PHILIPS PCF8812U

INTEGRATED CIRCUITS
DATA SHEET
PCF8812
65 × 102 pixels matrix LCD driver
Product specification
File under Integrated Circuits, IC12
2000 Nov 22
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
CONTENTS
10
INSTRUCTIONS
10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.5
10.6
10.7
10.8
10.9
10.10
Initialization
Reset function
Function set
PD
V
H
Display control
D and E
Set Y address of RAM
Set X address of RAM
Set HV-generator stages
Bias system
Temperature control
Set VOP value
11
LIMITING VALUES
12
HANDLING
13
DC CHARACTERISTICS
14
AC CHARACTERISTICS
15
SERIAL INTERFACE
16
RESET
17
APPLICATION INFORMATION
18
CHIP INFORMATION
19
PAD INFORMATION
1
FEATURES
2
APPLICATIONS
3
GENERAL DESCRIPTION
4
ORDERING INFORMATION
5
BLOCK DIAGRAM
6
PINNING
7
PIN FUNCTIONS
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
Pin functions
ROW 0 to ROW 64 row driver outputs
COL 0 to COL 101 column driver outputs
VSS1 and VSS2: negative power supply rails
VDD1 to VDD3: positive power supply rails
VLCDIN: LCD power supply
VLCDOUT: LCD power supply
VLCDSENSE: voltage multiplier regulation input
(VLCD)
T1 to T5: test pads
SDIN: serial data line
SCLK: serial clock line
D/C: mode select
SCE: chip enable
OSC: oscillator
RES: reset
8
FUNCTIONAL DESCRIPTION
20
BONDING PAD LOCATION
8.1
8.2
8.3
8.4
8.5
8.6
Oscillator
Address Counter (AC)
Display Data RAM (DDRAM)
Timing generator
Display address counter
LCD row and column drivers
21
DEVICE PROTECTION DIAGRAM
22
TRAY INFORMATION
23
DATA SHEET STATUS
24
DEFINITIONS
25
DISCLAIMERS
9
ADDRESSING
9.1
Data structure
2000 Nov 22
2
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
1
PCF8812
2
FEATURES
APPLICATIONS
• Telecom equipment.
• 65 row and 102 column outputs
• Display data RAM 65 × 102 bits
• On-chip:
3
– Configurable 5 (4, 3 and 2) voltage multiplier
generating VLCD (external VLCD also possible)
GENERAL DESCRIPTION
The PCF8812 is a low power CMOS LCD controller driver,
designed to drive a graphic display of 65 rows and
102 columns. All necessary functions for the display are
provided in a single chip, including on-chip generation of
LCD supply and bias voltages, resulting in a minimum of
external components and low power consumption. The
PCF8812 interfaces to microcontrollers via a serial bus
interface.
– Generation of intermediate LCD bias voltages
– Oscillator requires no external components
(external clock also possible).
• External reset input pin
• Serial interface maximum 4.0 Mbit/s
• CMOS compatible inputs
• Mux rate: 1 : 65
• Logic supply voltage range VDD1 to VSS:
– 2.5 to 5.5 V.
• High voltage generator supply voltage range
VDD2 to VSS and VDD3 to VSS
– 2.5 to 4.5 V.
• Display supply voltage range VLCD to VSS:
– 4.5 to 9.0 V.
• Low power consumption, suitable for battery operated
systems
• Temperature compensation of VLCD
• Temperature range: Tamb = −40 to +85 °C
• Slim chip layout, suited for Chip-On-Glass (COG)
applications.
4
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
PCF8812U/2
2000 Nov 22
Tray
DESCRIPTION
VERSION
−
chip with bumps in tray
3
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
5
PCF8812
BLOCK DIAGRAM
VDD1
handbook, full pagewidth
VDD2
VDD3
ROW0 to ROW64
COL0 to COL101
65
102
ROW DRIVERS
COLUMN DRIVERS
VLCDIN
BIAS
VOLTAGE
GENERATOR
SHIFT REGISTER
DATA LATCHES
VLCDSENSE
VLCDOUT
HIGH
VOLTAGE
GENERATOR
4 stages
DISPLAY DATA RAM
(DDRAM)
65 × 102 bits
VSS1
VSS2
OSCILLATOR
OSC
ADDRESS COUNTER
T2
DISPLAY
ADDRESS
COUNTER
T3
T5
RES
TIMING
GENERATOR
T1
T4
RESET
DATA
REGISTER
PCF8812
I/O BUFFER
MGT636
SDIN
SCLK
D/C
Fig.1 Block diagram.
2000 Nov 22
4
SCE
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
6
PCF8812
PINNING
SYMBOL
RES
7
PAD
1
PIN FUNCTIONS
7.1
DESCRIPTION
7.1.1
external reset input
(active LOW)
Pin functions
ROW 0 TO ROW 64 ROW DRIVER OUTPUTS
These pads output the row signals.
ROW 32 to
ROW 19
2 to 15
LCD row driver outputs
ROW 0 to
ROW 18
18 to 36
LCD row driver outputs
COL 0 to
COL 101
37 to 138
LCD column driver
outputs
7.1.3
ROW 50 to
ROW 33
139 to 156
LCD row driver outputs
The 2 supply rails VSS1 and VSS2 must be connected
together.
ROW 51 to
ROW 64
159 to 172
LCD row driver outputs
7.1.4
VDD1
174 to 179
supply voltage 1
VDD3
180
supply voltage 3
VDD2
181 to 193
supply voltage 2
OSC
194
oscillator input
SDIN
195
serial data input
D/C
196
data/command input
SCE
197
chip enable input
(active LOW)
If the internal voltage generator is not used then VDD2 and
VDD3 must be connected to VDD1 or connected to power.
T2
198
test 2 output
7.1.5
SCLK
199
serial clock input
VSS2
200 to 213
negative power supply 2
VSS1
214 to 217
negative power supply 1
7.1.2
T1
218
test 1 input
T5
219
test 5 input
T4
220
test 4 input
VSS1
T3
221 and 222
223
LCD supply voltage
VLCDOUT
230 to 236
voltage multiplier output
237
voltage multiplier
regulation input (VLCD)
16, 17, 157,
158 and 173
VSS1 AND VSS2: NEGATIVE POWER SUPPLY RAILS
VDD1 TO VDD3: POSITIVE POWER SUPPLY RAILS
VDD2 and VDD3 are the supply voltage for the internal
voltage generator. Both have the same voltage and may
be connected together outside of the chip. VDD1 is used as
supply for the rest of the chip. VDD1 can be connected
together with VDD2 and VDD3 but in this case care must be
taken to respect the supply voltage range
(see Chapter 13).
