IRF IRG7PSH50UDPBF

PD - 97548
IRG7PSH50UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
Low VCE (ON) trench IGBT technology
Low switching losses
Square RBSOA
100% of the parts tested for ILM 
Positive VCE (ON) temperature co-efficient
Ultra fast soft recovery co-pak diode
Tight parameter distribution
Lead-Free
C
VCES = 1200V
I NOMINAL = 50A
TJ(max) = 150°C
G
VCE(on) typ. = 1.7V
E
n-channel
Benefits
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
C
E
C
G
Applications
•
•
•
•
U.P.S.
Welding
Solar Inverter
Induction Heating
Super-247
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
1200
V
IC @ TC = 25°C
Continuous Collector Current (Silicon Limited)
116
IC @ TC = 100°C
Continuous Collector Current (Silicon Limited)
70
INOMINAL
Nominal Current
50
ICM
Pulse Collector Current, VGE = 15V
ILM
Clamped Inductive Load Current, VGE = 20V
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
d
200
VGE
Continuous Gate-to-Emitter Voltage
±30
V
PD @ TC = 25°C
Maximum Power Dissipation
462
W
PD @ TC = 100°C
Maximum Power Dissipation
185
TJ
Operating Junction and
TSTG
Storage Temperature Range
150
c
A
200
116
70
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Typ.
Max.
–––
–––
0.27
RθJC (Diode)
f
Thermal Resistance Junction-to-Case-(each Diode) f
Min.
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.37
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
40
–––
RθJC (IGBT)
1
Units
°C/W
www.irf.com
07/28/2010
IRG7PSH50UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
1200
—
Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
1.0
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.7
2.0
—
2.0
—
V
IC = 50A, VGE = 15V, TJ = 150°C
VGE(th)
Gate Threshold Voltage
3.0
—
6.0
V
VCE = VGE, IC = 2.0mA
—
V
VGE = 0V, IC = 100µA
e
V(BR)CES
V/°C VGE = 0V, IC = 1.0mA (25°C-150°C)
IC = 50A, VGE = 15V, TJ = 25°C
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-17
—
gfe
ICES
Forward Transconductance
—
55
—
S
VCE = 50V, IC = 50A, PW = 30µs
Collector-to-Emitter Leakage Current
—
2.0
100
µA
VGE = 0V, VCE = 1200V
—
3700
—
VFM
Diode Forward Voltage Drop
—
3.0
3.9
V
IF = 50A
—
2.7
—
—
—
±200
IGES
Gate-to-Emitter Leakage Current
mV/°C VCE = VGE, IC = 1.0mA (25°C - 150°C)
VGE = 0V, VCE = 1200V, TJ = 150°C
IF = 50A, TJ = 150°C
nA
VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
290
Max. Units
Conditions
IC = 50A
440
VGE = 15V
Qge
Gate-to-Emitter Charge (turn-on)
—
40
60
Qgc
Gate-to-Collector Charge (turn-on)
—
110
170
Eon
Turn-On Switching Loss
—
3600
4600
Eoff
Turn-Off Switching Loss
—
2200
3200
Etotal
Total Switching Loss
—
5800
7800
td(on)
Turn-On delay time
—
35
55
tr
Rise time
—
40
60
td(off)
Turn-Off delay time
—
430
500
tf
Fall time
—
45
65
Eon
Turn-On Switching Loss
—
5080
—
Eoff
Turn-Off Switching Loss
—
3370
—
Etotal
Total Switching Loss
—
8450
—
td(on)
Turn-On delay time
—
30
—
tr
Rise time
—
40
—
td(off)
Turn-Off delay time
—
480
—
tf
Fall time
—
170
—
Cies
Input Capacitance
—
6000
—
Coes
Output Capacitance
—
300
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
130
—
f = 1.0Mhz
TJ = 150°C, IC = 200A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
nC
VCC = 600V
IC = 50A, VCC = 600V, VGE = 15V
µJ
RG = 5.0Ω, L = 200µH,TJ = 25°C
Energy losses include tail & diode reverse recovery
ns
IC = 50A, VCC = 600V, VGE=15V
µJ
RG=5.0Ω, L=200µH, TJ = 150°C
e
Energy losses include tail & diode reverse recovery
ns
pF
VGE = 0V
VCC = 960V, Vp =1200V
Rg = 5.0Ω, VGE = +20V to 0V
Erec
trr
Reverse Recovery Energy of the Diode
—
1510
—
µJ
TJ = 150°C
Diode Reverse Recovery Time
—
190
—
ns
Irr
Peak Reverse Recovery Current
—
5760
—
A
VCC = 600V, IF = 5.0A
Rg = 5.0Ω, L =1.0mH
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 5.0Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRG7PSH50UDPbF
120
Duty cycle : 50%
Tj = 150°C
Tc = 100°C
Vcc = 600V
Gate drive as specified
Power Dissipation = 183W
100
Load Current ( A )
80
Square Wave:
VCC
60
I
40
20
Diode as specified
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
120
500
100
400
Ptot (W)
IC (A)
80
60
300
200
40
100
20
0
0
25
50
75
100
125
150
25
50
75
100
125
150
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
10µsec
IC (A)
100µsec
1msec
1
10
DC
0.1
100
IC (A)
10
Tc = 25°C
Tj = 150°C
Single Pulse
1
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 150°C; VGE =15V
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE = 20V
3
200
200
150
150
ICE (A)
ICE (A)
IRG7PSH50UDPbF
100
VGE = 18V
VGE = 15V
100
VGE = 12V
VGE = 10V
50
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
50
VGE = 8.0V
0
0
0
2
4
6
8
10
0
2
4
200
150
150
