SPC564Bxx SPC56ECxx 32-bit MCU family built on the Power Architecture® for automotive body electronics applications Target specification Features ■ e200z4d, 32-bit Power Architecture® – up to 120 MHz and 200 MIPs operation ■ e200z0h, 32-bit Power Architecture – up to 80 MHz and 75 MIPs operation ■ Memory – Up to 3 MByte on-chip Flash with ECC – Up to 256 KByte on-chip SRAM with ECC – 64KByte on-chip Data Flash with ECC – 16-entry memory protection unit (MPU) – User selectable Memory BIST ■ Interrupts – 255 interrupt sources with 16 priority levels – Up to 54 ext. IRQ including 30 wake-up ■ GPIOs: from 147 (QFP176) to 199 (BGA256) ■ System timer units – 8-ch. 32-bit periodic interrupt timer (PIT) – 4-channel 32-bit system timer (STM) – Safety System Watchdog Timer (SWT) – Real-time clock timer (RTC/API) ■ eMIOS, 16-bit counter timed I/O units – Up to 64 channels with PWM/MC/IC/OC ■ Two ADC (10-bit and 12-bit) – Up to 62 channels extendable to 90 ch. – Multiple Analog Watchdog ■ Dedicated diagnostic features for lighting – Advanced shiffted PWM generation – ADC conversion synchronized on PWM Table 1. Device summary Package LQFP176 LQFP208 BGA256 December 2011 ■ Communication interfaces – Up to 6 FlexCAN with 64 buffers each – Up to 10 LINFlex/UART channels – Up to 8 buffered DSPI channels – I2C interface – One FleyRay (dual-ch.) with 128 buffers – Fast Ethernet Controller ■ Cryptographic Services Engine (CSE) – AES-128 en/decryption, CMAC auth. – Secured device boot mode ■ 32-ch. eDMA with multiple request sources ■ Clock generation – 4 to 40 MHz main oscillator – 16 MHz internal RC oscillator – Software-controlled FMPLL – 128 kHz internal RC oscillator – 32 kHz auxiliary oscillator – Clock Monitoring Unit (CMU) ■ Low power capabilities – Ultra low power STANDBY – CAN Sampler to store CAN ID in STBY – Fast wake-up and exectute from RAM ■ Exhaustive debugging capability – Nexus 3+ interface on LBGA256 only – Nexus 1 on all devices ■ Voltage supply – Single 5 V or 3.3 V supply – On-chip Vreg with external ballast transitor ■ Operating temperature range -40 to 125 °C Part number 1.5 MByte 2 MByte 3 MByte SPC564B64L7 SPC56EC64L7 SPC564B64L8 SPC56EC64L8 SPC56EC64B3 SPC564B70L7 SPC56EC70L7 SPC564B70L8 SPC56EC70L8 SPC56EC70B3 SPC564B74L7 SPC56EC74L7 SPC564B74L8 SPC56EC74L8 SPC56EC74B3 Doc ID 17478 Rev 4 This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice. 1/118 www.st.com 1 Contents SPC564Bxx - SPC56ECxx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 15 4 3.1 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 NVUSRO [PAD3V5V(0)] field description . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2 NVUSRO [PAD3V5V(1)] field description . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6 4.5.1 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.2 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.2 I/O input DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.3 I/O output DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6.4 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6.5 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7 RESET electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 64 4.9 2/118 4.2.1 4.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 64 4.8.2 VDD_BV options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.8.3 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 66 Low voltage domain power consumption . . . . . . . . . . . . . . . . . . . . . . . . . 67 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 4.10 4.11 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.10.1 Program/Erase characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.10.2 Flash memory power supply DC characteristics . . . . . . . . . . . . . . . . . . 71 4.10.3 Flash memory start-up/switch-off timings . . . . . . . . . . . . . . . . . . . . . . . 72 Electromagnetic compatibility (EMC) characteristics . . . . . . . . . . . . . . . . 72 4.11.1 Designing hardened software to avoid noise problems . . . . . . . . . . . . . 72 4.11.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.11.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 73 4.12 Fast external crystal oscillator (4–40 MHz) electrical characteristics . . . . 74 4.13 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . 76 4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . 79 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . 80 4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.17.1 4.18 4.19 5 6 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Fast Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) . 92 4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) . . . . 92 4.18.3 MII Async Inputs Signal Timing (CRS and COL) . . . . . . . . . . . . . . . . . . 93 4.18.4 MII Serial Management Channel Timing (MDIO and MDC) . . . . . . . . . 94 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.19.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.19.2 DSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.19.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.19.4 JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2.1 LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 107 5.2.2 LQFP208 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 109 5.2.3 LBGA256 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . 111 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Doc ID 17478 Rev 4 3/118 Contents SPC564Bxx - SPC56ECxx Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPC564Bxx and SPC56ECxx family comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SPC564Bxx and SPC56ECxx series block summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 System pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Functional port pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 PAD3V5V(0) field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 PAD3V5V(1) field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 LQFP thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 LBGA256 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 I/O input DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 I/O pull-up/pull-down DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 SLOW configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57 MEDIUM configuration output buffer electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 58 FAST configuration output buffer electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 58 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I/O supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Reset electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low voltage power domain electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Code flash memory—Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Data flash memory—Program and erase specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Flash memory read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Flash memory power supply DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 71 Start-up time/Switch-off time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 EMI radiated emission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Latch-up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Crystal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Fast external crystal oscillator (4 to 40 MHz) electrical characteristics. . . . . . . . . . . . . . . . 75 Crystal motional characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 78 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 80 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . 81 ADC input leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 ADC conversion characteristics (10-bit ADC_0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Conversion characteristics (12-bit ADC_1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 MII Receive Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 MII transmit signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 MII Async Inputs Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 MII serial management channel timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Doc ID 17478 Rev 4 5/118 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. 6/118 SPC564Bxx - SPC56ECxx On-chip peripherals current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LQFP208 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LBGA256 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. SPC564Bxx and SPC56ECxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 176-pin LQFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 208-pin LQFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 256-pin BGA configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Voltage regulator capacitance connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Low voltage monitor vs. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Fast external crystal oscillator (4 to 40 MHz) electrical characteristics. . . . . . . . . . . . . . . . 75 Crystal oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 lEquivalent circuit of a quartz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . 78 ADC_0 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ADC_1 characteristic and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 MII receive signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 MII transmit signal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 MII async inputs timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 MII serial management channel timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DSPI classic SPI timing–master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DSPI classic SPI timing–master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DSPI classic SPI timing–slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 DSPI classic SPI timing–slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 DSPI modified transfer format timing–master, CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . 100 DSPI modified transfer format timing–master, CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . 100 DSPI modified transfer format timing–slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DSPI modified transfer format timing–slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Timing diagram - JTAG boundary scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 LQFP176 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQFP208 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LBGA256 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Doc ID 17478 Rev 4 7/118 Introduction SPC564Bxx - SPC56ECxx 1 Introduction 1.1 Document Overview This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the SPC564Bxx and SPC56ECxx device. To ensure a complete understanding of the device functionality, refer also to the SPC564Bxx and SPC56ECxx Reference Manual. 1.2 Description The SPC564Bxx and SPC56ECxx is a new family of next generation microcontrollers built on the Power Architecture embedded category. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. The SPC564Bxx and SPC56ECxx family expands the range of the CSPC560B microcontroller family. It provides the scalability needed to implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The advanced and cost-efficient host processor core of the SPC564Bxx and SPC56ECxx automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized for low power consumption. It also capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 8/118 Doc ID 17478 Rev 4 SPC564Bxx and SPC56ECxx family comparison(1) Feature SPC564B64 LQFP 176 Package CPU Execution speed(2) LQFP 208 SPC56EC64 LQFP 176 LQFP 208 SPC564B70 SPC56EC70 BGA LQFP1 LQFP 256 76 208 LQFP 208 BGA 256 LQFP 176 LQFP 208 SPC56EC74 LQFP 176 LQFP 208 BGA 256 e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h Up to 120 MHz (e200z4d) Up to 120 MHz (e200z4d) Up to 80 MHz (e200z0h)(3) Up to 120 MHz (e200z4d) Up to 120 MHz (e200z4d) Up to 80 MHz (e200z0h)(3) Up to 120 MHz (e200z4d) Up to 120 MHz (e200z4d) Up to 80 MHz (e200z0h)(3) Code flash memory 1.5 MB 2 MB Data flash memory SRAM LQFP 176 SPC564B74 SPC564Bxx - SPC56ECxx Table 2. 