VLCDIN: LCD POWER SUPPLY
Positive power supply for the liquid crystal display.
An external LCD supply voltage can be supplied using the
VLCDIN pad. In this case VLCDOUT has to be left open-circuit
and the internal voltage generator has to be programmed
to zero. If the PCF8812 is in Power-down mode, the
external LCD supply voltage has to be switched off.
7.1.6
test 3 input/output
224 to 229
VLCDSENSE
These pads output the column signals.
negative power supply 1
VLCDIN
COL 0 TO COL 101 COLUMN DRIVER OUTPUTS
VLCDOUT: LCD POWER SUPPLY
Positive power supply for the liquid crystal display. If the
internal voltage generator is used, the two supply rails
VLCDIN and VLCDOUT must be connected together. If an
external supply is used this pin must be left open-circuit.
7.1.7
dummy pads
VLCDSENSE: VOLTAGE MULTIPLIER REGULATION
(VLCD)
INPUT
VLCDSENSE is the input of the internal voltage multiplier
regulation.
If the internal voltage generator is used then VLCDSENSE
must be connected to VLCDOUT. If a external supply voltage
is used then the VLCDSENSE can be let open-circuit or
connected to ground.
2000 Nov 22
5
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
7.1.8
PCF8812
8.2
T1 TO T5: TEST PADS
The address counter assigns addresses to the display
data RAM for writing. The X address X6 to X0 and the
Y address Y3 to Y0 are set separately. After a write
operation the address counter is automatically
incremented by 1 according to the V flag (see Chapter 9).
T1, T3, T4 and T5 must be connected to VSS, T2 must be
left open-circuit. Not accessible to user.
7.1.9
SDIN: SERIAL DATA LINE
Serial data input line.
7.1.10
8.3
SCLK: SERIAL CLOCK LINE
D/C: MODE SELECT
Input to select either command/address or data input.
7.1.12
Display Data RAM (DDRAM)
The PCF8812 contains a 65 × 102 bit static RAM which
stores the display data. The RAM is divided into 8 banks of
102 bytes (8 × 8 × 102 bits) and one bank of 102 bits
(1 × 102 bits). During RAM access, data is transferred to
the RAM via the serial interface. There is a direct
correspondence between the X address and the column
output number.
Input for the clock signal 0 to 4.0 Mbits/s.
7.1.11
Address Counter (AC)
SCE: CHIP ENABLE
The enable pin allows data to be clocked in; the signal is
active LOW.
8.4
7.1.13
The timing generator produces the various signals
required to drive the internal circuitry. Internal chip
operation is not affected by operations on the data buses.
OSC: OSCILLATOR
When the on-chip oscillator is used this input must be
connected to VDD. An external clock signal, if used, is
connected to this input. If the oscillator and external clock
are both inhibited by connecting the OSC pin to VSS the
display is not clocked and may be left in a DC state.
To avoid this the chip should always be put into
Power-down mode before stopping the clock.
7.1.14
8.5
8.1
The display status (all dots on/off and normal/inverse
video) is set by bits E and D in the command ‘display
control’ (see Table 2).
RES: RESET
8.6
LCD row and column drivers
The PCF8812 contains 65 row and 102 column drivers,
which connect the appropriate LCD bias voltages in
sequence to the display in accordance with the data to be
displayed. Figure 2 shows typical waveforms. Unused
outputs should be left unconnected.
FUNCTIONAL DESCRIPTION
Oscillator
The on-chip oscillator provides the clock signal for the
display system. No external components are required and
the OSC input must be connected to VDD. An external
clock signal, if used, is connected to this input.
2000 Nov 22
Display address counter
The display is generated by continuously shifting rows of
RAM data to the dot matrix LCD via the column outputs.
This signal will reset the device and must be applied to
properly initialize the chip; the signal is active LOW.
8
Timing generator
6
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
frame n + 1
frame n
ROW 0
R0 (t)
ROW 1
R1 (t)
COL 0
C0 (t)
COL 1
C1 (t)
Vstate1(t)
Vstate2 (t)
VLCD
V2
V3
V4
V5
VSS
VLCD
V2
V3
V4
V5
VSS
VLCD
V2
V3
V4
V5
VSS
VLCD
V2
V3
V4
V5
VSS
VLCD − VSS
V3 − VSS
Vstate1(t)
VLCD − V2
0V
V3 − V2
V4 − V5
0V
VSS − V5
V4 − VLCD
VSS − VLCD
VLCD − VSS
V3 − VSS
Vstate2 (t)
VLCD − V2
0V
V3 − V2
V4 − V5
0V
VSS − V5
V4 − VLCD
VSS − VLCD
0 1 2 3 4 5 6 7 8...
... 64 0 1 2 3 4 5 6 7 8...
(1) Vstate1(t) = C1(t) − R0(t).
(2) Vstate2(t) = C1(t) − R1(t).
Fig.2 Typical LCD driver waveforms.
2000 Nov 22
7
... 64
MGT637
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
DDRAM
bank 0
top of LCD
bank 1
bank 2
LCD
bank 3
bank 7
bank 8
MGS395
Fig.3 DDRAM to display mapping.
2000 Nov 22
8
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
9
PCF8812
ADDRESSING
Data is downloaded in bytes into the RAM matrix of the PCF8812 as indicated in Figs.3, 4, 5 and 6. The display RAM
has a matrix of 65 × 102 bits. The columns are addressed by the address pointer. The address ranges are: X0 to X101
(1100101) and Y0 to Y8 (1000). Addresses outside of these ranges are not allowed. In vertical addressing mode (V = 1)
the Y address increments after each byte (see Fig.6). After the last Y address (Y = 8) Y wraps around to 0 and X
increments to address the next column. In horizontal addressing mode (V = 0) the X address increments after each byte
(see Fig.5). After the last X address (X = 101) X wraps around to 0 and Y increments to address the next row. After the
very last address (X = 101 and Y = 8) the address pointers wrap around to address (X = 0 and Y = 0).
9.1
Data structure
handbook, full pagewidth
MSB
0
LSB
MSB
8
LSB
0
X address
101
Y address
MGT638
Fig.4 RAM format addressing.
handbook, full pagewidth
0
9
1
10
0
2
3
4
Y address
5
6
7
8
0
917
X address
101
8
MGS397
Fig.5 Sequence of writing data bytes into RAM with vertical addressing (V = 1).
