2.0 1.3 0.016 A W 0.016 W/°C °C Q1 Max. Q2 Max. 42 62.5 42 62.5 Units °C/W -55 to + 150 Thermal Resistance RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead g Junction-to-Ambient fg 1 07/09/08 IRF7907PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) ∆VGS(th)/∆TJ Gate Threshold Voltage Gate Threshold Voltage Coefficient IDSS Drain-to-Source Leakage Current IGSS gfs Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Qg Total Gate Charge Qgs1 Pre-Vth Gate-to-Source Charge Qgs2 Post-Vth Gate-to-Source Charge Qgd Gate-to-Drain Charge Qgodr Gate Charge Overdrive Qsw Switch Charge (Q gs2 + Q gd) Qoss Output Charge RG Gate Resistance td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 ––– ––– ––– ––– ––– ––– 1.35 ––– ––– ––– ––– ––– ––– 19 24 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.024 0.024 13.7 17.1 9.8 11.5 1.8 -4.6 -4.9 ––– ––– ––– ––– ––– ––– 6.7 14 1.3 3.0 0.7 1.3 2.5 4.9 2.2 4.8 3.2 6.2 4.5 9.0 2.6 3.0 6.0 8.0 9.3 14 8.0 13 3.4 5.3 850 1790 190 390 88 190 Max. ––– ––– ––– 16.4 20.5 11.8 13.7 2.35 ––– ––– 1.0 150 100 -100 ––– ––– 10 21 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 4.7 5.0 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Units Conditions VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA e e e e VGS = 10V, ID = 9.1A VGS = 4.5V, ID = 7.3A VGS = 10V, ID = 11A VGS = 4.5V, ID = 8.8A Q1: VDS = VGS, ID = 25µA V mV/°C Q2: VDS = VGS, ID = 50µA mΩ µA nA S nC VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 7.0A VDS = 15V, ID = 8.8A Q1 VDS = 15V VGS = 4.5V, ID = 7.0A Q2 VDS = 15V VGS = 4.5V, ID = 8.8A nC VDS = 16V, VGS = 0V Ω Q1 VDD = 15V, VGS = 4.5V ID = 7.0A ns Q2 VDD = 15V, VGS = 4.5V ID = 8.8A Clamped Inductive Load pF VGS = 0V VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Q1 Max. 10 7.0 Q2 Max. 15 8.8 Units mJ A Diode Characteristics VSD Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge IS ISM 2 c Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– 12 16 4.1 5.9 Max. 2.8 2.8 76 85 1.0 1.0 18 24 6.1 8.9 Conditions Units A MOSFET symbol showing the integral reverse A p-n junction diode. TJ = 25°C, IS = 7.3A, VGS = 0V V TJ = 25°C, IS = 8.8A, VGS = 0V Q1 TJ = 25°C, IF = 7.0A, ns VDD = 15V, di/dt = 100A/µs nC Q2 TJ = 25°C, IF = 8.8A, VDD = 15V, di/dt = 100A/µs e e e e www.irf.com IRF7907PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 100 100 10 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 2.3V 10 BOTTOM 1 0.1 2.3V ≤ 60µs PULSE WIDTH Tj = 25°C 0.1 1 10 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 100 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V TOP ID, Drain-to-Source Current (A) TOP ID, Drain-to-Source Current (A) ≤ 60µs PULSE WIDTH Tj = 25°C 0.01 0.01 10 2.3V ≤ 60µs PULSE WIDTH Tj = 150°C 1 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 10 2.3V ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics 100.0 10.0 ID, Drain-to-Source Current(Α) 100.0 ID, Drain-to-Source Current(Α) VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V TJ = 150°C 1.0 TJ = 25°C VDS = 15V ≤ 60µs PULSE WIDTH 0.1 10.0 TJ = 150°C 1.0 TJ = 25°C VDS = 15V ≤ 60µs PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics www.irf.com 3 IRF7907PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 1000 Ciss Coss Crss 100 Coss = Cds + Cgd C, Capacitance (pF) C, Capacitance (pF) 10000 Ciss 1000 Coss Crss 10 100 1 10 100 1 10 VDS, Drain-to-Source Voltage (V) 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 12 ID= 7.0A VDS= 24V VDS= 15V VDS= 6.0V 10 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) 12 8 6 4 2 ID= 8.8A 10 8 6 4 2 0 0 0 4 8 12 0 16 5 Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 1msec 10 1 100µsec 10msec 0.1 100msec TA = 25°C Tj = 150°C Single Pulse 15 20 25 30 Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage 1000 1000 10 QG Total Gate Charge (nC) QG Total Gate Charge (nC) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 1msec 10 1 0.1 10msec 100msec TA = 25°C Tj = 150°C Single Pulse 0.01 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 11. Maximum Safe Operating Area 4 VDS = 24V VDS= 15V VDS= 6.0V 