3 MB 4 x16 KB 128 KB 192 KB 160 KB 256 KB Doc ID 17478 Rev 4 MPU 192 KB 256 KB 16-entry (4) 32 ch eDMA 10-bit ADC dedicated(5), (6) shared with 12-bit ADC(7) 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 19 ch 12-bit ADC dedicated(8) 10 ch shared with 10-bit ADC(7) 19 ch CTU 64 ch Total timer I/O(9) eMIOS 10 SPI (DSPI) 9/118 CAN (FlexCAN) 8 (10) 6 Introduction SCI (LINFlexD) 64 ch, 16-bit SPC564Bxx and SPC56ECxx family comparison(1) (continued) Feature Package SPC564B64 LQFP 176 LQFP 208 SPC56EC64 LQFP 176 LQFP 208 SPC564B70 BGA LQFP1 LQFP 256 76 208 FlexRay SPC56EC70 LQFP 176 LQFP 208 SPC564B74 BGA 256 LQFP 176 LQFP 208 SPC56EC74 LQFP 176 LQFP 208 BGA 256 Introduction 10/118 Table 2. Yes (11) Yes STCU Ethernet No Yes No Yes I2C No Yes 1 32 kHz oscillator (SXOSC) (12) GPIO Debug Yes 147 177 147 JTAG 177 199 147 177 Nexus3 + Doc ID 17478 Rev 4 Cryptographic Services Engine (CSE) 147 JTAG 177 199 Nexus 3+ 147 177 147 177 JTAG 199 Nexus 3+ Optional 1. Feature set dependent on selected peripheral multiplexing; table shows example. 2. Based on 125 °C ambient operating temperature and subject to full device characterisation. 3. The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose. 4. DMAMUX also included that allows for software selection of 32 out of a possible 57 sources. 5. Not shared with 12-bit ADC, but possibly shared with other alternate functions. 6. There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4 dedicated ANX channels. 7. 16x precision channels (ANP) and 3x standard (ANS). 8. Not shared with 10-bit ADC, but possibly shared with other alternate functions. 10. CAN Sampler also included that allows ID of CAN message to be captured when in low power mode. 11. STCU controls MBIST activation and reporting. 12. Estimated I/O count for proposed packages based on multiplexing with peripherals. SPC564Bxx - SPC56ECxx 9. As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference manual for information on the channel configuration and functions. SPC564Bxx - SPC56ECxx 2 Block diagram Block diagram Figure 1 shows the detailed block diagram of the SPC564Bxx and SPC56ECxx. Doc ID 17478 Rev 4 11/118 Block diagram Figure 1. SPC564Bxx - SPC56ECxx SPC564Bxx and SPC56ECxx block diagram FEC Nexus Port FlexRay Nexus 3+ Nexus Voltage regulator NMI0 e200z0h NMI1 e200z4d 64-bit 8 x 5 crossbar switch CSE JTAG Port Instructions (Master) Data (Master) Instructions (Master) Data (Master) MPU JTAGC SRAM 2 × 128 KB Code Flash Data Flash 64 KB 2 × 1.5 MB 2 × SRAM controller Flash memory controller (Slave) Nexus 3+ NMI0 (Slave) (Slave) Interrupt requests from peripheral blocks NMI1 Clocks DMAMUX MPU registers INTC eDMA CMU 16 x Semaphores CAN Sampler ( Master) FMPLL STCU 8× RTC/API 4 × STM SWT ECSM MC_RGM MC_CGM MC_ME MC_PCU PIT RTI BAM SSCM WKPU Peripheral Bridge Interrupt Request 10 ch(1) 1 × 12-bit ADC SIUL Reset Control External Interrupt Request 27 ch or 33 ch(2) 1 × 10-bit ADC CTU 2 × 32 ch eMIOS 10 × LINFlexD 8× DSPI I2C 6× FlexCAN IMUX GPIO & Pad Control (3) (3) I/O Legend: ADC BAM CSE CAN CMU CTU DMAMUX DSPI eDMA FlexCAN FEC eMIOS ECSM FMPLL FlexRay I2C IMUX INTC Notes: 1) 10 dedicated channels plus up to 19 shared channels. See the device-comparison table. 2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table. 3) 16 x precision channels (ANP) are mapped on input only I/O cells. Analog-to-Digital Converter Boot Assist Module Cryptographic Services Engine Controller Area Network (FlexCAN) Clock Monitor Unit Cross Triggering Unit DMA Channel Multiplexer Deserial Serial Peripheral Interface enhanced Direct Memory Access Controller Area Network controller modules Fast Ethenet Controller Enhanced Modular Input Output System Error Correction Status Module Frequency-Modulated Phase-Locked Loop FlexRay Communication Controller Inter-integrated Circuit Bus Internal Multiplexer Interrupt Controller JTAGC LINFlexD MC_ME MC_CGM MC_PCU MC_RGM MPU Nexus NMI PIT_RTI RTC/API SIUL SRAM SSCM STM SWT STCU WKPU JTAG controller Local Interconnect Network Flexible with DMA support Mode Entry Module Clock Generation Module Power Control Unit Reset Generation Module Memory Protection Unit Nexus Development Interface Non-Maskable Interrupt Periodic Interrupt Timer with Real-Time Interrupt Real-Time Clock/ Autonomous Periodic Interrupt System Integration Unit Lite Static Random-Access Memory System Status Configuration Module System Timer Module Software Watchdog Timer Self Test Control Unit Wakeup Unit Table 3 summarizes the functions of the blocks present on the SPC564Bxx and SPC56ECxx. 12/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 3. Block diagram SPC564Bxx and SPC56ECxx series block summary Block Function Analog-to-digital converter (ADC) Converts analog voltages to digital values Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock monitor unit (CMU) Monitors clock source (internal and external) integrity Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Cryptographic Security Engine (CSE) Supports the encoding and decoding of any kind of data Crossbar (XBAR) switch Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width DMA Channel Multiplexer (DMAMUX) Allows to route DMA sources (called slots) to DMA channels Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Error Correction Status Module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host (eDMA) processor via “n” programmable channels. Enhanced modular input output system (eMIOS) Provides the functionality to generate or measure events Flash memory Provides non-volatile storage for program code, constants and variables FlexCAN (controller area network) Supports the standard CAN communications protocol FMPLL (frequency-modulated phase-locked loop) Generates high-speed system clocks and supports programmable frequency modulation FlexRay (FlexRay communication Provides high-speed distributed control for advanced automotive applications controller) Fast Ethernet Controller (FEC) Ethernet Media Access Controller (MAC) designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks Internal multiplexer (IMUX) SIUL subblock Allows flexible mapping of peripheral interface on the different pins of the device Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests for both e200z0h and e200z4d cores JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode Doc ID 17478 Rev 4 13/118 Block diagram Table 3. SPC564Bxx - SPC56ECxx SPC564Bxx and SPC56ECxx series block summary (continued) Block Function LinFlexD (Local Interconnect Network Flexible with DMA support) Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Memory protection unit (MPU) Provides hardware access control for all memory references generated in a device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and modetransition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Non-Maskable Interrupt (NMI) Handles external events that must produce an immediate response, such as power down detection Nexus Development Interface (NDI) Provides real-time development capabilities for e200z0h and e200z4d core processor Periodic interrupt timer/ Real Time Interrupt Timer (PIT_RTI) Produces periodic interrupts and triggers Real-time counter (RTC/API) A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode). Supports autonomous periodic interrupt (API) function to generate a periodic wakeup request to exit a low power mode or an interrupt request Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AutoSAR and operating system tasks Semaphores Provides the hardware support needed in multi-core systems for sharing resources and provides a simple mechanism to achieve lock/unlock operations via a single write access. Wake Unit (WKPU) Supports external sources that can generate interrupts or wakeup events, of which can cause non-maskable interrupt requests or wakeup events. 14/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 3 Package pinouts and signal descriptions Package pinouts and signal descriptions The available LQFP pinouts and the LBGA ballmaps are provided in the following figures. For functional port pin description, see Table 6. 176-pin LQFP configuration 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PB[2] PC[8] PC[13] PC[12] PI[0] PI[1] PI[2] PI[3] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV_A VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PI[4] PI[5] PH[12] PH[11] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] Figure 2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 LQFP176 Top view 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV_B VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PI[13] PI[12] PI[11] VDD_LV VSS_LV PI[8] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] VDD_HV_ADC1 VSS_HV_ADC1 PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 NOTE 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV_A PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PJ[3] PJ[2] PJ[1] PJ[0] PI[15] PI[14] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] VDD_HV_A VSS_HV PD[8] PB[4] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PB[3] PC[9] PC[14] PC[15] PJ[4] VDD_HV_A VSS_HV PH[15] PH[13] PH[14] PI[6] PI[7] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PEp[10] A[0] PE[11] VSS_HV VDD_HV_A VSS_HV RESET VSS_LV VDD_LV VRC_CTRL PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PF[9] PF[8] PF[12] PC[6] 2)Availability of port pin alternate functions depends on product selection. Doc ID 17478 Rev 4 15/118 Package pinouts and signal descriptions 208-pin LQFP configuration 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 PB[2] PC[8] PC[13] PC[12] PL[0] PK[15] PK[14] PK[13] PK[12] PK[11] PK[10] PK[9] PI[0] PI[1] PI[2] PI[3] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV_A VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PI[4] PI[5] PH[12] PH[11] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] Figure 3. SPC564Bxx - SPC56ECxx LQFP208 Top view 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PJ[12] PJ[11] PA[4] PK[0] PJ[15] PJ[14] PJ[13] PA[13] PJ[10] PJ[9] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV_A PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PJ[3] PJ[2] PJ[1] PJ[0] PI[15] PI[14] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] VDD_HV_A VSS_HV PD[8] PB[4] PB[3] PC[9] PC[14] PC[15] PJ[4] VDD_HV_A VSS_HV PH[15] PH[13] PH[14] P[I6] P[I7] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV_A VSS_HV RESET VSS_LV VDD_LV VRC_CTRL PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PK[1] PK[2] PK[3] PK[4] PK[5] PK[6] PK[7] PK[8] PF[9] PF[8] PF[12] PC[6] NOTE 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2) Availability of port pin alternate functions depends on product selection. 