2000 Nov 22
9
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
handbook, full pagewidth
0
1
2
102
103
104
204
205
206
306
307
308
408
409
410
510
511
512
612
613
614
714
715
716
816
817
818
0
0
Y address
917
X address
101
8
MGS396
Fig.6 Sequence of writing data bytes into RAM with horizontal addressing (V = 0).
• SDIN is sampled at the positive edge of SCLK
10 INSTRUCTIONS
• D/C indicates whether the byte is a command (D/C = 0)
or RAM data (D/C = 1). It is read with the eighth SCLK
pulse
The instruction format is divided into two modes: If D/C
(mode select) is set LOW the current byte is interpreted as
command byte (see Table 1). Figure 8 shows an example
of a serial data stream for initializing the chip. If D/C is set
HIGH the following bytes are stored in the display data
RAM. After every data byte the address counter is
incremented automatically. The level of the D/C signal is
read during the last bit of the data byte. Every instruction
can be sent in any order to the PCF8812. The MSB of a
byte is transmitted first. Figure 8 shows one possible
command stream, used to set-up the LCD driver. The
serial interface is initialized when SCE is HIGH. In this
state SCLK clock pulses have no effect and no power is
consumed by the serial interface. A negative edge on SCE
enables the serial interface and indicates the start of a data
transmission.
• If SCE stays LOW after the last bit of a command/data
byte, the serial interface expects DB7 of the next byte at
the next positive edge of SCLK (see Fig.12). If SCLK
goes LOW after the last data bit (DB0), either:
– A rising clock edge is required to latch the last data bit
– Or the last bit is latched when SCE goes HIGH.
• A reset pulse with RES interrupts the transmission.
No data is written into the RAM. The registers are
cleared. If SCE is LOW after the positive edge of RES,
the serial interface is ready to receive bit 7 of a
command/data byte (see Fig.12).
Figures 9 and 10 show the serial bus protocol:
• When SCE is HIGH, SCLK clocks are ignored. During
the HIGH time of SCE the serial interface is initialized
(see Fig.12)
2000 Nov 22
10
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
MSB (DB7)
handbook, halfpage
PCF8812
LSB (DB0)
data
data
MGT639
Fig.7 General format of data stream.
handbook, full pagewidth
function set (H = 1)
bias system
set VOP
temperature control
function set (H = 0)
display control
Y address
X address
MGT640
Fig.8 Example of serial data stream.
handbook, full pagewidth
SCE
D/C
SCLK
SDIN
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
MGT641
Fig.9 Serial bus protocol transmission of one byte.
2000 Nov 22
11
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
handbook, full pagewidth
SCE
D/C
SCLK
SDIN
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5
MGT642
Fig.10 Serial bus protocol transmission of several bytes.
handbook, full pagewidth
SCE
D/C
RES
SCLK
SDIN
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5
MGT643
Fig.11 Serial bus reset function (SCE).
handbook, full pagewidth
SCE
RES
D/C
SCLK
SDIN
DB7 DB6 DB5 DB4 DB3
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4
MGT644
Fig.12 Serial bus reset function (RES).
2000 Nov 22
12
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
Table 1
PCF8812
Instruction set
COMMAND BYTE
INSTRUCTION
D/C
DESCRIPTION
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
(H = 0 or 1)
NOP
0
0
0
0
0
0
0
0
0
no operation
Function set
0
0
0
1
0
0
PD
V
H
power-down control; entry
mode; extended instruction
set control (H)
Write data
1
D7
D6
D5
D4
D3
D2
D1
D0
writes data to display RAM
Reserved
0
0
0
0
0
0
1
X
X
do not use
Display control
0
0
0
0
0
1
D
0
E
sets display configuration
Set higher or lower
programming
range Vop
0
0
0
0
1
0
0
0
Set Y address of RAM
0
0
1
0
0
Y3
Y2
Y1
Y0
sets Y address of RAM;
0≤Y≤8
Set X address of RAM
0
1
X6
X5
X4
X3
X2
X1
X0
sets X address part of RAM;
0 ≤ X ≤ 101
Reserved
0
0
0
0
0
0
0
0
1
do not use
Reserved
0
0
0
0
0
0
0
1
X
do not use
Temperature control
0
0
0
0
0
0
1
TC1
TC0
HV-gen stages
0
0
0
0
0
1
0
S1
S0
Bias system
0
0
0
0
1
0
BS2
BS1
BS0
1
X
X
X
X
X
X
(H = 0)
PRS VLCD programming range
select
(H = 1)
Reserved
0
0
Set Vop
0
1
2000 Nov 22
set temperature coefficient
(TCx)
# of HV-gen voltage
multiplication
set bias system (BSx)
do not use (reserved for test)
VOP6 VOP5 VOP4 VOP3 VOP2 VOP1 VOP0 write VOP to register
13
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
Table 2
PCF8812
Explanations for symbols in Table 1
BIT
0
1
RESET STATE
PD
chip is active
chip is in Power-down mode
1
V
horizontal addressing
vertical addressing
0
H
use basic instruction set
use extended instruction set
0
PRS
VLCD programming range;
LOW
VLCD programming range;
HIGH
0
D, E
TC1 to
TC0
S1 to S0
00
display blank
10
normal mode
01
all display segments on
11
inverse video mode
00
VLCD temperature
coefficient 0
01
VLCD temperature
coefficient 1
10
VLCD temperature
coefficient 2
11
VLCD temperature
coefficient 3
00
2 × voltage multiplier
01
3 × voltage multiplier
10
4 × voltage multiplier
11
5 × voltage multiplier
D=0
E=0
TC1 to TC0 = 00
S1 to S0 = 00
VOP 6 to
VOP0
VLCD programming
VOP 6 to VOP0 = 0000000
BS2 to
BS0
bias system
BS2 to BS0 = 000
10.1
• Horizontal addressing (V = 0)
Initialization
• Normal instruction set (H = 0)
Immediately following power-on, all internal registers as
well as the RAM content are undefined; a reset pulse must
be applied.
• Display blank (E = D = 0)
• Address counter X6 to X0 = 0; Y3 to Y0 = 0
• Temperature control mode (TC1 to TC0 = 0)
Reset is accomplished by applying an external reset pulse
(active LOW) at the pad RES. When reset occurs within
the specified time, all internal registers are reset, however
the RAM is still undefined. The state after reset is
described in Section 10.2.