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com IRF7907PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) RDS(on) , Drain-to-Source On Resistance (Normalized) 1.5 ID = 9.1A VGS = 10V 1.0 VGS = 10V 1.0 0.5 0.5 -60 -40 -20 0 20 40 60 -60 -40 -20 80 100 120 140 160 Fig 13. Normalized On-Resistance vs. Temperature 20 40 60 80 100 120 140 160 Fig 14. Normalized On-Resistance vs. Temperature 100.0 ISD, Reverse Drain Current (A) 100.0 TJ = 150°C 10.0 1.0 TJ = 25°C 0.4 0.6 0.8 1.0 1.2 1.4 1.0 TJ = 25°C 0.1 0.1 0.2 TJ = 150°C 10.0 VGS = 0V VGS = 0V 0.2 1.6 40 ID = 8.8A 30 TJ = 125°C 20 TJ = 25°C 10 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 17. Typical On-Resistance vs.Gate Voltage www.irf.com 0.6 0.8 1.0 1.2 1.4 1.6 Fig 16. Typical Source-Drain Diode Forward Voltage ( Ω) RDS (on), Drain-to -Source On Resistance m Fig 15. Typical Source-Drain Diode Forward Voltage 2 0.4 VSD, Source-to-Drain Voltage (V) VSD, Source-to-Drain Voltage (V) ( Ω) RDS (on), Drain-to -Source On Resistance m 0 TJ, Junction Temperature (°C) TJ, Junction Temperature (°C) ISD, Reverse Drain Current (A) ID = 11A 40 ID = 11A 30 20 TJ = 125°C 10 TJ = 25°C 0 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 18. Typical On-Resistance vs.Gate Voltage 5 IRF7907PbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 12 10 10 ID, Drain Current (A) ID, Drain Current (A) 8 6 4 2 8 6 4 2 0 0 25 50 75 100 125 25 150 50 Fig 19. Maximum Drain Current vs. Ambient Temp. 150 2.2 VGS(th, Gate threshold Voltage (V) VGS(th, Gate threshold Voltage (V) 125 Fig 20. Maximum Drain Current vs. Ambient Temp. 2.2 2.0 1.8 ID = 250µA 1.6 1.4 1.2 1.0 -75 -50 -25 0 25 50 75 100 125 2.0 1.8 ID = 250µA 1.6 1.4 1.2 1.0 150 -75 -50 -25 TJ , Temperature ( °C ) 25 50 75 100 125 150 Fig 22. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 50 I D TOP 3.0A 3.5A BOTTOM 7.0A 40 0 TJ, Temperature ( °C ) Fig 21. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 100 TJ , Ambient Temperature (°C) TJ , Ambient Temperature (°C) 30 20 10 60 I D 3.8A 4.4A BOTTOM 8.8A TOP 50 40 30 20 10 0 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 23. Maximum Avalanche Energy vs. Drain Current 6 75 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 24. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF7907PbF 100 Thermal Response ( ZthJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τa τ2 τ1 τ2 τ3 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.1 Ri (°C/W) τι (sec) 2.288789 0.000137 7.167906 0.014957 36.98193 0.72461 16.07333 26.8 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1) 100 Thermal Response ( ZthJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τa τ2 τ1 τ2 τ3 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.1 Ri (°C/W) τι (sec) 1.848416 0.000164 11.29818 0.054158 34.97452 0.9598 14.3858 38.2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2) L S2 1 8 D2 G2 2 7 D2 S1 3 6 D1 G1 4 5 D1 Co Vo Cin GND Vin Fig 27. Layout Diagram www.irf.com 7 IRF7907PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS A 0.01Ω tp I AS Fig 29a. Unclamped Inductive Test Circuit Fig 29b. Unclamped Inductive Waveforms VDS 15V 90% DRIVER L VDS 10% D.U.T RG + V - DD IAS 20V A VGS td(on) 0.01Ω tp Fig 30a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. tr td(off) Fig 30b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. +VDS Vgs(th) VGS -3mA IG ID Current Sampling Resistors Fig 31a. Gate Charge Test Circuit 8 Qgs1 Qgs2 Qgd Qgodr Fig 31b. Gate Charge Waveform www.irf.com IRF7907PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches) ' ,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \ $ + >@ ( $ ; H H ;E >@ 0,//,0(7(56 0,1 0$; %$6,& %$6,& ',0 % $ $ .[ & \ >@ ;/ ;F & $ % )22735,17 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( ;>@ >@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 ;;;; ) '$7(&2'(<:: 3 ',6*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 9 IRF7907PbF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, Q1: L = 0.41mH, RG = 25Ω, IAS = 7.0A; Q2: L = 0.38mH, RG = 25Ω, IAS = 8.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2008 10 www.irf.com