16/118 Doc ID 17478 Rev 4 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV_B VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PI[13] PI[12] PI[11] PI[10] VDD_LV VSS_LV PI[9] PI[8] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] VDD_HV_A VSS_HV PD[12] VDD_HV_ADC1 VSS_HV_ADC1 PB[11] PD[11] PD[10] PD[9] PJ[5] PJ[6] PJ[7] PJ[8] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 SPC564Bxx - SPC56ECxx Figure 4. A B C D E F G H J K L M N P R T Package pinouts and signal descriptions 256-pin BGA configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PC[15] PB[2] PC[13] PI[1] PE[7] PH[8] PE[2] PE[4] PC[4] PE[3] PH[9] PI[4] PH[11] PE[14] PA[10] PG[11] PH[13] PC[14] PC[8] PC[12] PI[3] PE[6] PH[5] PE[5] PC[5] PC[0] PC[2] PH[12] PG[10] PA[11] PA[9] PA[8] PH[14] VDD_HV _A PC[9] PL[0] PI[0] PH[7] PH[6] VSS_LV VDD_HV _A PA[5] PC[3] PE[15] PG[14] PE[12] PA[7] PE[13] PG[5] PI[6] PJ[4] PB[3] PK[15] PI[2] PH[4] VDD_LV PC[1] PH[10] PA[6] PI[5] PG[15] PF[14] PF[15] PH[2] PG[3] PI[7] PH[15] PG[2] VDD_LV VSS_LV PK[10] PK[9] PM[1] PM[0] PL[15] PL[14] PG[0] PG[1] PH[0] VDD_HV _A PA[2] PG[4] PA[1] PE[1] PL[2] PM[6] PL[1] PK[11] PM[5] PL[13] PL[12] PM[2] PH[1] PH[3] PG[12] PG[13] PE[8] PE[0] PE[10] PA[0] PL[3] VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV PK[12] VDD_HV _B PI[13] PI[12] PA[3] PE[9] VDD_HV _A PE[11] PK[1] PL[4] VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV VSS_HV PK[13] VDD_HV _A VDD_LV VSS_LV PI[11] VSS_HV VRC_CT RL VDD_LV PG[9] PL[5] VSS_LV VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV PK[14] PD[15] PI[8] PI[9] PI[10] RESET VSS_LV PG[8] PC[11] PL[6] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[3] PD[14] PD[13] PB[14] PB[15] PC[10] PG[7] PB[0] PK[2] PL[7] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[4] PD[12] PB[12] PB[13] VDD_HV _ADC1 L PG[6] PB[1] PK[4] PF[9] PK[5] PK[6] PK[7] PK[8] PL[8] PL[9] PL[10] PL[11] PB[11] PD[10] PD[11] VSS_HV_ ADC1 M PK[3] PF[8] PC[6] PC[7] PJ[13] VDD_HV _A PB[10] PF[6] VDD_HV _A PJ[1] PD[2] PJ[5] PB[5] PB[6] PJ[6] PD[9] PF[12] PF[10] PF[13] PA[14] PJ[9] PA[12] PF[0] PF[5] PF[7] PJ[3] PI[15] PD[4] PD[7] PD[8] PJ[8] PJ[7] PF[11] PA[15] PJ[11] PJ[15] PA[13] PF[2] PF[3] PF[4] VDD_LV PJ[2] PJ[0] PD[0] PD[3] PD[6] VDD_HV _ADC0 PB[7] PJ[12] PA[4] PK[0] PJ[14] PJ[10] PF[1] XTAL EXTAL VSS_LV PB[9] PB[8] PI[14] PD[1] PD[5] VSS_HV_ ADC0 PB[4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E F G H J K N P R T Notes: 1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3]. 2)Availability of port pin alternate functions depends on product selection. 3.1 Pad types In the device the following types of pads are available for system pins and functional port pins: S = Slow(a) M = Medium(a), (b) F = Fast(a), (b) I = Input only with analog feature(a) A = Analog Doc ID 17478 Rev 4 17/118 Package pinouts and signal descriptions 3.2 SPC564Bxx - SPC56ECxx System pins The system pins are listed in Table 4. Table 4. System pin descriptions Pad type RESET config. LBGA 256 I/O direction Function LQFP 208 Port pin LQFP 176 Pin number I/O M Input, weak pull-up only after PHASE2 29 29 K1 RESET Bidirectional reset with Schmitt-Trigger characteristics and noise filter. EXTAL Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used. I A(1) — 58 74 T8 XTAL Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. I/O A(1) — 56 72 T7 1. For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range voltage. 3.3 Functional ports The functional port pins are listed in Table 5. a. See the I/O pad electrical characteristics in the device datasheet for details. b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example, Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1] which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers (PCR0—PCR198)). 18/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Functional port pin descriptions Function Peripheral I/O direction(2) Pad type RESET config. LQFP 176 LQFP 208 LBGA256 Pin number Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[0] AF0 AF1 AF2 AF3 — — GPIO[0] E0UC[0] CLKOUT E0UC[13] WKPU[19] CAN1RX SIUL eMIOS_0 MC_CGM eMIOS_0 WKPU FlexCAN_1 I/O I/O O I/O I I M/S Tristate 24 24 G4 PCR[1] AF0 AF1 AF2 AF3 — — — GPIO[1] E0UC[1] — — WKPU[2] CAN3RX NMI[0](3) SIUL eMIOS_0 — — WKPU FlexCAN_3 WKPU I/O I/O — — I I I S Tristate 19 19 F3 PCR[2] AF0 AF1 AF2 AF3 — — GPIO[2] E0UC[2] — MA[2] WKPU[3] NMI[1](3) SIUL eMIOS_0 — ADC_0 WKPU WKPU I/O I/O — O I I S Tristate 17 17 F1 PCR[3] AF0 AF1 AF2 AF3 — — — GPIO[3] E0UC[3] LIN5TX CS4_1 RX_ER_CLK EIRQ[0] ADC1_S[0] SIUL eMIOS_0 LINFlexD_5 DSPI_1 FEC SIUL ADC_1 I/O I/O O O I I I M/S Tristate 114 138 G16 PA[4] PCR[4] AF0 AF1 AF2 AF3 — — GPIO[4] E0UC[4] — CS0_1 LIN5RX WKPU[9] SIUL eMIOS_0 — DSPI_1 LINFlexD_5 WKPU I/O I/O — I/O I I S Tristate 51 61 T2 PA[5] PCR[5] AF0 AF1 AF2 GPIO[5] E0UC[5] LIN4TX SIUL eMIOS_0 LINFlexD_4 I/O I/O O M/S Tristate 146 170 C10 Port pin PA[0] PA[1] PA[2] PA[3] PCR Doc ID 17478 Rev 4 19/118 Package pinouts and signal descriptions 20/118 LQFP 208 LBGA256 PA[10] LQFP 176 PA[9] RESET config. PA[8] Pad type PA[7] Function I/O direction(2) PA[6] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[6] AF0 AF1 AF2 AF3 — — GPIO[6] E0UC[6] — CS1_1 LIN4RX EIRQ[1] SIUL eMIOS_0 — DSPI_1 LINFlexD_4 SIUL I/O I/O — O I I S Tristate 147 171 D11 PCR[7] AF0 AF1 AF2 AF3 — — — GPIO[7] E0UC[7] LIN3TX — RXD[2] EIRQ[2] ADC1_S[1] SIUL eMIOS_0 LINFlexD_3 — FEC SIUL ADC_1 I/O I/O O — I I I M/S Tristate 128 152 C15 PCR[8] AF0 AF1 AF2 AF3 — — — — GPIO[8] E0UC[8] E0UC[14] — RXD[1] EIRQ[3] ABS[0] LIN3RX SIUL eMIOS_0 eMIOS_0 — FEC SIUL MC_RGM LINFlexD_3 I/O I/O I/O — I I I I M/S Input, weak pull-up 129 153 B16 PCR[9] AF0 AF1 AF2 AF3 — — GPIO[9] E0UC[9] — CS2_1 RXD[0] FAB SIUL eMIOS_0 — DSPI1 FEC MC_RGM I/O I/O — O I I M/S Pulldown 130 154 B15 PCR[10] AF0 AF1 AF2 AF3 — — — GPIO[10] E0UC[10] SDA LIN2TX COL ADC1_S[2] SIN_1 SIUL eMIOS_0 I2C LINFlexD_2 FEC ADC_1 DSPI_1 I/O I/O I/O O I I I M/S Tristate 131 155 A15 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx PB[1] LBGA256 PB[0] LQFP 208 PA[15] LQFP 176 PA[14] RESET config. PA[13] Pad type PA[12] Function I/O direction(2) PA[11] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[11] AF0 AF1 AF2 AF3 — — — — GPIO[11] E0UC[11] SCL — RX_ER EIRQ[16] LIN2RX ADC1_S[3] SIUL eMIOS_0 I2C — FEC SIUL LINFlexD_2 ADC_1 I/O I/O I/O — I I I I M/S Tristate 132 156 B14 PCR[12] AF0 AF1 AF2 AF3 — — GPIO[12] — E0UC[28] CS3_1 EIRQ[17] SIN_0 SIUL — eMIOS_0 DSPI1 SIUL DSPI_0 I/O — I/O O I I S Tristate 53 69 P6 PCR[13] AF0 AF1 AF2 AF3 GPIO[13] SOUT_0 E0UC[29] — SIUL DSPI_0 eMIOS_0 — I/O O I/O — M/S Tristate 52 66 R5 PCR[14] AF0 AF1 AF2 AF3 — GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4] SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL I/O I/O I/O I/O I M/S Tristate 50 58 P4 PCR[15] AF0 AF1 AF2 AF3 — GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10] SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU I/O I/O I/O I/O I M/S Tristate 48 56 R2 PCR[16] AF0 AF1 AF2 AF3 GPIO[16] CAN0TX E0UC[30] LIN0TX SIUL FlexCAN_0 eMIOS_0 LINFlexD_0 I/O O I/O I M/S Tristate 39 39 L3 PCR[17] AF0 AF1 AF2 — — — GPIO[17] — E0UC[31] LIN0RX WKPU[4] CAN0RX SIUL — eMIOS_0 LINFlexD_0 WKPU FlexCAN_0 I/O — I/O I I I S Tristate 40 40 M2 PCR Doc ID 17478 Rev 4 21/118 Package pinouts and signal descriptions 22/118 LBGA256 PB[7] LQFP 208 PB[6] LQFP 176 PB[5] RESET config. PB[4] Pad type PB[3] Function I/O direction(2) PB[2] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[18] AF0 AF1 AF2 AF3 GPIO[18] LIN0TX SDA E0UC[30] SIUL LINFlexD_0 I2C eMIOS_0 I/O O I/O I/O M/S Tristate 176 208 A2 PCR[19] AF0 AF1 AF2 AF3 — — GPIO[19] E0UC[31] SCL — WKPU[11] LIN0RX SIUL eMIOS_0 I2C — WKPU LINFlexD_0 I/O I/O I/O — I I S Tristate 1 1 D4 PCR[20] AF0 AF1 AF2 AF3 — — GPI[20] — — — ADC0_P[0] ADC1_P[0] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 88 104 T16 PCR[21] AF0 AF1 AF2 AF3 — — GPI[21] — — — ADC0_P[1] ADC1_P[1] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 91 107 N13 PCR[22] AF0 AF1 AF2 AF3 — — GPI[22] — — — ADC0_P[2] ADC1_P[2] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 92 108 N14 PCR[23] AF0 AF1 AF2 AF3 — — GPI[23] — — — ADC0_P[3] ADC1_P[3] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 93 109 R16 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx LBGA256 PB[13] LQFP 208 PB[12] LQFP 176 PB[11] RESET config. PB[10] Pad type PB[9](5) Function I/O direction(2) PB[8] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[24] AF0 AF1 AF2 AF3 — — — — GPI[24] — — — ADC0_S[0] ADC1_S[4] WKPU[25] OSC32k_XTAL(4) SIUL — — — ADC_0 ADC_1 WKPU SXOSC I — — — I I I I I — 61 77 T11 PCR[25] AF0 AF1 AF2 AF3 — — — — GPI[25] — — — ADC0_S[1] ADC1_S[5] WKPU[26] OSC32k_EXTAL4 SIUL — — — ADC_0 ADC_1 WKPU SXOSC I — — — I I I I I — 60 76 T10 PCR[26] AF0 AF1 AF2 AF3 — — — GPIO[26] SOUT_1 CAN3TX — ADC0_S[2] ADC1_S[6] WKPU[8] SIUL DSPI_1 FlexCAN_3 — ADC_0 ADC_1 WKPU I/O O — — I I I S Tristate 62 78 N7 PCR[27] AF0 AF1 AF2 AF3 — GPIO[27] E0UC[3] — CS0_0 ADC0_S[3] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — I/O I S Tristate 97 117 M13 PCR[28] AF0 AF1 AF2 AF3 — GPIO[28] E0UC[4] — CS1_0 ADC0_X[0] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 101 123 L14 PCR[29] AF0 AF1 AF2 AF3 — GPIO[29] E0UC[5] — CS2_0 ADC0_X[1] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 103 125 L15 PCR Doc ID 17478 Rev 4 23/118 Package pinouts and signal descriptions PC[4] 24/118 LBGA256 PC[3] LQFP 208 PC[2] LQFP 176 PC[1](6) RESET config. PC[0](6) Pad type PB[15] Function I/O direction(2) PB[14] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[30] AF0 AF1 AF2 AF3 — GPIO[30] E0UC[6] — CS3_0 ADC0_X[2] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 105 127 K15 PCR[31] AF0 AF1 AF2 AF3 — GPIO[31] E0UC[7] — CS4_0 ADC0_X[3] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I S Tristate 107 129 K16 PCR[32] AF0 AF1 AF2 AF3 GPIO[32] — TDI — SIUL — JTAGC — I/O — I — M/S Input, weak pull-up 154 178 B10 PCR[33] AF0 AF1 AF2 AF3 GPIO[33] — TDO — SIUL — JTAGC — I/O — O — F/M Tristate 149 173 D9 PCR[34] AF0 AF1 AF2 AF3 — GPIO[34] SCK_1 CAN4TX — EIRQ[5] SIUL DSPI_1 FlexCAN_4 — SIUL I/O I/O O — I M/S Tristate 145 169 B11 GPIO[35] CS0_1 MA[0] — CAN1RX CAN4RX EIRQ[6] SIUL DSPI_1 ADC_0 — FlexCAN_1 FlexCAN_4 SIUL I/O I/O O PCR[35] AF0 AF1 AF2 AF3 — — — S Tristate 144 168 C11 AF0 AF1 AF2 AF3 ALT4 — — — GPIO[36] E1UC[31] — SIUL eMIOS_1 — I/O I/O — FR_B_TX_EN SIN_1 CAN3RX EIRQ[18] Flexray DSPI_1 FlexCAN_3 SIUL O I I I M/S Tristate 159 183 A9 PCR PCR[36] Doc ID 17478 Rev 4 I I I SPC564Bxx - SPC56ECxx PC[11] LBGA256 PC[10] LQFP 208 PC[9] LQFP 176 PC[8] RESET config. PC[7] Pad type PC[6] Function I/O direction(2) PC[5] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[37] AF0 AF1 AF2 AF3 ALT4 — GPIO[37] SOUT_1 CAN3TX — FR_A_TX EIRQ[7] SIUL DSPI_1 FlexCAN_3 — Flexray SIUL I/O O O — O I M/S Tristate 158 182 B9 PCR[38] AF0 AF1 AF2 AF3 GPIO[38] LIN1TX E1UC[28] — SIUL LINFlexD_1 eMIOS_1 — I/O O I/O — S Tristate 44 52 N3 PCR[39] AF0 AF1 AF2 AF3 — — GPIO[39] — E1UC[29] — LIN1RX WKPU[12] SIUL — eMIOS_1 — LINFlexD_1 WKPU I/O — I/O — I I S Tristate 45 53 N4 PCR[40] AF0 AF1 AF2 AF3 GPIO[40] LIN2TX E0UC[3] — SIUL LINFlexD_2 eMIOS_0 — I/O O I/O — S Tristate 175 207 B3 PCR[41] AF0 AF1 AF2 AF3 — — GPIO[41] — E0UC[7] — LIN2RX WKPU[13] SIUL — eMIOS_0 — LINFlexD_2 WKPU I/O — I/O — I I S Tristate 2 2 C3 PCR[42] AF0 AF1 AF2 AF3 GPIO[42] CAN1TX CAN4TX MA[1] SIUL FlexCAN_1 FlexCAN_4 ADC_0 I/O O O O M/S Tristate 36 36 L1 PCR[43] AF0 AF1 AF2 AF3 — — — GPIO[43] — — MA[2] CAN1RX CAN4RX WKPU[5] SIUL — — ADC_0 FlexCAN_1 FlexCAN_4 WKPU I/O — — O I I I S Tristate 35 PCR Doc ID 17478 Rev 4 35 K4 25/118 Package pinouts and signal descriptions PC[15] PD[0] PD[1] 26/118 SIUL eMIOS_0 — — Flexray DSPI_2 SIUL I/O I/O — — O I I M/S Tristate 173 PCR[45] AF0 AF1 AF2 AF3 ALT4 GPIO[45] E0UC[13] SOUT_2 — FR_DBG[1] SIUL eMIOS_0 DSPI_2 — Flexray I/O I/O O — O M/S Tristate 174 PCR[46] AF0 AF1 AF2 AF3 ALT4 — GPIO[46] E0UC[14] SCK_2 — FR_DBG[2] EIRQ[8] SIUL eMIOS_0 DSPI_2 — Flexray SIUL I/O I/O I/O — O I M/S Tristate 3 PCR[47] AF0 AF1 AF2 AF3 ALT4 GPIO[47] E0UC[15] CS0_2 — FR_DBG[3] EIRQ[20] SIUL eMIOS_0 DSPI_2 — Flexray SIUL I/O I/O I/O — O I M/S Tristate 4 PCR[48] AF0 AF1 AF2 AF3 — — — GPI[48] — — — ADC0_P[4] ADC1_P[4] WKPU[27] SIUL — — — ADC_0 ADC_1 WKPU I — — — I I I I Tristate 77 93 R12 PCR[49] AF0 AF1 AF2 AF3 — — — GPI[49] — — — ADC0_P[5] ADC1_P[5] WKPU[28] SIUL — — — ADC_0 ADC_1 WKPU I — — — I I I I Tristate 78 94 T13 Doc ID 17478 Rev 4 205 206 3 4 LBGA256 GPIO[44] E0UC[12] — — FR_DBG[0] SIN_2 EIRQ[19] LQFP 208 PCR[44] AF0 AF1 AF2 AF3 ALT4 — — PCR LQFP 176 RESET config. PC[14] Pad type PC[13] Function I/O direction(2) PC[12] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx B4 A3 B2 A1 SPC564Bxx - SPC56ECxx LBGA256 PD[7] LQFP 208 PD[6] LQFP 176 PD[5] RESET config. PD[4] Pad type PD[3] Function I/O