IRF IRG7PSH73K10PBF

PD - 97406A
IRG7PSH73K10PbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
•
VCES = 1200V
C
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
10 μS short Circuit SOA
Square RBSOA
100% of The Parts Tested for ILM
Positive VCE (ON) Temperature Coefficient
Tight Parameter Distribution
Lead Free Package
IC(Nominal) = 75A
tSC ≥ 10μs, TJ(max) =175°C
G
E
VCE(on) typ. = 2.0V
n-channel
C
E
C
G
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
Super-247
G
G a te
C
C o lle c to r
E
E m itte r
Absolute Maximum Ratings
Parameter
Max.
Units
V
Continuous Collector Current
1200
220
IC @ TC = 100°C
Continuous Collector Current
130
INOMINAL
Nominal Current
75
ICM
Pulse Collector Current, VGE=15V
225
VCES
Collector-to-Emitter Voltage
IC @ TC = 25°C
c
d
ILM
Clamped Inductive Load Current, VGE=20V
VGE
Continuous Gate-to-Emitter Voltage
PD @ TC = 25°C
Maximum Power Dissipation
1150
PD @ TC = 100°C
Maximum Power Dissipation
580
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
300
V
±30
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
g
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
g
Min.
Typ.
Max.
–––
–––
0.13
–––
0.24
–––
–––
40
–––
Units
°C/W
www.irf.com
9/8/10
IRG7PSH73K10PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
VGE(th)
ΔVGE(th)/ΔTJ
gfe
ICES
Gate Threshold Voltage
Threshold Voltage temp. coefficient
Forward Transconductance
Collector-to-Emitter Leakage Current
IGES
Gate-to-Emitter Leakage Current
Min.
Typ.
Max. Units
1200
—
—
—
—
5.0
—
—
—
—
—
—
1.58
2.0
2.50
2.60
—
-18
53
1.0
2340
—
—
V VGE = 0V, IC = 250μA
—
V/°C VGE = 0V, IC = 5.0mA (25°C-175°C)
2.3
IC = 75A, VGE = 15V, TJ = 25°C
—
V IC = 75A, VGE = 15V, TJ = 150°C
—
IC = 75A, VGE = 15V, TJ = 175°C
7.5
V VCE = VGE, IC = 3.5mA
—
mV/°C VCE = VGE, IC = 3.5mA (25°C - 175°C)
—
S VCE = 50V, IC = 75A, PW = 80μs
25
VGE = 0V, VCE = 1200V, TJ = 25°C
μA
—
VGE = 0V, VCE = 1200V, TJ = 175°C
±400
nA VGE = ±30V
Conditions
f
e
e
e
f
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max. Units
Qg
Qge
Qgc
Eon
Eoff
Etotal
td(on)
tr
td(off)
tf
Eon
Eoff
Etotal
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Parameter
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
360
87
180
7.7
4.6
12.3
63
118
267
114
11
7.4
18.4
62
110
330
237
9450
340
230
540
130
270
8.7
5.6
14.3
81
138
291
134
—
—
—
—
—
—
—
—
—
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
10
—
—
nC
mJ
e
Conditions
IC = 75A
VGE = 15V
VCC = 600V
IC = 75A, VCC = 600V, VGE = 15V
RG = 4.7Ω, L = 200μH, TJ = 25°C
e
Energy losses include tail & diode reverse recovery
e
ns
IC = 75A, VCC = 600V, VGE = 15V
RG = 4.7Ω, L = 200μH, TJ = 25°C
mJ
IC = 75A, VCC = 600V, VGE=15V
RG=4.7Ω, L=200μH, TJ = 175°C
e
Energy losses include tail & diode reverse recovery
ns
pF
μs
IC = 75A, VCC = 600V, VGE=15V
RG = 4.7Ω, L = 200μH
TJ = 175°C
e
VGE = 0V
VCC = 30V
f = 1.0Mhz
IC = 300A
VCC = 960V, Vp =1200V
Rg = 4.7Ω, VGE = +20V to 0V, TJ =175°C
VCC = 600V, Vp =1200V ,TJ = 150°C
Rg = 4.7Ω, VGE = +15V to 0V
Notes:
 Calculated continuous current based on maximum allowable junction
‚
ƒ
„
…
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
VCC = 80% (VCES), VGE = 20V, L = 20μH, RG = 5.0Ω.