• Bias system (BS2 to BS0 = 0)
• VLCD is equal to 0; the HV-generator is switched off
(VOP6 to VOP0 = 0 and PRS = 0)
• After power-on; RAM data is undefined; the reset signal
doesn’t change the content of the RAM
The RES input must be ≤0.3VDD when VDD reaches
VDD(min) (or higher) within a maximal time tVHRL after VDD
going HIGH (see Fig.16).
10.2
• All LCD outputs at VSS (display off).
Reset function
After reset the LCD driver has the following state:
• Power-down mode (PD = 1)
2000 Nov 22
14
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
10.3
PCF8812
Function set
10.3.1
10.3.3
PD
H
When H = 0 the commands ‘display control’, ‘set
Y address’, ‘set X address’ and set the PRS bit (low or high
range of the high voltage generator) can be performed,
when H = 1 the others can be executed. The commands
‘write data’ and ‘function set’ can be executed in both
cases.
• All LCD outputs at VSS (display off)
• Bias generator and VLCD generator off; VLCD can be
disconnected
• Oscillator off (external clock possible)
• Serial bus; command; etc. function
10.4
• RAM contents not cleared; RAM data can be written
10.4.1
• VLCD discharged to VSS in Power-down mode.
Display control
D AND E
The bits D and E select the display mode (see Table 2).
10.3.2
V
10.5
When V = 0, the horizontal addressing is selected. The
data is written into the DDRAM as shown in Fig.5. When
V = 1, the vertical addressing is selected. The data is
written into the DDRAM as shown in Fig.6.
Table 3
Set Y address of RAM
Y3 to Y0 defines the Y address vector address of the
display RAM (see Table 3).
X/Y address range: note 1
Y3
Y2
Y1
Y0
0
0
0
0
bank 0 (display RAM)
0 to 101
0
0
0
1
bank 1 (display RAM)
0 to 101
0
0
1
0
bank 2 (display RAM)
0 to 101
0
0
1
1
bank 3 (display RAM)
0 to 101
0
1
0
0
bank 4 (display RAM)
0 to 101
0
1
0
1
bank 5 (display RAM)
0 to 101
0
1
1
0
bank 6 (display RAM)
0 to 101
0
1
1
1
bank 7 (display RAM)
0 to 101
1
0
0
0
bank 8 (display RAM)
0 to 101
CONTENT
ALLOWED X RANGE
Note
1. In bank 8 only the LSB is accessed.
10.6
Set X address of RAM
The X address points to the columns. The range of X is 0 to 101 (65H).
10.7
Set HV-generator stages
The PCF8812 incorporates a software configurable voltage multiplier. After reset (RES) the voltage multiplier is set to
2 × VDD2. Other voltage multiplier factors are set via the command ‘Set HV-gen stages’ (see Tables 1 and 2).
2000 Nov 22
15
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
10.8
PCF8812
Bias system
1
The bias voltage levels are set in the ratio of R - R - nR - R - R giving a ----------------- bias system. Different multiplex rates
(n + 4)
require different factors ‘n’ (see Table 4). This is programmed by BS2 to BS0. For MUX1 to MUX65 the optimum bias
65 – 3 = 5.062 = 5 resulting in 1/9 bias.
value ‘n’ is given by: n =
Table 4
Table 5
Programming the required bias system
BS2
BS1
BS0
n
RECOMMEND MUX
RATE
0
0
0
7
1 to 100
0
0
1
6
1 to 80
0
1
0
5
1 to 65 or 1 to 65
0
1
1
4
1 to 48
1
0
0
3
1 to 40 or 1 to 34
1
0
1
2
1 to 24
1
1
0
1
1 to 18 or 1 to 16
1
1
1
0
1 to 10 or 1 to 9
or 1 to 8
LCD bias voltage
SYMBOL
BIAS VOLTAGES FOR n = 5 (1/9 BIAS)
BIAS VOLTAGES
V1
VLCD
VLCD
V2
(n + 3)
----------------(n + 4)
8/
9
× VLCD
V3
(n + 2)
----------------(n + 4)
7/
9
× VLCD
V4
2
----------------(n + 4)
2/
9
× VLCD
V5
1
----------------(n + 4)
1/
9
× VLCD
V6
VSS
VSS
2000 Nov 22
16
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
10.9
PCF8812
The parameters are explained in Table 6. The maximum
voltage that can be generated is dependent on the VDD2
voltage and the display load current. Two overlapping
VLCD ranges are selectable via the command ‘HV-gen
control’. For the LOW (PRS = 0) range a = a1 and for the
HIGH (PRS = 1) range a = a2 with steps equal to ‘b’ in both
ranges. It should be noted that the charge pump is turned
off if VOP 6 to 0 and the bit PRS are all set to zero
(see Fig.14).
Temperature control
Due to the temperature dependency of the liquid crystals
viscosity the LCD controlling voltage VLCD must be
increased with lower temperature to maintain optimum
contrast. There are 4 different temperature coefficients
available in the PCF8812 (see Fig.13). The coefficients
are selected by bits TC1 to TC0. Table 6 shows the typical
values of the different temperature coefficients. The
coefficients are proportional to the programmed VLCD.
For MUX 1 to 65 the optimum operating voltage of the
liquid can be calculated as follows;
1 + 65
V LCD = --------------------------------------- × V th = 6.85 × V th
1
2 ×  1 – ----------

65
MGS402
handbook, halfpage
VLCD
(3)
where Vth is the threshold voltage of the liquid crystal
material used.
Table 6
Tcut
Typical values for parameters for the
HV-generator programming
SYMBOL
T
Fig.13 Temperature coefficients.
VALUE
UNIT
a1
2.94 (PRS = 0)
V
a2
6.75 (PRS = 1)
V
b
0.03
V
Tcut
27
°C
10.10 Set VOP value
As the programming range for the internally generated
VLCD allows values above the maximum allowed VLCD
(9 V) the user has to ensure, while setting the VOP register
and selecting the Temperature Compensation (TC), that
under all conditions and including all tolerances that VLCD
remains below 9 V.
The operating voltage VLCD can be set by software. The
generated voltage is dependent on temperature,
programmed Temperature Coefficient (TC) and the
programmed voltage at reference temperature (Tcut).
V LCD ( T ) = ( a + V OP × b ) ( 1 + ( T – T cut ) × TC )
(1)
The voltage at reference temperature [VLCD(T = Tcut)] can
be calculated as follows:
(2)
V LCD ( T = T ) = ( a + V OP × b )
cut
2000 Nov 22
17
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
handbook, full pagewidth
VLCD
a1
charge pump off
b
a2
a1+b
0H 01H 02H 03H 04H 05H 06H . . . 5FH 6FH 7FH 00H 01H 02H 03H 04H 05H 06H . . . 5FH 6FH 7FH
LOW (PRS = 0)
HIGH (PRS = 1)
MGS658
VOP 6 to 0 (programmed) [00H to 7FH; programming range LOW and HIGH].