direction(2) PD[2] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[50] AF0 AF1 AF2 AF3 — — GPI[50] — — — ADC0_P[6] ADC1_P[6] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 79 95 N11 PCR[51] AF0 AF1 AF2 AF3 — — GPI[51] — — — ADC0_P[7] ADC1_P[7] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 80 96 R13 PCR[52] AF0 AF1 AF2 AF3 — — GPI[52] — — — ADC0_P[8] ADC1_P[8] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 81 97 P12 PCR[53] AF0 AF1 AF2 AF3 — — GPI[53] — — — ADC0_P[9] ADC1_P[9] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 82 98 T14 PCR[54] AF0 AF1 AF2 AF3 — — GPI[54] — — — ADC0_P[10] ADC1_P[10] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 83 99 R14 PCR[55] AF0 AF1 AF2 AF3 — — GPI[55] — — — ADC0_P[11] ADC1_P[11] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 84 100 P13 PCR Doc ID 17478 Rev 4 27/118 Package pinouts and signal descriptions PD[14] 28/118 LBGA256 PD[13] LQFP 208 PD[12] LQFP 176 PD[11] RESET config. PD[10] Pad type PD[9] Function I/O direction(2) PD[8] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[56] AF0 AF1 AF2 AF3 — — GPI[56] — — — ADC0_P[12] ADC1_P[12] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 87 103 P14 PCR[57] AF0 AF1 AF2 AF3 — — GPI[57] — — — ADC0_P[13] ADC1_P[13] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 94 114 N16 PCR[58] AF0 AF1 AF2 AF3 — — GPI[58] — — — ADC0_P[14] ADC1_P[14] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 95 PCR[59] AF0 AF1 AF2 AF3 — — GPI[59] — — — ADC0_P[15] ADC1_P[15] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 96 PCR[60] AF0 AF1 AF2 AF3 — GPIO[60] CS5_0 E0UC[24] — ADC0_S[4] SIUL DSPI_0 eMIOS_0 — ADC_0 I/O O I/O — I S Tristate 100 120 L13 PCR[61] AF0 AF1 AF2 AF3 — GPIO[61] CS0_1 E0UC[25] — ADC0_S[5] SIUL DSPI_1 eMIOS_0 — ADC_0 I/O I/O I/O — I S Tristate 102 124 K14 PCR[62] AF0 AF1 AF2 AF3 ALT4 — GPIO[62] CS1_1 E0UC[26] — FR_DBG[0] ADC0_S[6] SIUL DSPI_1 eMIOS_0 — Flexray ADC_0 I/O O I/O — O I S Tristate 104 126 K13 PCR Doc ID 17478 Rev 4 115 M14 116 M15 SPC564Bxx - SPC56ECxx LBGA256 PE[4] LQFP 208 PE[3] LQFP 176 PE[2] RESET config. PE[1] Pad type PE[0] Function I/O direction(2) PD[15] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[63] AF0 AF1 AF2 AF3 ALT4 — GPIO[63] CS2_1 E0UC[27] — FR_DBG[1] ADC0_S[7] SIUL DSPI_1 eMIOS_0 — Flexray ADC_0 I/O O I/O — O I S Tristate 106 128 J13 PCR[64] AF0 AF1 AF2 AF3 — — GPIO[64] E0UC[16] — — CAN5RX WKPU[6] SIUL eMIOS_0 — — FlexCAN_5 WKPU I/O I/O — — I I S Tristate 18 PCR[65] AF0 AF1 AF2 AF3 GPIO[65] E0UC[17] CAN5TX — SIUL eMIOS_0 FlexCAN_5 — I/O I/O O — M/S Tristate 20 PCR[66] AF0 AF1 AF2 AF3 ALT4 — — GPIO[66] E0UC[18] — — FR_A_TX_EN SIN_1 EIRQ[21] SIUL eMIOS_0 — — Flexray DSPI_1 SIUL I/O I/O — — O I I M/S Tristate 156 PCR[67] AF0 AF1 AF2 AF3 — — GPIO[67] E0UC[19] SOUT_1 — FR_A_RX WKPU[29] SIUL eMIOS_0 DSPI_1 — Flexray WKPU I/O I/O O — I I M/S Tristate 157 PCR[68] AF0 AF1 AF2 AF3 ALT4 — GPIO[68] E0UC[20] SCK_1 — FR_B_TX EIRQ[9] SIUL eMIOS_0 DSPI_1 — Flexray SIUL I/O I/O I/O — O I M/S Tristate 160 PCR Doc ID 17478 Rev 4 18 20 180 181 184 G2 F4 A7 A10 A8 29/118 Package pinouts and signal descriptions PE[8] PE[9] PE[10] PE[11] 30/118 SIUL eMIOS_0 DSPI_1 ADC_0 Flexray WKPU I/O I/O I/O O I I M/S Tristate 161 PCR[70] AF0 AF1 AF2 AF3 — GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22] SIUL eMIOS_0 DSPI_0 ADC_0 SIUL I/O I/O O O I M/S Tristate 167 PCR[71] AF0 AF1 AF2 AF3 — GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23] SIUL eMIOS_0 DSPI_0 ADC_0 SIUL I/O I/O O O I M/S Tristate 168 PCR[72] AF0 AF1 AF2 AF3 GPIO[72] CAN2TX E0UC[22] CAN3TX SIUL FlexCAN_2 eMIOS_0 FlexCAN_3 I/O O I/O O M/S Tristate 21 PCR[73] AF0 AF1 AF2 AF3 — — — GPIO[73] — E0UC[23] — WKPU[7] CAN2RX CAN3RX SIUL — eMIOS_0 — WKPU FlexCAN_2 FlexCAN_3 I/O — I/O — I I I S Tristate 22 PCR[74] AF0 AF1 AF2 AF3 — GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10] SIUL LINFlexD_3 DSPI_1 eMIOS_1 SIUL I/O O O I/O I S Tristate 23 PCR[75] AF0 AF1 AF2 AF3 — — GPIO[75] E0UC[24] CS4_1 — LIN3RX WKPU[14] SIUL eMIOS_0 DSPI_1 — LINFlexD_3 WKPU I/O I/O O — I I S Tristate 25 Doc ID 17478 Rev 4 185 191 192 21 22 23 25 LBGA256 GPIO[69] E0UC[21] CS0_1 MA[2] FR_B_RX WKPU[30] LQFP 208 PCR[69] AF0 AF1 AF2 AF3 — — PCR LQFP 176 RESET config. PE[7] Pad type PE[6] Function I/O direction(2) PE[5] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx B8 B6 A5 G1 H1 G3 H3 SPC564Bxx - SPC56ECxx PE[15] PF[0] PF[1] PF[2] SIUL — eMIOS_1 — FEC DSPI_2 SIUL ADC_1 I/O — I/O — I I I I M/S Tristate 133 PCR[77] AF0 AF1 AF2 AF3 — GPIO[77] SOUT_2 E1UC[20] — RXD[3] SIUL DSPI_2 eMIOS_1 — FEC I/O O I/O — I M/S Tristate 127 PCR[78] AF0 AF1 AF2 AF3 — GPIO[78] SCK_2 E1UC[21] — EIRQ[12] SIUL DSPI_2 eMIOS_1 — SIUL I/O I/O I/O — I M/S Tristate 136 PCR[79] AF0 AF1 AF2 AF3 GPIO[79] CS0_2 E1UC[22] SCK_6 SIUL DSPI_2 eMIOS_1 DSPI_6 I/O I/O I/O I/O M/S Tristate 137 PCR[80] AF0 AF1 AF2 AF3 — GPIO[80] E0UC[10] CS3_1 — ADC0_S[8] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I S Tristate 63 PCR[81] AF0 AF1 AF2 AF3 — GPIO[81] E0UC[11] CS4_1 — ADC0_S[9] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I S Tristate 64 PCR[82] AF0 AF1 AF2 AF3 — GPIO[82] E0UC[12] CS0_2 — ADC0_S[10] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O I/O — I S Tristate 65 Doc ID 17478 Rev 4 157 151 160 161 79 80 81 LBGA256 GPIO[76] — E1UC[19] — CRS SIN_2 EIRQ[11] ADC1_S[7] LQFP 208 PCR[76] AF0 AF1 AF2 AF3 — — — — PCR LQFP 176 RESET config. PE[14] Pad type PE[13] Function I/O direction(2) PE[12] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions C14 C16 A14 C12 P7 T6 R6 31/118 Package pinouts and signal descriptions PF[6] PF[7] PF[8] PF[9] PF[10] 32/118 SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 66 PCR[84] AF0 AF1 AF2 AF3 — GPIO[84] E0UC[14] CS2_2 — ADC0_S[12] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 67 PCR[85] AF0 AF1 AF2 AF3 — GPIO[85] E0UC[22] CS3_2 — ADC0_S[13] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 68 PCR[86] AF0 AF1 AF2 AF3 — GPIO[86] E0UC[23] CS1_1 — ADC0_S[14] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I S Tristate 69 PCR[87] AF0 AF1 AF2 AF3 — GPIO[87] — CS2_1 — ADC0_S[15] SIUL — DSPI_1 — ADC_0 I/O — O — I S Tristate 70 PCR[88] AF0 AF1 AF2 AF3 GPIO[88] CAN3TX CS4_0 CAN2TX SIUL FlexCAN_3 DSPI_0 FlexCAN_2 I/O O O O M/S Tristate 42 PCR[89] AF0 AF1 AF2 AF3 — — — GPIO[89] E1UC[1] CS5_0 — CAN2RX CAN3RX WKPU[22] SIUL eMIOS_1 DSPI_0 — FlexCAN_2 FlexCAN_3 WKPU I/O I/O O — I I I S Tristate 41 PCR[90] AF0 AF1 AF2 AF3 GPIO[90] CS1_0 LIN4TX E1UC[2] SIUL DSPI_0 LINFlexD_4 eMIOS_1 I/O O O I/O M/S Tristate 46 Doc ID 17478 Rev 4 82 83 84 85 86 50 49 54 LBGA256 GPIO[83] E0UC[13] CS1_2 — ADC0_S[11] LQFP 208 PCR[83] AF0 AF1 AF2 AF3 — PCR LQFP 176 RESET config. PF[5] Pad type PF[4] Function I/O direction(2) PF[3] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx R7 R8 P8 N8 P9 N2 M4 P2 SPC564Bxx - SPC56ECxx PF[14] PF[15] PG[0] SIUL DSPI_0 eMIOS_1 — LINFlexD_4 WKPU I/O O I/O — I I S Tristate 47 PCR[92] AF0 AF1 AF2 AF3 GPIO[92] E1UC[25] LIN5TX — SIUL eMIOS_1 LINFlexD_5 — I/O I/O O — M/S Tristate 43 PCR[93] AF0 AF1 AF2 AF3 — — GPIO[93] E1UC[26] — — LIN5RX WKPU[16] SIUL eMIOS_1 — — LINFlexD_5 WKPU I/O I/O — — I I S Tristate 49 PCR[94] AF0 AF1 AF2 AF3 ALT4 GPIO[94] CAN4TX E1UC[27] CAN1TX MDIO SIUL FlexCAN_4 eMIOS_1 FlexCAN_1 FEC I/O O I/O O I/O M/S Tristate 126 PCR[95] AF0 AF1 AF2 AF3 — — — — GPIO[95] E1UC[4] — — RX_DV CAN1RX CAN4RX EIRQ[13] SIUL eMIOS_1 — — FEC FlexCAN_1 FlexCAN_4 SIUL I/O I/O — — I I I I M/S Tristate 125 PCR[96] AF0 AF1 AF2 AF3 ALT4 GPIO[96] CAN5TX E1UC[23] — MDC SIUL FlexCAN_5 eMIOS_1 — FEC I/O O I/O — O F Tristate 122 Doc ID 17478 Rev 4 55 LBGA256 GPIO[91] CS2_0 E1UC[3] — LIN4RX WKPU[15] LQFP 208 PCR[91] AF0 AF1 AF2 AF3 — — PCR LQFP 176 RESET config. PF[13] Pad type PF[12] Function I/O direction(2) PF[11] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions R1 51 P1 57 150 149 146 P3 D14 D15 E13 33/118 Package pinouts and signal descriptions PG[7] 34/118 LBGA256 PG[6] LQFP 208 PG[5] LQFP 176 PG[4] RESET config. PG[3] Pad type PG[2] Function I/O direction(2) PG[1] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[97] AF0 AF1 AF2 AF3 — — — GPIO[97] — E1UC[24] — TX_CLK CAN5RX EIRQ[14] SIUL — eMIOS_1 — FEC FlexCAN_5 SIUL I/O — I/O — I I I M Tristate 121 145 E14 PCR[98] AF0 AF1 AF2 AF3 GPIO[98] E1UC[11] SOUT_3 — SIUL eMIOS_1 DSPI_3 — I/O I/O O — M/S Tristate 16 16 E4 PCR[99] AF0 AF1 AF2 AF3 — GPIO[99] E1UC[12] CS0_3 — WKPU[17] SIUL eMIOS_1 DSPI_3 — WKPU I/O I/O I/O — I S Tristate 15 15 E1 PCR[100] AF0 AF1 AF2 AF3 GPIO[100] E1UC[13] SCK_3 — SIUL eMIOS_1 DSPI_3 — I/O I/O I/O — M/S Tristate 14 14 F2 PCR[101] AF0 AF1 AF2 AF3 — — GPIO[101] E1UC[14] — — WKPU[18] SIN_3 SIUL eMIOS_1 — — WKPU DSPI_3 I/O I/O — — I I S Tristate 13 13 D1 PCR[102] AF0 AF1 AF2 AF3 GPIO[102] E1UC[15] LIN6TX — SIUL eMIOS_1 LINFlexD_6 — I/O I/O O — M/S Tristate 38 38 M1 PCR[103] AF0 AF1 AF2 AF3 — — GPIO[103] E1UC[16] E1UC[30] — LIN6RX WKPU[20] SIUL eMIOS_1 eMIOS_1 — LINFlexD_6 WKPU I/O I/O I/O — I I S Tristate 37 37 L2 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx PG[14] PG[15] LBGA256 PG[13] LQFP 208 PG[12] LQFP 176 PG[11] RESET config. PG[10] Pad type PG[9] Function I/O direction(2) PG[8] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[104] AF0 AF1 AF2 AF3 — GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15] SIUL eMIOS_1 LINFlexD_7 DSPI_2 SIUL I/O I/O O I/O I S Tristate 34 34 K3 PCR[105] AF0 AF1 AF2 AF3 — — GPIO[105] E1UC[18] — SCK_2 LIN7RX WKPU[21] SIUL eMIOS_1 — DSPI_2 LINFlexD_7 WKPU I/O I/O — I/O I I S Tristate 33 33 J4 PCR[106] AF0 AF1 AF2 AF3 — GPIO[106] E0UC[24] E1UC[31] — SIN_4 SIUL eMIOS_0 eMIOS_1 — DSPI_4 I/O I/O I/O — I S Tristate 138 162 B13 PCR[107] AF0 AF1 AF2 AF3 GPIO[107] E0UC[25] CS0_4 CS0_6 SIUL eMIOS_0 DSPI_4 DSPI_6 I/O I/O I/O I/O M/S Tristate 139 163 A16 PCR[108] AF0 AF1 AF2 AF3 ALT4 GPIO[108] E0UC[26] SOUT_4 — TXD[2] SIUL eMIOS_0 DSPI_4 — FEC I/O I/O O — O M/S Tristate 116 140 F15 PCR[109] AF0 AF1 AF2 AF3 ALT4 GPIO[109] E0UC[27] SCK_4 — TXD[3] SIUL eMIOS_0 DSPI_4 — FEC I/O I/O I/O — O M/S Tristate 115 139 F16 PCR[110] AF0 AF1 AF2 AF3 — GPIO[110] E1UC[0] LIN8TX — SIN_6 SIUL eMIOS_1 LINFlexD_8 — DSPI_6 I/O I/O O — I S Tristate 134 158 C13 PCR[111] AF0 AF1 AF2 AF3 — GPIO[111] E1UC[1] SOUT_6 — LIN8RX SIUL eMIOS_1 DSPI_6 — LINFlexD_8 I/O I/O O — I M/S Tristate 135 159 D13 PCR Doc ID 17478 Rev 4 35/118 Package pinouts and signal descriptions PH[6] PH[7] 36/118 LBGA256 PH[5] LQFP 208 PH[4] LQFP 176 PH[3] RESET config. PH[2] Pad type PH[1] Function I/O direction(2) PH[0] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[112] AF0 AF1 AF2 AF3 ALT4 — GPIO[112] E1UC[2] — — TXD[1] SIN_1 SIUL eMIOS_1 — — FEC DSPI_1 I/O I/O — — O I M/S Tristate 117 141 E15 PCR[113] AF0 AF1 AF2 AF3 ALT4 GPIO[113] E1UC[3] SOUT_1 — TXD[0] SIUL eMIOS_1 DSPI_1 — FEC I/O I/O O — O M/S Tristate 118 142 F13 PCR[114] AF0 AF1 AF2 AF3 ALT4 GPIO[114] E1UC[4] SCK_1 — TX_EN SIUL eMIOS_1 DSPI_1 — FEC I/O I/O I/O — O M/S Tristate 119 143 D16 PCR[115] AF0 AF1 AF2 AF3 ALT4 GPIO[115] E1UC[5] CS0_1 — TX_ER SIUL eMIOS_1 DSPI_1 — FEC I/O I/O I/O — O M/S Tristate 120 144 F14 PCR[116] AF0 AF1 AF2 AF3 GPIO[116] E1UC[6] SOUT_7 — SIUL eMIOS_1 DSPI_7 — I/O I/O O — M/S Tristate 162 186 D7 PCR[117] AF0 AF1 AF2 AF3 — GPIO[117] E1UC[7] — — SIN_7 SIUL eMIOS_1 — — DSPI_7 I/O I/O — — I S Tristate 163 187 B7 PCR[118] AF0 AF1 AF2 AF3 GPIO[118] E1UC[8] SCK_7 MA[2] SIUL eMIOS_1 DSPI_7 ADC_0 I/O I/O I/O O M/S Tristate 164 188 C7 PCR[119] AF0 AF1 AF2 AF3 ALT4 GPIO[119] E1UC[9] CS3_2 MA[1] CS0_7 SIUL eMIOS_1 DSPI_2 ADC_0 DSPI_7 I/O I/O O O I/O M/S Tristate 165 189 C6 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Functional port pin descriptions (continued) Function Peripheral I/O direction(2) Pad type RESET config. LQFP 176 LQFP 208 LBGA256 Pin number Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[120] AF0 AF1 AF2 AF3 GPIO[120] E1UC[10] CS2_2 MA[0] SIUL eMIOS_1 DSPI_2 ADC_0 I/O I/O O O M/S Tristate 166 190 A6 PH[9](6) PCR[121] AF0 AF1 