PD - 97548 IRG7PSH50UDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Ultra fast soft recovery co-pak diode Tight parameter distribution Lead-Free C VCES = 1200V I NOMINAL = 50A TJ(max) = 150°C G VCE(on) typ. = 1.7V E n-channel Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation C E C G Applications • • • • U.P.S. Welding Solar Inverter Induction Heating Super-247 G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 1200 V IC @ TC = 25°C Continuous Collector Current (Silicon Limited) 116 IC @ TC = 100°C Continuous Collector Current (Silicon Limited) 70 INOMINAL Nominal Current 50 ICM Pulse Collector Current, VGE = 15V ILM Clamped Inductive Load Current, VGE = 20V IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current d 200 VGE Continuous Gate-to-Emitter Voltage ±30 V PD @ TC = 25°C Maximum Power Dissipation 462 W PD @ TC = 100°C Maximum Power Dissipation 185 TJ Operating Junction and TSTG Storage Temperature Range 150 c A 200 116 70 -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Typ. Max. ––– ––– 0.27 RθJC (Diode) f Thermal Resistance Junction-to-Case-(each Diode) f Min. Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.37 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 ––– RθJC (IGBT) 1 Units °C/W www.irf.com 07/28/2010 IRG7PSH50UDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. 1200 — Max. Units Conditions Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.0 — VCE(on) Collector-to-Emitter Saturation Voltage — 1.7 2.0 — 2.0 — V IC = 50A, VGE = 15V, TJ = 150°C VGE(th) Gate Threshold Voltage 3.0 — 6.0 V VCE = VGE, IC = 2.0mA — V VGE = 0V, IC = 100µA e V(BR)CES V/°C VGE = 0V, IC = 1.0mA (25°C-150°C) IC = 50A, VGE = 15V, TJ = 25°C ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -17 — gfe ICES Forward Transconductance — 55 — S VCE = 50V, IC = 50A, PW = 30µs Collector-to-Emitter Leakage Current — 2.0 100 µA VGE = 0V, VCE = 1200V — 3700 — VFM Diode Forward Voltage Drop — 3.0 3.9 V IF = 50A — 2.7 — — — ±200 IGES Gate-to-Emitter Leakage Current mV/°C VCE = VGE, IC = 1.0mA (25°C - 150°C) VGE = 0V, VCE = 1200V, TJ = 150°C IF = 50A, TJ = 150°C nA VGE = ±30V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 290 Max. Units Conditions IC = 50A 440 VGE = 15V Qge Gate-to-Emitter Charge (turn-on) — 40 60 Qgc Gate-to-Collector Charge (turn-on) — 110 170 Eon Turn-On Switching Loss — 3600 4600 Eoff Turn-Off Switching Loss — 2200 3200 Etotal Total Switching Loss — 5800 7800 td(on) Turn-On delay time — 35 55 tr Rise time — 40 60 td(off) Turn-Off delay time — 430 500 tf Fall time — 45 65 Eon Turn-On Switching Loss — 5080 — Eoff Turn-Off Switching Loss — 3370 — Etotal Total Switching Loss — 8450 — td(on) Turn-On delay time — 30 — tr Rise time — 40 — td(off) Turn-Off delay time — 480 — tf Fall time — 170 — Cies Input Capacitance — 6000 — Coes Output Capacitance — 300 — VCC = 30V Cres Reverse Transfer Capacitance — 130 — f = 1.0Mhz TJ = 150°C, IC = 200A RBSOA Reverse Bias Safe Operating Area FULL SQUARE nC VCC = 600V IC = 50A, VCC = 600V, VGE = 15V µJ RG = 5.0Ω, L = 200µH,TJ = 25°C Energy losses include tail & diode reverse recovery ns IC = 50A, VCC = 600V, VGE=15V µJ RG=5.0Ω, L=200µH, TJ = 150°C e Energy losses include tail & diode reverse recovery ns pF VGE = 0V VCC = 960V, Vp =1200V Rg = 5.0Ω, VGE = +20V to 0V Erec trr Reverse Recovery Energy of the Diode — 1510 — µJ TJ = 150°C Diode Reverse Recovery Time — 190 — ns Irr Peak Reverse Recovery Current — 5760 — A VCC = 600V, IF = 5.0A Rg = 5.0Ω, L =1.0mH Notes: VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 5.0Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRG7PSH50UDPbF 120 Duty cycle : 50% Tj = 150°C Tc = 100°C Vcc = 600V Gate drive as specified Power Dissipation = 183W 100 Load Current ( A ) 80 Square Wave: VCC 60 I 40 20 Diode as specified 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 120 500 100 400 Ptot (W) IC (A) 80 60 300 200 40 100 20 0 0 25 50 75 100 125 150 25 50 75 100 125 150 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 10µsec IC (A) 100µsec 1msec 1 10 DC 0.1 100 IC (A) 10 Tc = 25°C Tj = 150°C Single Pulse 1 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V www.irf.com 10000 10 100 1000 10000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V 3 200 200 150 150 ICE (A) ICE (A) IRG7PSH50UDPbF 100 VGE = 18V VGE = 15V 100 VGE = 12V VGE = 10V 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 50 VGE = 8.0V 0 0 0 2 4 6 8 10 0 2 4 200 150 150 100 VGE = 18V VGE = 15V VGE = 12V VGE = 10V 50 -40°C 25°C 150°C VGE = 8.0V 0 0 0 2 4 6 8 0.0 10 1.0 2.0 Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 30µs 12 10 10 ICE = 25A ICE = 50A VCE (V) VCE (V) 8 ICE = 100A 6 4.0 5.0 6.