Fig.14 VOP programming of PCF8812 (at T = Tcut).
2000 Nov 22
18
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
11 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); see notes 1 and 2
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDD1
supply voltage
−0.5
+6.5
V
VDD2,VDD3
supply voltage for internal voltage
generator
−0.5
+4.5
V
VLCD
supply voltage range LCD
−0.5
+9.0
V
Vi
all input voltages
−0.5
VDD + 0.5
V
ISS
ground supply current
−50
+50
mA
Ii,Io
DC input or output current
−10
+10
mA
Ptot
total power dissipation
−
300
mW
PO
power dissipation per output
−
30
mW
Tstg
storage temperature
−65
+150
°C
Ves
electrostatic handling voltage
note 3
−
±1900
V
note 4
−
±200
V
Notes
1. Stresses above those listed under limiting values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are referenced to
VSS unless otherwise specified.
3. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor.
4. Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 µH series inductor.
12 HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).
2000 Nov 22
19
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
13 DC CHARACTERISTICS
VDD = 2.5 to 5.5 V; VSS = 0 V; VLCD = 4.5 to 9.0 V; Tamb = −40 to +85 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDD1
supply voltage
+2.5
−
+5.5
V
VDD2,VDD3
supply voltage for internal
voltage generator
LCD voltage internally
generated (voltage
generator enabled)
+2.5
−
+4.5
V
VLCDIN
LCD input supply voltage
LCD voltage externally
supplied (voltage generator
disabled)
+4.5
−
+9.0
V
VLCDOUT
LCD output supply voltage
LCD voltage internally
generated (voltage
generator enabled); note 1
+4.5
−
+9.0
V
IDD(tot)
total supply current
normal mode; VDD1 = 2.8 V;
VLCD = 7.6 V; fSCLK = 0;
Tamb = 25 °C; no display
load; 4 × charge pump;
notes 2 and 3
−
220
350
µA
Power-down mode; with
internal or external VLCD
supply voltage; note 4
−
1.5
−
µA
VDD1 = 2.8 V; VLCD = 7.6 V;
fSCLK = 0; T = 25 °C;
no display load;
notes 2, 3 and 5
−
30
−
µA
ILCDIN
supply current from external
VLCD
Logic
VIL
LOW-level input voltage
VSS
−
0.3VDD
V
VIH
HIGH-level input voltage
0.7VDD
−
VDD
V
IIL
input leakage current
VI = VDD1 or VSS1
−1
−
+1
µA
Column and row outputs
Rcol
column output resistance
COL 0 to COL 101
IL = 10 µA outputs tested
one at a time
−
12
20
kΩ
Rrow
row output resistance
ROW 0 to ROW 64
IL = 10 µA outputs tested
one at a time
−
12
20
kΩ
Vbias(col)
column bias tolerance
COL 0 to COL 101
−100
0
+100
mV
Vbias(row)
row bias tolerance
ROW 0 to ROW 64
−100
0
+100
mV
2000 Nov 22
20
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
SYMBOL
PARAMETER
PCF8812
CONDITIONS
MIN.
TYP.
MAX.
UNIT
LCD supply voltage generator
−300
0
+300
mV
coefficient 0
−
0 × 10−3
−
1/°C
coefficient 1
−
−0.76 × 10−3
−
1/°C
−
−1.05 ×
10−3
−
1/°C
−2.10 ×
10−3
−
1/°C
VLCD
VLCD tolerance internally
generated
VDD1 = 2.8 V; VLCD = 7.6 V;
fSCLK = 0; Tamb = 25 °C;
display-load = 10 µA;
notes 3, 6 and 7
TC
VLCD temperature coefficient VDD1 = 2.8 V; fSCLK = 0;
Tamb = −20 to +70 °C;
display load = 10 µA; note 3
coefficient 2
coefficient 3
−
Notes
1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load.
2. Internal clock.
3. fSCLK = 0 means no serial clock.
4. During power-down all static currents are switched off.
5. If external VLCD; the display load current is not transmitted to IDD.
6. Tolerance depend on the temperature; (typical null at Tamb = 27 °C, maximum tolerance values are measured at the
temperate range limit, maximum tolerance is proportional to VLCD).
7. For TC1 to TC3.
14 AC CHARACTERISTICS
VDD = 2.5 to 5.5 V; VSS = 0 V; VLCD = 4.5 to 9.0 V; Tamb = −40 to +85 °C; unless otherwise specified.
SYMBOL
PARAMETER
fOSC
oscillator frequency
fclk(ext)
external clock frequency
fframe
frame frequency
tVHRL
tRW
CONDITIONS
VDD1 = 2.8 V;
Tamb = −20 to +70 °C
MIN.
TYP.
MAX.
UNIT
22
38
67
kHz
20
38
67
kHz
fOSC or fclk(ext) = 38 kHz;
note 1
−
73
−
Hz
VDD to RES LOW
see Fig.16
0
−
1
µs
RES LOW pulse width
see Fig.16
500
−
−
ns
VDD1 = 3.0 V ±10%; all
signal timing is based on
20% to 80% of VDD and a
maximum rise and fall time
of 10 ns
0
−
4.00
MHz
Serial bus timing characteristics
fSCLK
clock frequency
tcyc
clock cycle time
250
−
−
ns
tPWH1
SCLK pulse width HIGH
100
−
−
ns
tPWL1
SCLK pulse width LOW
100
−
−
ns
tS2
SCE set-up time
60
−
−
ns
2000 Nov 22
21
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
SYMBOL
PARAMETER
tH2
SCE hold time
tPWH2
SCE minimum HIGH time
tH5
SCE start hold time
tS3
PCF8812
CONDITIONS
MIN.
TYP.
MAX.
UNIT
100
−
−
ns
100
−
−
ns
100
−
−
ns
D/C set-up time
100
−
−
ns
tH3
D/C hold time
100
−
−
ns
tS4
SDIN set-up time
100
−
−
ns
tH4
SDIN hold time
100
−
−
ns
note 2
Notes
1.
f clk(ext)
f frame = --------------520
2. tH5 is the time from the previous SCLK positive edge (irrespective of the state of SCE) to the negative edge of SCE
(see Fig.15).