AF2 AF3 — GPIO[121] — — — TCK SIUL — — — JTAGC I/O — — — I S Input, weak pull-up 155 179 A11 PCR[122] AF0 AF1 AF2 AF3 — GPIO[122] — — — TMS SIUL — — — JTAGC I/O — — — I M/S Input, weak pull-up 148 172 D10 PCR[123] AF0 AF1 AF2 AF3 GPIO[123] SOUT_3 CS0_4 E1UC[5] SIUL DSPI_3 DSPI_4 eMIOS_1 I/O O I/O I/O M/S Tristate 140 164 A13 PCR[124] AF0 AF1 AF2 AF3 GPIO[124] SCK_3 CS1_4 E1UC[25] SIUL DSPI_3 DSPI_4 eMIOS_1 I/O I/O O I/O M/S Tristate 141 165 B12 PCR[125] AF0 AF1 AF2 AF3 GPIO[125] SOUT_4 CS0_3 E1UC[26] SIUL DSPI_4 DSPI_3 eMIOS_1 I/O O I/O I/O M/S Tristate 9 9 B1 PCR[126] AF0 AF1 AF2 AF3 GPIO[126] SCK_4 CS1_3 E1UC[27] SIUL DSPI_4 DSPI_3 eMIOS_1 I/O I/O O I/O M/S Tristate 10 10 C1 PCR[127] AF0 AF1 AF2 AF3 GPIO[127] SOUT_5 — E1UC[17] SIUL DSPI_5 — eMIOS_1 I/O O — I/O M/S Tristate 8 8 E3 PCR[128] AF0 AF1 AF2 AF3 GPIO[128] E0UC[28] LIN8TX — SIUL eMIOS_0 LINFlexD_8 — I/O I/O O — S Tristate 172 196 C5 Port pin PH[8] PH[10](6 ) PH[11] PH[12] PH[13] PH[14] PH[15] PI[0] PCR Doc ID 17478 Rev 4 37/118 Package pinouts and signal descriptions PI[7] PI[8] 38/118 LBGA256 PI[6] LQFP 208 PI[5] LQFP 176 PI[4] RESET config. PI[3] Pad type PI[2] Function I/O direction(2) PI[1] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[129] AF0 AF1 AF2 AF3 — — GPIO[129] E0UC[29] — — WKPU[24] LIN8RX SIUL eMIOS_0 — — WKPU LINFlexD_8 I/O I/O — — I I S Tristate 171 195 A4 PCR[130] AF0 AF1 AF2 AF3 GPIO[130] E0UC[30] LIN9TX — SIUL eMIOS_0 LINFlexD_9 — I/O I/O O — S Tristate 170 194 D6 PCR[131] AF0 AF1 AF2 AF3 — — GPIO[131] E0UC[31] — — WKPU[23] LIN9RX SIUL eMIOS_0 — — WKPU LINFlexD_9 I/O I/O — — I I S Tristate 169 193 B5 PCR[132] AF0 AF1 AF2 AF3 GPIO[132] E1UC[28] SOUT_4 — SIUL eMIOS_1 DSPI_4 — I/O I/O O — M/S Tristate 143 167 A12 PCR[133] AF0 AF1 AF2 AF3 ALT4 GPIO[133] E1UC[29] SCK_4 CS2_5 CS2_6 SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6 I/O I/O I/O O O M/S Tristate 142 166 D12 PCR[134] AF0 AF1 AF2 AF3 ALT4 GPIO[134] E1UC[30] CS0_4 CS0_5 CS0_6 SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6 I/O I/O I/O I/O I/O S Tristate 11 11 D2 PCR[135] AF0 AF1 AF2 AF3 ALT4 GPIO[135] E1UC[31] CS1_4 CS1_5 CS1_6 SIUL eMIOS_1 DSPI_4 DSPI_5 DSPI_6 I/O I/O O O O S Tristate 12 12 E2 PCR[136] AF0 AF1 AF2 AF3 — GPIO[136] — — — ADC0_S[16] SIUL — — — ADC_0 I/O — — — I S Tristate 108 130 J14 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx PI[15] LBGA256 PI[14] LQFP 208 PI[13] LQFP 176 PI[12] RESET config. PI[11] Pad type PI[10] Function I/O direction(2) PI[9] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[137] AF0 AF1 AF2 AF3 — GPIO[137] — — — ADC0_S[17] SIUL — — — ADC_0 I/O — — — I S Tristate — 131 J15 PCR[138] AF0 AF1 AF2 AF3 — GPIO[138] — — — ADC0_S[18] SIUL — — — ADC_0 I/O — — — I S Tristate — 134 J16 PCR[139] AF0 AF1 AF2 AF3 — — GPIO[139] — — — ADC0_S[19] SIN_3 SIUL — — — ADC_0 DSPI_3 I/O — — — I I S Tristate 111 135 H16 PCR[140] AF0 AF1 AF2 AF3 — GPIO[140] CS0_3 CS0_2 — ADC0_S[20] SIUL DSPI_3 DSPI_2 — ADC_0 I/O I/O I/O — I S Tristate 112 136 G15 PCR[141] AF0 AF1 AF2 AF3 — GPIO[141] CS1_3 CS1_2 — ADC0_S[21] SIUL DSPI_3 DSPI_2 — ADC_0 I/O O O — I S Tristate 113 137 G14 PCR[142] AF0 AF1 AF2 AF3 — — GPIO[142] — — — ADC0_S[22] SIN_4 SIUL — — — ADC_0 DSPI_4 I/O — — — I I S Tristate 76 92 T12 PCR[143] AF0 AF1 AF2 AF3 — GPIO[143] CS0_4 CS2_2 — ADC0_S[23] SIUL DSPI_4 DSPI_2 — ADC_0 I/O I/O O — I S Tristate 75 91 P11 PCR Doc ID 17478 Rev 4 39/118 Package pinouts and signal descriptions PJ[6] PJ[7] 40/118 LBGA256 PJ[5] LQFP 208 PJ[4] LQFP 176 PJ[3] RESET config. PJ[2] Pad type PJ[1] Function I/O direction(2) PJ[0] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[144] AF0 AF1 AF2 AF3 — GPIO[144] CS1_4 CS3_2 — ADC0_S[24] SIUL DSPI_4 DSPI_2 — ADC_0 I/O O O — I S Tristate 74 90 R11 PCR[145] AF0 AF1 AF2 AF3 — — GPIO[145] — — — ADC0_S[25] SIN_5 SIUL — — —— ADC_0 DSPI_5 I/O — — — I I S Tristate 73 89 N10 PCR[146] AF0 AF1 AF2 AF3 — GPIO[146] CS0_5 CS0_6 CS0_7 ADC0_S[26] SIUL DSPI_5 DSPI_6 DSPI_7 ADC_0 I/O I/O I/O I/O I S Tristate 72 88 R10 PCR[147] AF0 AF1 AF2 AF3 — GPIO[147] CS1_5 CS1_6 CS1_7 ADC0_S[27] SIUL DSPI_5 DSPI_6 DSPI_7 ADC_0 I/O O O O I S Tristate 71 87 P10 PCR[148] AF0 AF1 AF2 AF3 GPIO[148] SCK_5 E1UC[18] — SIUL DSPI_5 eMIOS_1 — I/O I/O I/O — M/S Tristate 5 5 D3 PCR[149] AF0 AF1 AF2 AF3 — GPIO[149] — — — ADC0_S[28] SIUL — — — ADC_0 I/O — — — I S Tristate — 113 N12 PCR[150] AF0 AF1 AF2 AF3 — GPIO[150] — — — ADC0_S[29] SIUL — — — ADC_0 I/O — — — I S Tristate — 112 N15 PCR[151] AF0 AF1 AF2 AF3 — GPIO[151] — — — ADC0_S[30] SIUL — — — ADC_0 I/O — — — I S Tristate — 111 P16 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx PJ[14] LBGA256 PJ[13] LQFP 208 PJ[12] LQFP 176 PJ[11] RESET config. PJ[10] Pad type PJ[9] Function I/O direction(2) PJ[8] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[152] AF0 AF1 AF2 AF3 — GPIO[152] — — — ADC0_S[31] SIUL — — — ADC_0 I/O — — — I S Tristate — 110 P15 PCR[153] AF0 AF1 AF2 AF3 — GPIO[153] — — — ADC1_S[8] SIUL — — — ADC_1 I/O — — — I S Tristate — 68 P5 PCR[154] AF0 AF1 AF2 AF3 — GPIO[154] — — — ADC1_S[9] SIUL — — — ADC_1 I/O — — — I S Tristate — 67 T5 PCR[155] AF0 AF1 AF2 AF3 — GPIO[155] — — — ADC1_S[10] SIUL — — — ADC_1 I/O — — — I S Tristate — 60 R3 PCR[156] AF0 AF1 AF2 AF3 — GPIO[156] — — — ADC1_S[11] SIUL — — — ADC_1 I/O — — — I S Tristate — 59 T1 PCR[157] AF0 AF1 AF2 AF3 — — — — GPIO[157] — CS1_7 — CAN4RX ADC1_S[12] CAN1RX WKPU[31] SIUL — DSPI_7 — FlexCAN_4 ADC_1 FlexCAN_1 WKPU I/O — O — I I I I S Tristate — 65 N5 PCR[158] AF0 AF1 AF2 AF3 GPIO[158] CAN1TX CAN4TX CS2_7 SIUL FlexCAN_1 FlexCAN_4 DSPI_7 I/O O O O M/S Tristate — 64 T4 PCR Doc ID 17478 Rev 4 41/118 Package pinouts and signal descriptions PK[5] PK[6] 42/118 LBGA256 PK[4] LQFP 208 PK[3] LQFP 176 PK[2] RESET config. PK[1] Pad type PK[0] Function I/O direction(2) PJ[15] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[159] AF0 AF1 AF2 AF3 — GPIO[159] — CS1_6 — CAN1RX SIUL — DSPI_6 — FlexCAN_1 I/O — O — I M/S Tristate — 63 R4 PCR[160] AF0 AF1 AF2 AF3 GPIO[160] CAN1TX CS2_6 — SIUL FlexCAN_1 DSPI_6 — I/O O O — M/S Tristate — 62 T3 PCR[161] AF0 AF1 AF2 AF3 — GPIO[161] CS3_6 — — CAN4RX SIUL DSPI_6 — — FlexCAN_4 I/O O — — I M/S Tristate — 41 H4 PCR[162] AF0 AF1 AF2 AF3 GPIO[162] CAN4TX — — SIUL FlexCAN_4 — — I/O O — — M/S Tristate — 42 L4 PCR[163] AF0 AF1 AF2 AF3 — — GPIO[163] E1UC[0] — — CAN5RX LIN8RX SIUL eMIOS_1 — — FlexCAN_5 LINFlexD_8 I/O I/O — — I I M/S Tristate — 43 N1 PCR[164] AF0 AF1 AF2 AF3 GPIO[164] LIN8TX CAN5TX E1UC[1] SIUL LINFlexD_8 FlexCAN_5 eMIOS_1 I/O O O I/O M/S Tristate — 44 M3 PCR[165] AF0 AF1 AF2 AF3 — — GPIO[165] — — — CAN2RX LIN2RX SIUL — — — FlexCAN_2 LINFlexD_2 I/O — — — I I M/S Tristate — 45 M5 PCR[166] AF0 AF1 AF2 AF3 GPIO[166] CAN2TX LIN2TX — SIUL FlexCAN_2 LINFlexD_2 — I/O O O — M/S Tristate — 46 M6 PCR Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx PK[13] PK[14] LBGA256 PK[12] LQFP 208 PK[11] LQFP 176 PK[10] RESET config. PK[9] Pad type PK[8] Function I/O direction(2) PK[7] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[167] AF0 AF1 AF2 AF3 — — GPIO[167] — — — CAN3RX LIN3RX SIUL — — — FlexCAN_3 LINFlexD_3 I/O — — — I I M/S Tristate — 47 M7 PCR[168] AF0 AF1 AF2 AF3 GPIO[168] CAN3TX LIN3TX — SIUL FlexCAN_3 LINFlexD_3 — I/O O O — M/S Tristate — 48 M8 PCR[169] AF0 AF1 AF2 AF3 — GPIO[169] — — — SIN_4 SIUL — — — DSPI_4 I/O — — — I M/S Tristate — 197 E8 PCR[170] AF0 AF1 AF2 AF3 GPIO[170] SOUT_4 — — SIUL DSPI_4 — — I/O O — — M/S Tristate — 198 E7 PCR[171] AF0 AF1 AF2 AF3 GPIO[171] SCK_4 — — SIUL DSPI_4 — — I/O I/O — — M/S Tristate — 199 F8 PCR[172] AF0 AF1 AF2 AF3 GPIO[172] CS0_4 — — SIUL DSPI_4 — — I/O I/O — — M/S Tristate — 200 G12 PCR[173] AF0 AF1 AF2 AF3 — GPIO[173] CS3_6 CS2_7 SCK_1 CAN3RX SIUL DSPI_6 DSPI_7 DSPI_1 FlexCAN_3 I/O O O I/O I M/S Tristate — 201 H12 PCR[174] AF0 AF1 AF2 AF3 GPIO[174] CAN3TX CS3_7 CS0_1 SIUL FlexCAN_3 DSPI_7 DSPI_1 I/O O O I/O M/S Tristate — 202 J12 PCR Doc ID 17478 Rev 4 43/118 Package pinouts and signal descriptions PL[5] PL[6] PL[7] 44/118 LBGA256 PL[4] LQFP 208 PL[3] LQFP 176 PL[2] RESET config. PL[1] Pad type PL[0] Function I/O direction(2) PK[15] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[175] AF0 AF1 AF2 AF3 — — GPIO[175] — — — SIN_1 SIN_7 SIUL — — — DSPI_1 DSPI_7 I/O — — — I I M/S Tristate — 203 D5 PCR[176] AF0 AF1 AF2 AF3 GPIO[176] SOUT_1 SOUT_7 — SIUL DSPI_1 DSPI_7 — I/O O O — M/S Tristate — 204 C4 PCR[177] AF0 AF1 AF2 AF3 GPIO[177] — — — SIUL — — — I/O — — — M/S Tristate — — F7 (7) AF0 AF1 AF2 AF3 GPIO[178] — MDO0(8) — SIUL — Nexus — I/O — O — M/S Tristate — — F5 PCR[179] AF0 AF1 AF2 AF3 GPIO[179] — MDO1 — SIUL — Nexus — I/O — O — M/S Tristate — — G5 PCR[180] AF0 AF1 AF2 AF3 GPIO[180] — MDO2 — SIUL — Nexus — I/O — O — M/S Tristate — — H5 PCR[181] AF0 AF1 AF2 AF3 GPIO[181] — MDO3 — SIUL — Nexus — I/O — O — M/S Tristate — — J5 PCR[182] AF0 AF1 AF2 AF3 GPIO[182] — MDO4 — SIUL — Nexus — I/O — O — M/S Tristate — — K5 PCR[183] AF0 AF1 AF2 AF3 GPIO[183] — MDO5 — SIUL — Nexus — I/O — O — M/S Tristate — — L5 PCR PCR[178] Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx PL[14] PL[15] PM[0] LBGA256 PL[13] LQFP 208 PL[12] LQFP 176 PL[11] RESET config. PL[10] Pad type PL[9] Function I/O direction(2) PL[8] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. Package pinouts and signal descriptions PCR[184] AF0 AF1 AF2 AF3 — GPIO[184] — — — EVTI SIUL — — — Nexus I/O — — — I S Pull-up — — M9 PCR[185] AF0 AF1 AF2 AF3 GPIO[185] — MSEO0 — SIUL — Nexus — I/O — O — M/S Tristate — — M10 PCR[186] AF0 AF1 AF2 AF3 GPIO[186] — MCKO — SIUL — Nexus — I/O — O — F/S Tristate — — M11 PCR[187] AF0 AF1 AF2 AF3 GPIO[187] — MSEO1 — SIUL — Nexus — I/O — O — M/S Tristate — — M12 PCR[188] AF0 AF1 AF2 AF3 GPIO[188] — EVTO — SIUL — Nexus — I/O — O — M/S Tristate — — F11 PCR[189] AF0 AF1 AF2 AF3 GPIO[189] — MDO6 — SIUL — Nexus — I/O — O — M/S Tristate — — F10 PCR[190] AF0 AF1 AF2 AF3 GPIO[190] — MDO7 — SIUL — Nexus — I/O — O — M/S Tristate — — E12 PCR[191] AF0 AF1 AF2 AF3 GPIO[191] — MDO8 — SIUL — Nexus — I/O — O — M/S Tristate — — E11 PCR[192] AF0 AF1 AF2 AF3 GPIO[192] — MDO9 — SIUL — Nexus — I/O — O — M/S Tristate — — E10 PCR Doc ID 17478 Rev 4 45/118 Package pinouts and signal descriptions LBGA256 PM[6] LQFP 208 PM[5] LQFP 176 PM[4] RESET config. PM[3] Pad type PM[2] Function I/O direction(2) PM[1] Pin number Peripheral Port pin Functional port pin descriptions (continued) Alternate function(1) Table 5. SPC564Bxx - SPC56ECxx PCR[193] AF0 AF1 AF2 AF3 GPIO[193] — MDO10 — SIUL — Nexus — I/O — O — M/S Tristate — — E9 PCR[194] AF0 AF1 AF2 AF3 GPIO[194] — MDO11 — SIUL — Nexus — I/O — O — M/S Tristate — — F12 PCR[195] AF0 AF1 AF2 AF3 GPIO[195] — — — SIUL — — — I/O — — — M/S Tristate — — K12 PCR[196] AF0 AF1 AF2 AF3 GPIO[196] — — — SIUL — — — I/O — — — M/S Tristate — — L12 PCR[197] AF0 AF1 AF2 AF3 GPIO[197] — — — SIUL — — — I/O — — — M/S Tristate — — F9 PCR[198] AF0 AF1 AF2 AF3 GPIO[198] — — — SIUL — — — I/O — — — M/S Tristate — — F6 PCR 1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 000 → AF0; PCR.PA = 001 → AF1; PCR.PA = 010 → AF2; PCR.PA = 011 → AF3; PCR.PA = 100 → ALT4. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module. 3. NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is ignored. 4. SXOSC’s OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins, other functionality of the pin cannot be used and it should be ensured that application never programs OBE and PUE bit of the corresponding PCR to "1". 5. If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature as PB[10] can induce coupling on PB[9] and disturb oscillator frequency. 6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). It is up to the user to configure these pins as GPIO when needed. 7. When MBIST is enabled to run ( STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally drive the pad. 46/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Package pinouts and signal descriptions 8. These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO[1:0], and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]). Doc ID 17478 Rev 4 47/118 Electrical Characteristics 4 SPC564Bxx - SPC56ECxx Electrical Characteristics This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS_HV). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 4.1 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate. Table 6. Parameter classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. Note: The classification is shown in the column labeled “C” in the parameter tables where appropriate. 4.2 NVUSRO register Portions of the device configuration, such as high voltage supply is controlled via bit values in the Non-Volatile User Options Register (NVUSRO). For a detailed description of the NVUSRO register, see SPC564Bxx and SPC56ECxx Reference Manual. 48/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 4.2.1 Electrical Characteristics NVUSRO [PAD3V5V(0)] field description Table 7 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for VDD_HV_A domain. Table 7. PAD3V5V(0) field description Value(1) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. '1' is delivery value. It is part of shadow flash memory, thus programmable by customer. The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value. 4.2.2 NVUSRO [PAD3V5V(1)] field description Table 8 shows how NVUSRO [PAD3V5V(1)] controls the device configuration the device configuration for VDD_HV_B domain. Table 8. PAD3V5V(1) field description Value(1) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. '1' is delivery value. It is part of shadow flash memory, thus programmable by customer. The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value. 4.3 Absolute maximum ratings Table 9. Absolute maximum ratings Value Symbol VSS_HV Parameter SR Conditions Digital ground on VSS_HV pins Unit Min Max — 0 0 V VDD_HV_A Voltage on VDD_HV_A pins SR with respect to ground (VSS_HV) — –0.3 6.0 V VDD_HV_B(1) Voltage on VDD_HV_B pins SR with respect to common ground (VSS_HV) — –0.3 6.0 V Voltage on VSS_LV (low voltage digital supply) pins SR with respect to ground (VSS_HV) — VSS_HV − 0.1 VSS_HV + 0.1 V VSS_LV Doc ID 17478 Rev 4 49/118 Electrical Characteristics Table 9. SPC564Bxx - SPC56ECxx Absolute maximum ratings (continued) Value Symbol Parameter Conditions Base control voltage for external BCP68 NPN device VRC_CTRL(2) Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC SR reference) pin with respect to ground (VSS_HV) VSS_ADC Voltage on VDD_HV_ADC0 VDD_HV_ADC0 SR with respect to ground (VSS_HV) VDD_HV_ADC1 (4) Voltage on VDD_HV_ADC1 SR with respect to ground (VSS_HV) Max Relative to VDD_LV 0 VDD_LV + 1 V — VSS_HV − 0.1 VSS_HV + 0.1 V — –0.3 6.0 VDD_HV_A − 0.3 VDD_HV_A+0.3 –0.3 6.0 Relative to VDD_HV_A(3) — Relative to VDD_HV_A(2) VIN SR Voltage on any GPIO pin with Relative to VDD_HV_A/HV_B respect to ground (VSS_HV) IINJPAD SR Injected input current on any pin during overload condition IINJSUM Absolute sum of all injected SR input currents during overload condition IAVGSEG(5) TSTORAGE Sum of all the static I/O current within a supply SR segment (VDD_HV_A or VDD_HV_B) Unit Min — VDD_HV_A−0.3 V V VDD_HV_A+0.3 V VDD_HV_A/HV_B VDD_HV_A/HV_B −0.3 +0.3 –10 10 mA — –50 50 VDD = 5.0 V ± 10%, PAD3V5V = 0 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 64 mA SR Storage temperature — –55(6) 150 °C 1. VDD_HV_B can be independently controlled from VDD_HV_A. These can ramp up or ramp down in any order. Design is robust against any supply order. 2. This voltage is internally generated by the device and no external voltage should be supplied. 3. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V. 4. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±300 mV of VDD_HV_B when these channels are used for ADC_1. 5. Any temperature beyond 125 °C should limit the current to 50 mA (max). 6. This is the storage temperature for the flash memory. Note: 50/118 Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD_HV_A/HV_B or VIN < VSS_HV), the voltage on pins with respect to ground (VSS_HV) must not exceed the recommended values. Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics 4.4 Recommended operating conditions Table 10. Recommended operating conditions (3.3 V) Value Symbol VSS_HV Parameter Conditions SR Digital ground on VSS_HV pins Unit Min Max — 0 0 V VDD_HV_A(1) SR Voltage on VDD_HV_A pins with respect to ground (VSS_HV) — 3.0 3.6 V VDD_HV_B(1) SR Voltage on VDD_HV_B pins with respect to ground (VSS_HV) — 3.0 3.6 V Voltage on VSS_LV (low SR voltage digital supply) pins with respect to ground (VSS_HV) — VSS_HV − 0.1 VSS_HV + 0.1 V Relative to VDD_LV 0 VDD_LV + 1 V — VSS_HV − 0.1 VSS_HV + 0.1 V — 3.0(5) 3.6 Relative to VDD_HV_A(6) VDD_HV_A − 0.1 VDD_HV_A + 0.1 — 3.0 3.6 Relative to VDD_HV_A(6) VDD_HV_A − 0.1 VDD_HV_A + 0.1 — VSS_HV − 0.1 — — VDD_HV_A/HV_B + 0.1 −5 5 VSS_LV(2) Base control voltage for external BCP68 NPN device VRC_CTRL(3) VSS_ADC VDD_HV_ADC0 (4) VDD_HV_ADC1 (7) VIN Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC SR reference) pin with respect to ground (VSS_HV) Voltage on VDD_HV_ADC0 SR with respect to ground (VSS_HV) Voltage on VDD_HV_ADC1 SR with respect to ground (VSS_HV) SR Voltage on any GPIO pin with respect to ground (VSS_HV) Injected input current on any pin during overload condition IINJPAD SR IINJSUM Absolute sum of all injected SR input currents during overload condition VDD_HV_A slope to ensure correct power up(8) Relative to VDD_HV_A/HV_B — V V V mA — −50 50 — — 0.5 V/µs — 0.5 — V/min TVDD SR TA SR Ambient temperature under bias fCPU up to 120 MHz + 2% –40 125 TJ SR Junction temperature under bias — −40 150 °C 1. 100 nF EMI capacitance and 10 µF bulk capacitance need to be provided between each VDD/VSS_HV pair. 2. 100 nF EMI capacitance and 10 µF bulk capacitance need to be provided between each of the four VDD_LV/VSS_LV supply pairs. For details refer to the Power Management chapter of the SPC564Bxx and SPC56ECxx Reference Manual. 3. This voltage is internally generated by the device and no external voltage should be supplied. 4. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Doc ID 17478 Rev 4 51/118 Electrical Characteristics SPC564Bxx - SPC56ECxx 5. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device is reset. 6. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V. 7. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1. 8. Guaranteed by the device validation. Table 11. Recommended operating conditions (5.0 V) Value Symbol VSS_HV VDD_HV_A(1) VDD_HV_B VSS_LV(3) Parameter SR Digital ground on VSS_HV pins SR VDD_HV_ADC0 (5) Voltage on VDD_HV_A pins with respect to ground (VSS_HV) — — Voltage drop (2) 0 0 4.5 5.5 3.0 5.5 V V 3.0 5.5 V Ethernet/3.3 V functionality (See the notes in all figures in SR Section 3: Package pinouts and signal descriptions” for the list of channels operating in VDD_HV_B domain) — 3.0 3.6 V Voltage on VSS_LV (Low voltage SR digital supply) pins with respect to ground (VSS_HV) — VSS_HV – 0.1 VSS_HV + 0.1 V Relative to VDD_LV 0 VDD_LV + 1 V — VSS_HV – 0.1 VSS_HV + 0.1 V — 4.5 5.5 3.0 5.5 Relative to VDD_HV_A(6) VDD_HV_A – 0.1 VDD_HV_A + 0.1 — 4.5 5.5 3.0 5.5 VDD_HV_A − 0.1 VDD_HV_A + 0.1 — VSS_HV –0.1 — Relative to VDD_HV_A/HV_B — VDD_HV_A/HV_B + 0.1 Base control voltage for external BCP68 NPN device Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) SR pin with respect to ground (VSS_HV) SR Voltage on VDD_HV_ADC0 with respect to ground (VSS_HV) Voltage drop(2) Voltage drop (2) Relative to VDD_HV_A(6) 52/118 Max — Voltage on VDD_HV_ADC1 with VDD_HV_ADC1 respect to ground (VSS_HV) SR (7) VIN Unit Min Generic GPIO functionality VRC_CTRL(4) VSS_ADC Conditions Voltage on any GPIO pin with SR respect to ground (VSS_HV) Doc ID 17478 Rev 4 V V V SPC564Bxx - SPC56ECxx Table 11. Electrical Characteristics Recommended operating conditions (5.0 V) (continued) Value Symbol Parameter Conditions Injected input current on any pin during overload condition IINJPAD SR IINJSUM Absolute sum of all injected input SR currents during overload condition — Unit Min Max –5 5 mA — –50 50 — — 0.5 V/µs — 0.5 — V/min TA C-Grade Part SR Ambient temperature under bias — −40 85 TJ C-Grade Part SR Junction temperature under bias — −40 110 TA V-Grade Part SR Ambient temperature under bias — −40 105 TJ V-Grade Part SR Junction temperature under bias — −40 130 TA M-Grade Part SR Ambient temperature under bias — −40 125 TJ M-Grade Part SR Junction temperature under bias — −40 150 SR TVDD VDD_HV_A slope to ensure correct power up(8) °C 1. 100 nF EMI capacitance and 10 µF bulk capacitance needs to be provided between each VDD_HV_A/HV_B/VSS_HV pair. 2. Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC electrical characteristics (startup time, IDD, negative resistance, ESR and duty cycle) will not be guaranteed to stay within the stated limits when operating below 4.5 V and above 3.6 V. However, OSC functionality is guaranteed within the entire range (3.0 V–5.5 V). 3. 100 nF EMI capacitance and 40 µF bulk capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 4. This voltage is internally generated by the device and no external voltage should be supplied. 5. 100 nF capacitance needs to be provided between VDD_HV_(ADC0/ADC1)/VSS_HV_(ADC0/ADC1) pair. 6. Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A + 0.3 = 6.2 V. 7. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1. 8. Guaranteed by device validation. Note: SRAM retention guaranteed to LVD levels. 4.5 Thermal characteristics 4.5.1 Package thermal characteristics Table 12. LQFP thermal characteristics(1) Symbol RθJA CC RθJA CC C D D Parameter Conditions(2) Pin count Thermal resistance, Single-layer junction-to-ambient board—1s natural convection Thermal resistance, Four-layer junction-to-ambient board—2s2p(5) natural convection Doc ID 17478 Rev 4 Value(3) Unit Min Typ Max 176 — — 44.4(4) °C/W 208 — — TBD °C/W 176 — — 36.1 °C/W 208 — — TBD °C/W 53/118 Electrical Characteristics SPC564Bxx - SPC56ECxx 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 2. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C. 3. All values need to be confirmed during device validation. 4. 1s board as per standard Jedec (JESD51-7) in natural convection 5. 2s2p board as per standard JEDEC (JESD51-7) in natural convection. Table 13. Symbol RθJA CC LBGA256 thermal characteristics(1) C — Parameter Conditions Thermal resistance, junction-to-ambient natural convection Value Single-layer board—1s TBD Four-layer board—2s2p TBD Unit °C/W 1. Thermal characteristics are targets based on simulation that are subject to change per device characterization. 4.5.2 Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1: Equation 1 TJ = TA + (PD × RθJA) Where: TA is the ambient temperature in °C. RθJA is the package junction-to-ambient thermal resistance, in °C/W. PD is the sum of PINT and PI/O (PD = PINT + PI/O). PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; user determined. Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device is configured to continuously drive external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: Equation 2 PD = K / (TJ + 273 °C) Therefore, solving equations Equation 1 and Equation 2: Equation 3 K = PD × (TA + 273 °C) + RθJA × PD2 Where: K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations Equation 1 and Equation 2 iteratively for any value of TA. 54/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics 4.6 I/O pad electrical characteristics 4.6.1 I/O pad types The device provides four main I/O pad types depending on the associated alternate functions: ● Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission. ● Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. ● Fast pads—These pads provide maximum speed. These are used for improved Nexus debugging capability. ● Input only pads—These pads are associated to ADC channels and 32 kHz low power external crystal oscillator providing low input leakage. ● Low power pads—These pads are active in standby mode for wakeup source. Also, medium/slow and fast/medium pads are available in design which can be configured to behave like a slow/medium and medium/fast pads depending upon the slew-rate control. Medium and fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. 