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 30µs 12 8 3.0 VF (V) VCE (V) ICE = 25A ICE = 50A ICE = 100A 6 4 4 2 2 0 0 0 5 10 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C 4 10 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 30µs 200 50 8 IF (A) ICE (A) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 30µs 100 6 VCE (V) VCE (V) 20 0 5 10 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C www.irf.com IRG7PSH50UDPbF 12 ICE, Collector-to-Emitter Current (A) 200 10 VCE (V) 8 ICE = 25A ICE = 50A 6 ICE = 100A 4 2 150 100 T J = 25°C T J = 150°C 50 0 0 0 5 10 15 0 20 2 4 6 8 10 VGE, Gate-to-Emitter Voltage (V) VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 30µs Fig. 11 - Typical VCE vs. VGE TJ = 150°C 12000 1000 tdOFF EON 8000 Energy (µJ) Swiching Time (ns) 10000 6000 4000 EOFF tF 100 tdON 2000 tR 0 10 0 20 40 60 80 100 0 20 40 Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200µH; VCE = 600V, RG = 5.0Ω; VGE = 15V 16000 100 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200µH; VCE = 600V, RG = 5.0Ω; VGE = 15V 10000 14000 Swiching Time (ns) EOFF 12000 Energy (µJ) 80 IC (A) IC (A) tdOFF 1000 10000 EON 8000 6000 tF 100 tR 4000 tdON 2000 0 10 0 20 40 60 80 100 Rg (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V www.irf.com 60 0 20 40 60 80 100 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V 5 IRG7PSH50UDPbF 70 70 60 60 RG = 5.0Ω 40 50 IRR (A) IRR (A) 50 RG = 10Ω 30 40 30 RG = 47Ω 20 20 RG = 100Ω 10 10 0 20 40 60 80 100 0 20 40 IF (A) 60 80 100 RG (Ω) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C 60 9000 8000 QRR (nC) IRR (A) 5.0Ω 7000 50 40 10Ω 100A 6000 5000 4000 50A 100Ω 3000 30 47Ω 25A 2000 1000 20 200 300 400 500 600 700 0 800 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 50A; TJ = 150°C Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150°C 2500 Energy (µJ) 2000 RG = 10Ω 1500 RG = 5.0Ω 1000 RG = 47Ω 500 RG = 100Ω 0 0 20 40 60 80 100 IF (A) Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C 6 www.irf.com IRG7PSH50UDPbF 10000 16 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) Cies 1000 Coes 100 Cres VCES = 600V VCES = 400V 14 12 10 10 8 6 4 2 0 0 100 200 300 400 500 600 0 50 VCE (V) 100 150 200 250 300 Q G, Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 50A Fig. 22 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Thermal Response ( Z thJC ) 1 0.1 D = 0.50 0.20 0.10 0.05 0.01 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 τi (sec) Ri (°C/W) R4 R4 0.00463 0.000008 0.07251 0.000209 0.11571 0.002880 0.07714 0.016543 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 R1 R1 0.02 τJ 0.01 0.001 τJ τ1 R2 R2 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 1E-005 0.0001 τ4 τ4 τi (sec) 0.00300 0.000014 0.13485 0.000643 0.16061 0.004509 0.07121 0.023154 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 Ri (°C/W) R4 R4 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PSH50UDPbF L L DUT 0 80 V + VCC - DUT 1K VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT R= VCC ICM L -5V VCC DUT DUT / DRIVER VCC Rg Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit C force 100K D1 22K C sense G force DUT 0.0075µF E sense E force Fig.C.T.5 - BVCES Filter Circuit 8 www.irf.com IRG7PSH50UDPbF 120 1200 1000 100 1000 800 80 800 60 90% ICE 400 40 5% V CE 200 0 -200 -0.5 0 0.5 1 40 10% test current 5% V CE 20 0 E on Los s -200 -20 1.5 60 0 0 E off Los s 90% tes t current 200 20 5% ICE 80 600 400 100 TEST CURRENT -3 2 ICE (A) 600 120 tr VCE (V) tf I CE (A) VCE (V) 1200 -2 -1 0 1 2 3 4 -20 5 time (µs) time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 60 50 QRR 40 tRR 30 20 I F (A) 10 0 -10 Peak IRR -20 -30 -40 -50 -60 -0.40 -0.20 0.00 0.20 0.40 0.60 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 9 IRG7PSH50UDPbF Case Outline and Dimensions — Super-247 Super-247 (TO-274AA) Part Marking Information EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPS37N50A 719C 17 89 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 7 = 1997 WEEK 19 LINE C TOP Super-247 package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 10 www.irf.com