15 SERIAL INTERFACE
handbook, full pagewidth
t S2
t H2
t PWH2
SCE
t S3
t H3
t H5
(t H5 )
D/C
t CYC
t PWL1
t S2
t PWH1
SCLK
t S4
t H4
SDIN
MGT645
Fig.15 Serial interface timing.
2000 Nov 22
22
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
16 RESET
handbook, full pagewidth
VDD
t RW
t RW
RES
VDD
t VHRL
t RW
t RW
RES
MGT646
Fig.16 Reset timing.
17 APPLICATION INFORMATION
Table 7
Programming example for PCF8812
SERIAL BUS BYTE
STEP
DISPLAY
OPERATION
D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
SCE is going low
1
start
2
0
0
0
1
0
0
0
0
1
function set; PD = 0, V = 0;
select extended instruction
set (H = 1 mode)
3
0
0
0
0
1
0
0
0
1
set charge pump range
HIGH PRS = 1
4
0
1
0
0
1
1
1
0
0
set VOP; VOP is set to 7.6 V
5
0
0
0
1
0
0
0
0
0
function set; PD = 0; V = 0;
select normal instruction
set (H = 0 mode)
6
0
0
0
0
0
1
1
0
0
display control; set normal
mode (D = 1; E = 0).
7
1
1
1
1
1
1
0
0
0
data write; Y and X are
initialized to 0 by default,
so they aren’t set here
MGS405
2000 Nov 22
23
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
SERIAL BUS BYTE
STEP
DISPLAY
OPERATION
D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
8
1
1
0
1
0
0
0
0
0
data write
MGS406
9
1
1
1
1
0
0
0
0
0
data write
MGS407
10
1
0
0
0
0
0
0
0
0
data write
MGS407
11
1
1
1
1
1
1
0
0
0
data write
MGS409
12
1
0
0
1
0
0
0
0
0
data write
MGS410
13
1
1
1
1
1
1
0
0
0
data write
MGS411
2000 Nov 22
24
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
SERIAL BUS BYTE
STEP
DISPLAY
OPERATION
D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
14
0
0
0
0
0
1
1
0
1
display control; set inverse
video mode (D = 1; E = 1)
MGS412
15
0
1
0
0
0
0
0
0
0
set X-address of RAM; set
address to 0000000
MGS412
16
1
0
0
0
0
0
0
0
0
data write
MGS414
The pinning of the PCF8812 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size:
65 × 102 pixels.
2000 Nov 22
25
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
handbook, full pagewidth
DISPLAY 102 × 65
33
VSS2
VSS1
VDD1
VDD3
VDD2
PCF8812
RES
102
VLCDIN
VLCDOUT
VLCDSENSE
32
4 (1)
CVLCD
I/O
CVDD
VDD
VSS
reset
MGT647
Fig.17 Application diagram; internal charge pump is used and a single VDD.
handbook, full pagewidth
DISPLAY 102 × 65
33
VSS2
VSS1
VDD1
VDD3
VDD2
PCF8812
RES
102
VLCDIN
VLCDOUT
VLCDSENSE
32
4 (1)
VDD2
I/O
CVDD2
CVLCD
reset
CVDD1
VDD1
VSS
MGT648
Fig.18 Application diagram; internal charge pump is used and two separate VDD (VDD1 and VDD2).
2000 Nov 22
26
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
handbook, full pagewidth
DISPLAY 102 × 65
VSS2
VSS1
VDD1
VDD3
VDD2
PCF8812
33
RES
102
VLCDIN
VLCDOUT
VLCDSENSE
32
4 (1)
CVDD
I/O
VSS VLCDIN
VDD
reset
MGT649
Fig.19 Application diagram; external high voltage generation is used.
The required minimum value for the external capacitors in an application with the PCF8812 are as follows:
CVLCD = 100 nF (minimum)
CVDD; CVDD1; CVDD2 = 1 µF (minimum).
Higher capacitor values are recommended for ripple reduction.
18 CHIP INFORMATION
The PCF8812 is manufactured in n-well CMOS technology. The substrate is at VSS potential.
19 PAD INFORMATION
Table 8
Bonding pad dimensions
NAME
DIMENSION
Pad pitch
70 µm
Pad size; aluminium
62 × 100 µm
Bump dimensions
50 × 90 × 17.5 µm (±5)
Wafer thickness; including bumps
maximum 430 µm
Wafer thickness; without bumps
381 µm typ.
2000 Nov 22
27
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
20 BONDING PAD LOCATION
COORDINATES
SYMBOL
Table 9 Bonding pad location
All x and y coordinates are referenced to the centre of the
chip (dimensions in µm; see Fig.20).