4.6.2 I/O input DC characteristics Table 14 provides input DC electrical characteristics as described in Figure 5. Figure 5. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1 (GPDI register of SIUL) PDIx = ‘0’ Doc ID 17478 Rev 4 55/118 Electrical Characteristics Table 14. Symbol SPC564Bxx - SPC56ECxx I/O input DC electrical characteristics C Value(2) (1) Parameter Conditions Unit Min Typ Max VIH SR P Input high level CMOS (Schmitt Trigger) — 0.65VDD — VDD + 0.4 VIL SR P Input low level CMOS (Schmitt Trigger) — −0.3 — 0.35VDD Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — TA = −40 °C — 2 — — 2 — D No injection T = 25 °C A on adjacent TA = 105 °C pin — 12 500 P TA = 125 °C — 70 1000 VHYS CC C P P ILKG CC WFI Digital input leakage SR P WNFI SR P V nA Width of input pulse rejected by analog filter(3) — — — 40(4) ns Width of input pulse accepted by analog filter(3) — 1000(4) — — ns 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation. 3. Analog filters are available on all wakeup lines. 4. The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending on silicon sample to sample variation. 4.6.3 I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads: Table 15. Symbol ● Table 15 provides weak pull figures. Both pull-up and pull-down resistances are supported. ● Table 16 provides output driver characteristics for I/O pads when in SLOW configuration. ● Table 17 provides output driver characteristics for I/O pads when in MEDIUM configuration. ● Table 18 provides output driver characteristics for I/O pads when in FAST configuration. I/O pull-up/pull-down DC electrical characteristics C P |IWPU| CC C P 56/118 Parameter Value Conditions(1),(2) PAD3V5V = 0 VIN = VIL, VDD = Weak pull-up PAD3V5V = 5.0 V ± 10% current absolute 1(3) value VIN = VIL, VDD = PAD3V5V = 1 3.3 V ± 10% Doc ID 17478 Rev 4 Unit Min Typ Max 10 — 150 10 — 250 10 — 150 µA SPC564Bxx - SPC56ECxx Table 15. I/O pull-up/pull-down DC electrical characteristics (continued) Symbol C P |IWPD| Electrical Characteristics CC C P Parameter Value Conditions(1),(2) Unit Min Typ Max 10 — 150 10 — 250 10 — 150 VIN = VIH, VDD = PAD3V5V = 0 Weak pull-down 5.0 V ± 10% PAD3V5V = 1 current absolute value VIN = VIH, VDD = PAD3V5V = 1 3.3 V ± 10% µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Table 16. SLOW configuration output buffer electrical characteristics Symbol C Parameter P Output high level VOH CC C SLOW configuration Value Conditions(1),(2) IOH = −3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 IOH = −3 mA, Push Pull VDD = 5.0 V ± 10%, PAD3V5V = 1(3) Unit Min Typ Max 0.8VDD — — 0.8VDD — — P IOH = −1.5 mA, V − 0.8 VDD = 3.3 V ± 10%, PAD3V5V = 1 DD — — P IOL = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.1VDD — — 0.1VDD — — 0.5 Output low level VOL CC C SLOW configuration P IOL = 3 mA, Push Pull VDD = 5.0 V ± 10%, PAD3V5V = 1(3) IOL = 1.5 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 V V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Doc ID 17478 Rev 4 57/118 Electrical Characteristics Table 17. Symbol SPC564Bxx - SPC56ECxx MEDIUM configuration output buffer electrical characteristics C Parameter VOL CC CC Output high level MEDIUM configuration C Unit Min Typ Max IOH = −3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — IOH = −1.5 mA, Push Pull VDD = 5.0 V ± 10%, PAD3V5V = 1(3) 0.8VDD — — C VOH Value Conditions(1),(2) C IOH = −2 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD − 0.8 — — C IOL = 3 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.2VDD IOL = 1.5 mA, Push Pull VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD IOL = 2 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 — Output low level MEDIUM configuration C C V V — 0.5 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Table 18. Symbol FAST configuration output buffer electrical characteristics C Parameter P VOH CC C C 58/118 Output high level FAST configuration Value Conditions(1),(2) Unit Min Typ Max IOH = −14 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — IOH = −7 mA, Push Pull VDD = 5.0 V ± 10%, PAD3V5V = 1(3) 0.8VDD — — VDD − 0.8 — — IOH = −11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 Doc ID 17478 Rev 4 V SPC564Bxx - SPC56ECxx Table 18. FAST configuration output buffer electrical characteristics (continued) Symbol VOL Electrical Characteristics C CC Value Conditions(1),(2) Parameter Unit Min Typ Max P IOL = 14 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.1VDD C IOL = 7 mA, Output low level FAST Push Pull VDD = 5.0 V ± 10%, PAD3V5V = 1(3) configuration — — 0.1VDD C IOL = 11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 0.5 V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 4.6.4 Output pin transition times Table 19. Output pin transition times Symbol C D T Ttr CC Parameter CL = 25 pF CL = 50 pF CC VDD = 5.0 V ± 10%, PAD3V5V = 0 D Output transition time CL = 100 pF output pin(4) D SLOW configuration CL = 25 pF T CL = 50 pF D CL = 100 pF D CL = 25 pF CL = 50 pF Output transition time D output pin(4) CL = 100 pF MEDIUM D CL = 25 pF configuration T CL = 50 pF T Ttr D CL = 100 pF CL = 50 pF CC VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 Typ Max — — 50 — — 100 — — 125 — — 40 — — 50 — — 75 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 — — 4 — — 6 — — 12 — — 4 — — 7 — — 12 ns VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 Output transition time C = 100 pF L D output pin(4) CL = 25 pF FAST configuration CL = 50 pF Unit Min ns CL = 25 pF Ttr Value(3) Conditions(1),(2) ns VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF Doc ID 17478 Rev 4 59/118 Electrical Characteristics SPC564Bxx - SPC56ECxx 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3. All values need to be confirmed during device validation. 4. CL includes device and package capacitances (CPKG < 5 pF). 4.6.5 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated to a VDD/VSS_HV supply pair as described in Table 20. Table 21 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the IDYNSEG maximum value. Table 20. I/O supplies Package I/O Supplies LBGA256 Equivalent to 208-pin LQFP segment pad distribution + G6, G11, H11, J11 LQFP208 pin6 (VDD_HV_A) pin7 (VSS_HV) pin27 (VDD_HV_A) pin28 (VSS_HV) pin73 (VSS_HV) pin75 (VDD_HV_A) pin101 (VDD_HV_A) pin102 (VSS_HV) pin132 (VSS_HV) pin133 (VDD_HV_A) pin147 (VSS_HV) pin148 (VDD_HV_B) pin174 (VSS_HV) pin175 (VDD_HV_A) — LQFP176 pin6 (VDD_HV_A) pin7 (VSS_HV) pin27 (VDD_HV_A) pin28 (VSS_HV) pin57 (VSS_HV) pin59 (VDD_HV_A) pin85 (VDD_HV_A) pin86 (VSS_HV) pin123 (VSS_HV) pin124 (VDD_HV_B) pin150 (VSS_HV) pin151 (VDD_HV_A) — — Table 21. Symbol ISWTSLW(4) ISWTMED (4) ISWTFST(4) 60/118 I/O consumption C Peak I/O current for CC D CL = 25 pF SLOW configuration Peak I/O current for CC D MEDIUM configuration Peak I/O current for CC D FAST configuration Value(3) Conditions(1),(2) Parameter CL = 25 pF CL = 25 pF Unit Min Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 19.9 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 15.5 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 28.8 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16.3 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 113.5 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 52.1 Doc ID 17478 Rev 4 mA mA mA SPC564Bxx - SPC56ECxx Table 21. Symbol Electrical Characteristics I/O consumption (continued) C Value(3) Conditions(1),(2) Parameter Unit Min Typ Max — — 2.22 — — 3.13 — — 6.54 — — 1.51 — — 2.14 — — 4.33 — — 6.5 — — 13.32 CL = 100 pF, 13 MHz — — 18.26 CL = 25 pF, 13 MHz — — 4.91 — — 8.47 — — 10.94 — — 21.05 — — 33 — — 55.77 — — 14 — — 20 CL = 100 pF, 40 MHz — — 34.89 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65(4) CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz IRMSSLW Root mean square CL = 100 pF, 2 MHz CC D I/O current for SLOW CL = 25 pF, 2 MHz configuration CL = 25 pF, 4 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz CL = 25 pF, 13 MHz IRMSMED Root mean square I/O current for CC D MEDIUM configuration CL = 25 pF, 40 MHz CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 mA VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 13 MHz CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz IRMSFST IAVGSEG VDD = 5.0 V ± 10%, PAD3V5V = 0 Root mean square CL = 100 pF, 40 MHz CC D I/O current for FAST CL = 25 pF, 40 MHz configuration VDD = 3.3 V ± 10%, CL = 25 pF, 64 MHz PAD3V5V = 1 Sum of all the static SR D I/O current within a supply segment mA mA mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. 3. All values need to be confirmed during device validation. 4. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. 4.7 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. Doc ID 17478 Rev 4 61/118 Electrical Characteristics Figure 6. SPC564Bxx - SPC56ECxx Start-up reset requirements VDD_HV_A VDDMIN RESET VIH VIL device reset forced by RESET Figure 7. device start-up phase Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Table 22. Symbol Reset electrical characteristics C Parameter Value(2) Conditions(1) Unit Min Typ Max VIH SR P Input High Level CMOS (Schmitt Trigger) — 0.65VDD — VDD + 0.4 V VIL SR P Input low Level CMOS (Schmitt Trigger) — −0.3 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V 62/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 22. Symbol VOL Ttr Electrical Characteristics Reset electrical characteristics (continued) C Parameter CC P Output low level Output transition time CC D output pin(4) MEDIUM configuration Typ Max Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(3) — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 — — — 40 ns — 1000 — — ns VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 |IWPU| VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 Reset input not filtered pulse Weak pull-up current CC P absolute value Unit Min WFRST SR P Reset input filtered pulse WNFRST SR P Value(2) Conditions(1) VDD = 5.0 V ± 10%, PAD3V5V = 1 (5) V ns µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation. 3. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section of the device Reference Manual). 4. CL includes device and package capacitance (CPKG < 5 pF). 5. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Doc ID 17478 Rev 4 63/118 Electrical Characteristics SPC564Bxx - SPC56ECxx 4.8 Power management electrical characteristics 4.8.1 Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage supply VDD_HV_A. The following supplies are involved: HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD_HV_A power pin. ● LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the on-chip VREG with an external ballast (BCP68 NPN device). It is further split into four main domains to ensure noise isolation between critical LV modules within the device: – LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding. – LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR through double bonding. – LV_DFLA: Low voltage supply for data Flash module. It is shorted with LV_COR through double bonding. – LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding. Voltage regulator capacitance connection 100 nf VDD_LV 40 μf (4 × 10 μf) 100 nf VSS_LV VDD_LV 100 nf VSS_LV VDD_LV VSS_LV PD0 (always on domain) PD1 Switchable Domain (FMPLL, Flash) PD0 Logic Figure 8. ● (CREGn) VDD_LV HPVDD VSS_LV Off chip BCP68 NPN driver VRC_CTRL sw1 (<0.1Ω) HPREG LPVDD 10 μf LPREG Chip Boundary (CDEC2) VDD_BV VDD_HV_A HPVDD LPVDD 64/118 VSS_HV 100 nf Doc ID 17478 Rev 4 32 KB Split 56 KB Split 8 KB Split CTRL CTRL CTRL SPC564Bxx - SPC56ECxx Electrical Characteristics The internal voltage regulator requires external bulk capacitance (CREGn) to be connected to the device to provide a stable low voltage digital supply to the device. Also required for stability is the CDEC2 capacitor at ballast collector. This is needed to minimize sharp injection current when ballast is turning ON. Apart from the bulk capacitance, user should connect EMI/decoupling cap (CREGP) at each VDD_LV/VSS_LV pin pair. Recommendations ● The external NPN driver must be BCP68 type. ● VDD_LV should be implemented as a power plane from the emitter of the ballast transistor. ● 10 μF capacitors should be connected to the 4 pins closest to the outside of the package and should be evenly distributed around the package. For BGA packages, the balls should be used are D8, H14, R9, J3–one cap on each side of package. – There should be a track direct from the capacitor to this pin (pin also connects to VDD_LV plane). The tracks ESR should be less than 100 mΩ. – The remaining VDD_LV pins (exact number will vary with package) should be decoupled with 0.1 μF caps, connected to the pin as per 10 μF. (see Section 4.4: Recommended operating conditions). 