100
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
50
-40°C
25°C
150°C
VGE = 8.0V
0
0
0
2
4
6
8
0.0
10
1.0
2.0
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 30µs
12
10
10
ICE = 25A
ICE = 50A
VCE (V)
VCE (V)
8
ICE = 100A
6
4.0
5.0
6.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 30µs
12
8
3.0
VF (V)
VCE (V)
ICE = 25A
ICE = 50A
ICE = 100A
6
4
4
2
2
0
0
0
5
10
15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
4
10
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 30µs
200
50
8
IF (A)
ICE (A)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 30µs
100
6
VCE (V)
VCE (V)
20
0
5
10
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
www.irf.com
IRG7PSH50UDPbF
12
ICE, Collector-to-Emitter Current (A)
200
10
VCE (V)
8
ICE = 25A
ICE = 50A
6
ICE = 100A
4
2
150
100
T J = 25°C
T J = 150°C
50
0
0
0
5
10
15
0
20
2
4
6
8
10
VGE, Gate-to-Emitter Voltage (V)
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 30µs
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
12000
1000
tdOFF
EON
8000
Energy (µJ)
Swiching Time (ns)
10000
6000
4000
EOFF
tF
100
tdON
2000
tR
0
10
0
20
40
60
80
100
0
20
40
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 200µH; VCE = 600V, RG = 5.0Ω; VGE = 15V
16000
100
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 200µH; VCE = 600V, RG = 5.0Ω; VGE = 15V
10000
14000
Swiching Time (ns)
EOFF
12000
Energy (µJ)
80
IC (A)
IC (A)
tdOFF
1000
10000
EON
8000
6000
tF
100
tR
4000
tdON
2000
0
10
0
20
40
60
80
100
Rg (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V
www.irf.com
60
0
20
40
60
80
100
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V
5
IRG7PSH50UDPbF
70
70
60
60
RG = 5.0Ω
40
50
IRR (A)
IRR (A)
50
RG = 10Ω
30
40
30
RG = 47Ω
20
20
RG = 100Ω
10
10
0
20
40
60
80
100
0
20
40
IF (A)
60
80
100
RG (Ω)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 150°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 150°C
60
9000
8000
QRR (nC)
IRR (A)
5.0Ω
7000
50
40
10Ω
100A
6000
5000
4000
50A
100Ω
3000
30
47Ω
25A
2000
1000
20
200
300
400
500
600
700
0
800
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 600V; VGE = 15V; IF = 50A; TJ = 150°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 600V; VGE = 15V; TJ = 150°C
2500
Energy (µJ)
2000
RG = 10Ω
1500
RG = 5.0Ω
1000
RG = 47Ω
500
RG = 100Ω
0
0
20
40
60
80
100
IF (A)
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 150°C
6
www.irf.com
IRG7PSH50UDPbF
10000
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
Cies
1000
Coes
100
Cres
VCES = 600V
VCES = 400V
14
12
10
10
8
6
4
2
0
0
100
200
300
400
500
600
0
50
VCE (V)
100
150
200
250
300
Q G, Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 50A
Fig. 22 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
1
0.1
D = 0.50
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ3
τ2
τ4
τ3
τ4
Ci= τi/Ri
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
τi (sec)
Ri (°C/W)
R4
R4
0.00463
0.000008
0.07251
0.000209
0.11571
0.002880
0.07714
0.016543
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
R1
R1
0.02
τJ
0.01
0.001
τJ
τ1
R2
R2
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
1E-005
0.0001
τ4
τ4
τi (sec)
0.00300
0.000014
0.13485
0.000643
0.16061
0.004509
0.07121
0.023154
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
Ri (°C/W)
R4
R4
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRG7PSH50UDPbF
L
L
DUT
0
80 V +
VCC
-
DUT
1K
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
R=
VCC
ICM
L
-5V
VCC
DUT
DUT /
DRIVER
VCC
Rg
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
C force
100K
D1
22K
C sense
G force
DUT
0.0075µF
E sense
E force
Fig.C.T.5 - BVCES Filter Circuit
8
www.irf.com
IRG7PSH50UDPbF
120
1200
1000
100
1000
800
80
800
60
90% ICE
400
40
5% V CE
200
0
-200
-0.5
0
0.5
1
40
10% test
current
5% V CE
20
0
E on Los s
-200
-20
1.5
60
0
0
E off Los s
90% tes t
current
200
20
5% ICE
80
600
400
100
TEST
CURRENT
-3
2
ICE (A)
600
120
tr
VCE (V)
tf
I CE (A)
VCE (V)
1200
-2
-1
0
1
2
3
4
-20
5
time (µs)
time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
60
50
QRR
40
tRR
30
20
I F (A)
10
0
-10
Peak
IRR
-20
-30
-40
-50
-60
-0.40
-0.20
0.00
0.20
0.40
0.60
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
9
IRG7PSH50UDPbF
Case Outline and Dimensions — Super-247
Super-247 (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
PART NUMBER
INTERNATIONAL RECTIFIER
LOGO
IRFPS37N50A
719C
17
89
ASSEMBLY LOT CODE
Note: "P" in assembly line position
indicates "Lead-Free"
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TOP
Super-247 package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
10
www.irf.com