COORDINATES
SYMBOL
PAD
x
y
PAD
x
y
COL 0
37
+3605
−934.6
COL 1
38
+3535
−934.6
COL 2
39
+3465
−934.6
COL 3
40
+3395
−934.6
RES
1
+3870
+934.6
COL 4
41
+3325
−934.6
ROW 32
2
+4270
+934.6
COL 5
42
+3255
−934.6
ROW 31
3
+4340
+934.6
COL 6
43
+3185
−934.6
ROW 30
4
+4410
+934.6
COL 7
44
+3115
−934.6
ROW 29
5
+4480
+934.6
COL 8
45
+3045
−934.6
ROW 28
6
+4550
+934.6
COL 9
46
+2975
−934.6
ROW 27
7
+4620
+934.6
COL 10
47
+2905
−934.6
ROW 26
8
+4690
+934.6
COL 11
48
+2835
−934.6
ROW 25
9
+4760
+934.6
COL 12
49
+2765
−934.6
ROW 24
10
+4830
+934.6
COL 13
50
+2695
−934.6
ROW 23
11
+4900
+934.6
COL 14
51
+2625
−934.6
ROW 22
12
+4970
+934.6
COL 15
52
+2555
−934.6
ROW 21
13
+5040
+934.6
COL 16
53
+2485
−934.6
ROW 20
14
+5110
+934.6
COL 17
54
+2415
−934.6
ROW 19
15
+5180
+934.6
COL 18
55
+2345
−934.6
dummy pad
16
+5320
+934.6
56
+2275
−934.6
17
+5355
−934.6
COL 19
dummy pad
57
+2205
−934.6
ROW 0
18
+5005
−934.6
COL 20
58
+2135
−934.6
19
+4935
−934.6
COL 21
ROW 1
59
+2065
−934.6
20
+4865
−934.6
COL 22
ROW 2
60
+1995
−934.6
ROW 3
21
+4795
−934.6
COL 23
61
+1925
−934.6
22
+4725
−934.6
COL 24
ROW 4
62
+1785
−934.6
23
+4655
−934.6
COL 25
ROW 5
63
+1715
−934.6
ROW 6
24
+4585
−934.6
COL 26
64
+1645
−934.6
25
+4515
−934.6
COL 27
ROW 7
65
+1575
−934.6
26
+4445
−934.6
COL 28
ROW 8
66
+1505
−934.6
ROW 9
27
+4375
−934.6
COL 29
67
+1435
−934.6
28
+4305
−934.6
COL 30
ROW 10
68
+1365
−934.6
29
+4235
−934.6
COL 31
ROW 11
69
+1295
−934.6
30
+4165
−934.6
COL 32
ROW 12
70
+1225
−934.6
ROW 13
31
+4095
−934.6
COL 33
71
+1155
−934.6
32
+4025
−934.6
COL 34
ROW 14
72
+1085
−934.6
33
+3955
−934.6
COL 35
ROW 15
73
+1015
−934.6
ROW 16
34
+3885
−934.6
COL 36
74
+945
−934.6
35
+3815
−934.6
COL 37
ROW 17
75
+875
−934.6
36
+3745
−934.6
COL 38
ROW 18
2000 Nov 22
28
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
y
PAD
x
y
COL 39
76
+805
−934.6
COL 78
115
−2065
−934.6
COL 40
77
+735
−934.6
COL 79
116
−2135
−934.6
COL 41
78
+665
−934.6
COL 80
117
−2205
−934.6
COL 42
79
+595
−934.6
COL 81
118
−2275
−934.6
COL 43
80
+525
−934.6
COL 82
119
−2345
−934.6
COL 44
81
+455
−934.6
COL 83
120
−2415
−934.6
COL 45
82
+385
−934.6
COL 84
121
−2485
−934.6
COL 46
83
+315
−934.6
COL 85
122
−2555
−934.6
COL 47
84
+245
−934.6
COL 86
123
−2625
−934.6
COL 48
85
+175
−934.6
COL 87
124
−2695
−934.6
COL 49
86
+105
−934.6
COL 88
125
−2765
−934.6
COL 50
87
−35
−934.6
COL 89
126
−2835
−934.6
COL 51
88
−105
−934.6
COL 90
127
−2905
−934.6
COL 52
89
−175
−934.6
COL 91
128
−2975
−934.6
COL 53
90
−245
−934.6
COL 92
129
−3045
−934.6
COL 54
91
−315
−934.6
COL 93
130
−3115
−934.6
COL 55
92
−385
−934.6
COL 94
131
−3185
−934.6
COL 56
93
−455
−934.6
COL 95
132
−3255
−934.6
COL 57
94
−525
−934.6
COL 96
133
−3325
−934.6
COL 58
95
−595
−934.6
COL 97
134
−3395
−934.6
COL 59
96
−665
−934.6
COL 98
135
−3465
−934.6
COL 60
97
−735
−934.6
COL 99
136
−3535
−934.6
COL 61
98
−805
−934.6
COL 100
137
−3605
−934.6
COL 62
99
−875
−934.6
COL 101
138
−3675
−934.6
COL 63
100
−945
−934.6
ROW 50
139
−3815
−934.6
COL 64
101
−1015
−934.6
ROW 49
140
−3885
−934.6
COL 65
102
−1085
−934.6
ROW 48
141
−3955
−934.6
COL 66
103
−1155
−934.6
ROW 47
142
−4025
−934.6
COL 67
104
−1225
−934.6
ROW 46
143
−4095
−934.6
COL 68
105
−1295
−934.6
ROW 45
144
−4165
−934.6
COL 69
106
−1365
−934.6
ROW 44
145
−4235
−934.6
COL 70
107
−1435
−934.6
ROW 43
146
−4305
−934.6
COL 71
108
−1505
−934.6
ROW 42
147
−4375
−934.6
COL 72
109
−1575
−934.6
ROW 41
148
−4445
−934.6
COL 73
110
−1645
−934.6
ROW 40
149
−4515
−934.6
COL 74
111
−1715
−934.6
ROW 39
150
−4585
−934.6
COL 75
112
−1785
−934.6
ROW 38
151
−4655
−934.6
COL 76
113
−1925
−934.6
ROW 37
152
−4725
−934.6
COL 77
114
−1995
−934.6
ROW 36
153
−4795
−934.6
2000 Nov 22
29
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
PAD
y
x
y
ROW 35
154
−4865
−934.6
VDD2
193
−2130
+934.6
ROW 34
155
−4935
−934.6
OSC
194
−1890
+934.6
ROW 33
156
−5005
−934.6
SDIN
195
−1650
+934.6
dummy pad
157
−5355
−934.6
D/C
196
−1410
+934.6
dummy pad
158
−5320
+934.6
SCE
197
−1170
+934.6
ROW 51
159
−5180
+934.6
T2
198
−930
+934.6
ROW 52
160
−5110
+934.6
SCLK
199
−690
+934.6
ROW 53
161
−5040
+934.6
VSS2
200
−530
+934.6
ROW 54
162
−4970
+934.6
VSS2
201
−450
+934.6
ROW 55
163
−4900
+934.6
VSS2
202
−370
+934.6
ROW 56
164
−4830
+934.6
VSS2
203
−290
+934.6
ROW 57
165
−4760
+934.6
VSS2
204
−210
+934.6
ROW 58
166
−4690
+934.6
VSS2
205
−130
+934.6
ROW 59
167
−4620
+934.6
VSS2
206
−50
+934.6
ROW 60
168
−4550
+934.6
VSS2
207
+30
+934.6
ROW 61
169
−4480
+934.6
VSS2
208
+110
+934.6
ROW 62
170
−4410
+934.6
VSS2
209
+190
+934.6
ROW 63
171
−4340
+934.6
VSS2
210
+270
+934.6
ROW 64
172
−4270
+934.6
VSS2
211
+350
+934.6
dummy pad
173
−4050
+934.6
VSS2
212
+430
+934.6
VDD1
174
−3890
+934.6
VSS2
213
+510
+934.6
VDD1
175
−3810
+934.6
VSS1
214
+670
+934.6
VDD1
176
−3730
+934.6
VSS1
215
+750
+934.6
VDD1
177
−3650
+934.6
VSS1
216
+830
+934.6
VDD1
178
−3570
+934.6
VSS1
217
+910
+934.6
VDD1
179
−3490
+934.6
T1
218
+1150
+934.6
VDD3
180
−3250
+934.6
T5
219
+1630
+934.6
VDD2
181
−3090
+934.6
T4
220
+2030
+934.6
VDD2
182
−3010
+934.6
VSS1
221
+2110
+934.6
VDD2
183
−2930
+934.6
VSS1
222
+2190
+934.6
VDD2
184
−2850
+934.6
T3
223
+2270
+934.6
VDD2
185
−2770
+934.6
VLCDIN
224
+2510
+934.6
VDD2
186
−2690
+934.6
VLCDIN
225
+2590
+934.6
VDD2
187
−2610
+934.6
VLCDIN
226
+2670
+934.6
VDD2
188
−2530
+934.6
VLCDIN
227
+2750
+934.6
VDD2
189
−2450
+934.6