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRG7PSH73K10PbF
100
For both:
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 164W
Load Current ( A )
80
60
Square wave:
40
60% of rated
voltage
I
20
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
240
1200
200
1000
160
800
Ptot (W)
IC, Collector Current (A)
Fig. 1 - Typical Load Current vs. Frequency
120
600
80
400
40
200
0
0
25
50
75
100
125
150
0
175
25
50
75
100
125
150
175
TC (°C)
TC, Case Temperature (°C)
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3 - Power Dissipation vs. Case
Temperature
1000
1000
100
10
100
IC (A)
IC (A)
10 μs
100 μs
1ms
1
10
DC
0.1
1
10
100
1000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
www.irf.com
10000
1
10
100
1000
10000
VCE (V)
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE =20V
3
IRG7PSH73K10PbF
400
400
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
300
ICE (A)
ICE (A)
300
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
200
200
100
100
0
0
0
2
4
6
8
10 12 14 16 18 20
0
2
4
6
8
VCE (V)
10 12 14 16 18 20
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
25
400
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
VCE (V)
ICE (A)
300
200
15
ICE = 38A
ICE = 75A
ICE = 150A
10
100
5
0
0
2
4
6
8
0
10 12 14 16 18 20
5
VCE (V)
25
20
20
ICE = 38A
ICE = 75A
ICE = 150A
VCE (V)
VCE (V)
25
10
5
20
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
15
ICE = 38A
ICE = 75A
ICE = 150A
10
5
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
15
VGE (V)
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
15
10
20
0
5
10
15
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
www.irf.com
IRG7PSH73K10PbF
40000
ICE, Collector-to-Emitter Current (A)
400
TJ = 25°C
TJ = 175°C
EON
30000
Energy (μJ)
300
200
100
20000
EOFF
10000
0
4
6
8
10
12
14
0
16
40
VGE, Gate-to-Emitter Voltage (V)
60
80
100
120
140
160
I C (A)
Fig. 12- Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 600V, RG = 5.0Ω; VGE = 15V
1000
25000
100
EON
20000
tF
Energy (μJ)
Swiching Time (ns)
tdOFF
tR
tdON
15000
EOFF
10000
5000
10
20
40
60
80
100
120
140
0
160
0
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 600V, RG = 5.0Ω; VGE = 15V
10000
30
40
50
RG (Ω)
450
40
35
tR
100
Time (μs)
1000
tF
tdON
10
400
Isc
Tsc
30
350
25
300
20
250
15
200
10
150
100
5
0
10
20
30
40
50
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 600V, ICE = 75A; VGE = 15V
Current (A)
Swiching Time (ns)
20
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 600V, ICE = 75A; VGE = 15V
tdOFF
www.irf.com
10
8
10
12
14
16
18
VGE (V)
Fig. 17 - VGE vs. Short Circuit Time
VCC = 600V; TC = 150°C
5
IRG7PSH73K10PbF
100000
16
400V
14
600V
10000
Cies
VGE (V)
Capacitance (pF)
12
10
8
6
1000
4
Coes
Cres
2
0
100
0
20
40
60
80
0
100
100
200
300
400
Q G, Total Gate Charge (nC)
VCE (V)
Fig. 19- Typical Gate Charge vs. VGE
ICE = 75A; L = 330μH
Fig. 18 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
1
0.1
D = 0.50
0.20
0.01
0.10
0.05
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
0.001
1E-005
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.0309 0.000104
0.0520
0.000868
0.0471
0.003620
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
R3
R3
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
IRG7PSH73K10PbF
L
L
DUT
0
80 V +
VCC
DUT
-
Vclamped
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
DIODE CLAMP
L
VCC
DUT /
DRIVER
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R = VCC
ICM
C force
100K
D1
DUT
Rg
VCC
22K
C sense
0.0075μ
G force
DUT
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
www.irf.com
Fig.C.T.6 - BVCES Filter Circuit
7
IRG7PSH73K10PbF
700
600
90% ICE
VCE (V)
500
400
900
160
800
140
700
120
600
120
100
500
100
400
80
80
300
60
10% VCE
200
10% ICE
100
0
40
200
20
100
-100
-4 -2
0
2
4
6
10% tes t current
90% test current
60
40
20
0
Eon Loss
-100
10 12
140
10% VCE
0
-20
8
160
TEST
CURRENT
tr
300
0
Eoff Loss
180
ICE (A)
800
180
VCE (V)
tf
ICE (A)
900
-20
-3 -2 -1 0 1 2 3 4 5 6 7
time(μs)
time (μs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
800
800
700
700
VCE
600
600
500
ICE
400
400
300
300
200
200
100
100
0
Ice (A)
Vce (V)
500
0
-100
-100
-10
-5
0
5
10
15
20
Time (uS)
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 150°C using Fig. CT.3
8
www.irf.com
IRG7PSH73K10PbF
Case Outline and Dimensions — Super-247
Super-247 (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
PART NUMBER
INTERNATIONAL RECTIFIER
LOGO
IRFPS37N50A
719C
17
89
ASSEMBLY LOT CODE
Note: "P" in assembly line position
indicates "Lead-Free"
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TOP
Super-247 package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/10
www.irf.com
9