VLCDIN
228
+2830
+934.6
VDD2
190
−2370
+934.6
VLCDIN
229
+2910
+934.6
VDD2
191
−2290
+934.6
VLCDOUT
230
+3070
+934.6
VDD2
192
−2210
+934.6
VLCDOUT
231
+3150
+934.6
2000 Nov 22
30
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
COORDINATES
SYMBOL
PAD
x
y
VLCDOUT
232
+3230
+934.6
VLCDOUT
233
+3310
+934.6
VLCDOUT
234
+3390
+934.6
VLCDOUT
235
+3470
+934.6
VLCDOUT
236
+3550
+934.6
VLCDSENSE
237
+3630
+934.6
Circle 1
+5185
−910.8
Circle 2
−5185
−910.8
Circle 3
−4160
+909.7
Circle 4
+4160
+909.7
Alignment marks
2000 Nov 22
31
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
dummy pad
ROW 19
alignment mark
ROW 0
COL 0
ROW 18
COL 25
COL 50
COL 76
dummy pad
ROW 32
RES
pad No.1
alignment mark
VLCDSENSE
VLCDOUT
VLCDIN
T4
VSS1
T3
T5
T1
VSS1
VSS2
SCLK
T2
SCE
D/C
SDIN
OSC
VDD2
VDD3
VDD1
dummy pad
ROW 64
alignment mark
ROW 50
COL 101
.
..
.
..
.
..
.
..
.
..
ROW 33
dummy pad
ROW 51
alignment mark
PC8812-1
.
..
dummy pad
Philips Semiconductors
.
..
x
.
..
.
..
.
..
32
0,0
65 × 102 pixels matrix LCD driver
andbook, full pagewidth
2000 Nov 22
y
MGT653
Product specification
Fig.20 Bonding pad locations.
PCF8812
(1) The alignment marks are circular with a diameter of 100 µm.
(2) Maximum chip size: 2.1 × 10.9 mm.
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
21 DEVICE PROTECTION DIAGRAM
VDD1
VDD3
VLCDIN
VLCDOUT
VLCDSENSE
handbook, full pagewidth
VDD1
T3, T2
VSS1
VSS1
VDD2
VSS1
VSS1
VSS2
VSS2
VSS2
VSS1
COL 0-101/ROW 0-64
VDD1
SDIN
SCLK
SCE
D/C
OSC
RES
T1, T4, T5
VLCDIN
1 per block
VSS1
VSS1
VSS1
MGT650
Fig.21 Device protection diagram.
2000 Nov 22
33
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
22 TRAY INFORMATION
handbook, full pagewidth
A
x
G
C
H
y
1,1
2,1
1,2
2,2
x,1
3,1
D
B
1,3
F
x,y
1,y
A
,,,,,,,
,,,,,,,
A
E
K
L
M
SECTION A-A
J
MGT651
Fig.22 Tray details.
Table 10 Tray dimensions
DIMENSION
handbook, halfpage
PC8812
MGT652
The orientation of the IC in a pocket is indicated by the position of
the IC type name on the die surface with respect to the chamfer on
the upper left corner of the tray. Refer to the bonding pad location
diagram for the orientating and position of the type name on the die
surface.
Fig.23 Tray alignment.
2000 Nov 22
34
DESCRIPTION
VALUE
A
pocket pitch; x direction
13.77 mm
B
pocket pitch; y direction
4.37 mm
C
pocket width; x direction
11.04 mm
D
pocket width; y direction
2.24 mm
E
tray width; x direction
50.8 mm
F
tray width; y direction
50.8 mm
G
distance from cut corner
to pocket (1 and 1) centre
11.68 mm
H
distance from cut corner
to pocket (1 and 1) centre
5.74 mm
J
tray thickness
3.96 mm
K
tray cross section
1.78 mm
L
tray cross section
2.49 mm
M
pocket depth
0.89 mm
x
no. pockets in x direction
3
y
no. pockets in y direction
10
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
PCF8812
23 DATA SHEET STATUS
DATA SHEET STATUS
PRODUCT
STATUS
DEFINITIONS (1)
Objective specification
Development
This data sheet contains the design target or goal specifications for
product development. Specification may change in any manner without
notice.
Preliminary specification
Qualification
This data sheet contains preliminary data, and supplementary data will be
published at a later date. Philips Semiconductors reserves the right to
make changes at any time without notice in order to improve design and
supply the best possible product.
Product specification
Production
This data sheet contains final specifications. Philips Semiconductors
reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.
Note
1. Please consult the most recently issued data sheet before initiating or completing a design.
Right to make changes  Philips Semiconductors
reserves the right to make changes, without notice, in the
products, including circuits, standard cells, and/or
software, described or contained herein in order to
improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for
the use of any of these products, conveys no licence or title
under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that
these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified.
24 DEFINITIONS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Bare die  All die are tested and are guaranteed to
comply with all data sheet limits up to the point of wafer
sawing for a period of ninety (90) days from the date of
Philips' delivery. If there are data sheet limits not
guaranteed, these will be separately indicated in the data
sheet. There are no post packing tests performed on
individual die or wafer. Philips Semiconductors has no
control of third party procedures in the sawing, handling,
packing or assembly of the die. Accordingly, Philips
Semiconductors assumes no liability for device
functionality or performance of the die or systems after
third party sawing, handling, packing or assembly of the
die. It is the responsibility of the customer to test and
qualify their application in which the die is used.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
25 DISCLAIMERS
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
2000 Nov 22
35
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,
Tel. +66 2 361 7910, Fax. +66 2 398 3447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 70
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
403512/01/pp36
Date of release: 2000
Nov 22
Document order number:
9397 750 07415