4.8.2 VDD_BV options ● Option 1: VDD_BV shared with VDD_HV_A VDD_BV must be star routed from VDD_HV_A from the common source. This is to eliminate ballast noise injection on the MCU. ● Option 2: VDD_BV independent of the MCU supply VDD_BV > 2.6 V for correct functionality. The device is not monitoring this supply hence the external component must meet the 2.6 V criteria through external monitoring if required. Table 23. Symbol Voltage regulator electrical characteristics C Value(2) Conditions(1) Parameter CREGn SR — External ballast stability capacitance RREG SR — CREGP Decoupling capacitance (Close to SR — the pin) Typ Max — 40 — 60 μF — — — 0.2 W VDD_HV_A/HV_B/VSS_HV pair 100 — nF VDD_LV/VSS_LV pair 100 — nF μF Stability capacitor equivalent serial resistance CDEC2 Stability capacitance regulator SR — supply (Close to the ballast collector) VMREG CC P Main regulator output voltage IMREG SR — Unit Min VDD_HV_A/VSS_HV 10 — 40 Before trimming — 1.32 — After trimming — 1.28 — — — 350 V Main regulator current provided to VDD_LV domain Doc ID 17478 Rev 4 — mA 65/118 Electrical Characteristics Table 23. SPC564Bxx - SPC56ECxx Voltage regulator electrical characteristics (continued) Symbol C Value(2) Conditions(1) Parameter Main regulator module current consumption Unit Min Typ Max IMREG = 200 mA — — 2 IMREGINT CC D IMREG = 0 mA — — 1 VLPREG CC P Low power regulator output voltage After trimming — 1.23 — V ILPREG SR — — — 50 mA — — 600 D ILPREGINT CC — IVREGREF Low power regulator current provided to VDD_LV domain — ILPREG = 15 mA; Low power regulator module current TA = 55 °C consumption I = 0 mA; LPREG IVREDLVD12 CC D Main LVD current consumption (switch-off during standby) IDD_HV_A CC D In-rush current on VDD_HV_A(3) during power-up μA — 20 — TA = 55 °C — 2 — μA TA = 55 °C — 1 — μA — — 600(4) mA TA = 55 °C Main LVDs and reference current CC D consumption (low power and main regulator switched off) mA — 1. VDD_HV_A = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Assumption is VDD_HV_A is now supplying the external ballast. This current is the ballast inrush current. 4. Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in ~25 steps to reach ~1.2 V VDD_LV. Each step peak current is within 600 mA 4.8.3 Voltage monitor electrical characteristics The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the VDD_HV_A and the VDD_LV voltage while device is supplied: Note: 66/118 ● POR monitors VDD_HV_A during the power-up phase to ensure device is maintained in a safe reset state ● LVDHV3 monitors VDD_HV_A to ensure device is reset below minimum functional supply ● LVDHV5 monitors VDD_HV_A when application uses device in the 5.0 V±10% range ● LVDLVCOR monitors power domain No. 1 (PD1) ● LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply. When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP. Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Figure 9. Electrical Characteristics Low voltage monitor vs. Reset VDDHV/LV VLVDHVxH/LVxH VLVDHVxL/LVxL RESET Table 24. Symbol Low voltage monitor electrical characteristics C Parameter Value(2) Conditions(1) Unit Min Typ Max VPORUP SR P Supply for functional POR module — 1.0 — 5.5 VPORH CC P Power-on reset threshold — 1.5 — 2.6 VLVDHV3H CC T LVDHV3 low voltage detector high threshold — 2.7 — 2.85 VLVDHV3L CC T LVDHV3 low voltage detector low threshold — 2.6 — 2.74 VLVDHV5H CC T LVDHV5 low voltage detector high threshold — 4.3 — 4.5 VLVDHV5L CC T LVDHV5 low voltage detector low threshold — 4.2 — 4.4 VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold TA = 25 °C, after trimming VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold V (3) 1.14 1.14(3) 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. The min. and max variation across process voltage and temperature will be available after device characterization. Expected to be within 10 mV. 4.9 Low voltage domain power consumption Table 25 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. Doc ID 17478 Rev 4 67/118 Electrical Characteristics Table 25. Low voltage power domain electrical characteristics Symbol IDDMAX(4) IDDRUN IDDHALT C CC D RUN mode maximum average current — T RUN mode typical average CC current(7) T STOP mode IDDSTDBY3 P STANDBY3 mode (96 KB RAM CC (14) P current retained) No clocks active P IDDSTDBY2 STANDBY2 mode (64 KB RAM CC current(15) P retained) No clocks active T IDDSTDBY1 STANDBY1 mode (8 KB RAM CC current(16) P retained) No clocks active Adders in LP mode 300(5),(6) mA mA 110(8) 150(10) mA — 25 35 mA TA = 25 °C — 400(9) TA = 150 °C — TA = 25 °C TA = 25 °C P 210 Unit (10) at 80 MHz No clocks active — Max(3) 240(9), — current(12) Typ(2) (9) TA = 25 °C CC P HALT mode current Min 175(8), at 120 MHz (11) CC Value Conditions(1) Parameter P IDDSTOP SPC564Bxx - SPC56ECxx — 1200(9), (13) µA 10(9) 30(9) mA — 60 175 µA TA = 150 °C — 1000 3000 µA TA = 25 °C — 45 135 µA TA = 150 °C — 800 2000 µA TA = 25 °C — 25 75 µA TA = 150 °C — 500 1000 µA 32 kHz OSC — TA = 25 °C — — 5 µA 4–40 MHz OSC — TA = 25 °C — — 3 mA 16 MHz IRC — TA = 25 °C — — 500 µA 128 kHz IRC — TA = 25 °C — — 5 µA CC T 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified All temperatures are based on an ambient temperature. 2. Target typical current consumption for the following typical operating conditions and configuration. Process = typical, Voltage = 1.2 V. 3. Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, Voltage = 1.32 V. 4. Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with all cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It is to be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible. 5. Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 23. 6. Maximum “allowed” current is package dependent. 7. Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled. RUN current measured with typical application with accesses on both code flash and RAM. 8. Subject to change, Configuration: 1 × e200z4d + 4 kbit/s Cache, 1 × eDMA (32 ch), 4 × FlexCAN (2 × 500 kbit/s, 2 × 125 kbit/s), 10 × LINFlexD (20 kbit/s), 8 × DSPI (4 × 2 Mbit/s, 3 × 4 Mbit/s, 1 × 10 Mbit/s), 40 × PWM (200 Hz), 40 × ADC Input, 1 × CTU (40 ch.), 1 × FlexRay (2 ch., 10 Mbit/s), 1 × RTC, 4 × PIT, 1 × SWT, 1 × STM. Ethernet and e200z0h disabled. Also reduced timed I/O channels for smaller packages. RUN current measured with typical application with accesses on both code flash and RAM. 9. This value is obtained from limited sample set 68/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics 10. Subject to change, Configuration: 1 × e200z4d + 4 kbit/s Cache, 1 × e200z0h (1/2 system frequency), CSE, 1 × eDMA (10 ch.), 6 × FlexCAN (4 × 500 kbit/s, 2 × 125 kbit/s), 4 × LINFlexD (20 kbit/s), 6 × DSPI (2 × 2 Mbit/s, 3 × 4 Mbit/s, 1 × 10 Mbit/s), 16 × Timed I/O, 16 × ADC Input, 1 × FlexRay (2 ch., 10 Mbit/s), 1 × FEC (100 Mbit/s), 1 × RTC, 4 × PIT, 1 × SWT, 1 × STM. For lower pin count packages reduce the amount of timed I/O’s and ADC channels. RUN current measured with typical application with accesses on both code flash and RAM. 11. Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but no reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3-9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]PA[11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication, instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs. 12. Only for the “P” classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON. All possible peripherals off and clock gated. Flash in power down mode. 13. This current is the maximum value at room temperature for any sample. The condition is same as note 11. 14. Only for the “P” classification: LPreg ON, HPVreg OFF, 96 KB RAM ON, device configured for minimum consumption, all possible modules switched-off. 15. Only for the “P” classification: LPreg ON, HPVreg OFF, 64 KB RAM ON, device configured for minimum consumption, all possible modules switched-off. 16. LPreg ON, HPVreg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched OFF. 4.10 Flash memory electrical characteristics 4.10.1 Program/Erase characteristics Table 26 shows the code flash memory program and erase characteristics. Table 26. Code flash memory—Program and erase specifications Value Symbol C Parameter Min Typ(1) Initial max(2) Max(3) Unit Tdwprogram Double word (64 bits) program time(4) — 18 50 500 µs T16Kpperase 16 KB block pre-program and erase time — 200 500 5000 ms C 32 KB block pre-program and erase time 128 KB block pre-program and erase time — 300 600 5000 ms — 600 1300 5000 ms Teslat D Erase Suspend Latency — — 30 30 µs tESRT C Erase Suspend Request Rate 20 — — — ms — — 10 10 µs — — 30 30 µs T32Kpperase T128Kpperase tPABT tEAPT CC D Program Abort Latency D Erase Abort Latency 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. Doc ID 17478 Rev 4 69/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Table 27 shows the data flash memory program and erase characteristics. Table 27. Data flash memory—Program and erase specifications Value Symbol C Parameter Unit Min Typ(1) Initial max(2) Max(3) — 30 70 500 µs C 16 KB block pre-program and erase time — 700 800 5000 ms Teslat D Erase Suspend Latency — — 30 30 µs tESRT C Erase Suspend Request Rate 10 — — — ms — — 12 12 µs — — 30 30 µs Word (32 bits) program time(4) Twprogram T16Kpperase CC D Program Abort Latency tPABT D Erase Abort Latency tEAPT 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. Table 28. Flash memory module life Value Symbol P/E C CC Retention CC Parameter Conditions Unit Min Typ Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (TJ) — 100000 100000 cycles Number of program/erase cycles per C block for 32 Kbyte blocks over the operating temperature range (TJ) — 10000 100000 cycles Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (TJ) — 1000 100000 cycles Blocks with 0–1000 P/E cycles 20 — years Blocks with 10000 P/E cycles 10 — years Blocks with 100000 P/E cycles 5 — years C Minimum data retention at 85 °C average ambient temperature(1) 1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability. 70/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 29. Electrical Characteristics Flash memory read access timing Conditions(1) Symbol fREAD C CC Parameter Code flash memory Max Data flash memory Unit P 5 wait states 13 wait states 120 + 2% C Maximum frequency for Flash D reading 3 wait state 9 wait state 80 + 2% 3 wait C states(2) — MHz — 64 + 2% 7 wait states 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Wait states are subject to change per device characterization. 4.10.2 Flash memory power supply DC characteristics Table 30 shows the flash memory power supply DC characteristics on external supply. Table 30. Symbol Flash memory power supply DC electrical characteristics Value(2) Conditions(1) Parameter Unit Min ICFREAD(3) IDFREAD (3) Code flash Sum of the current consumption Flash memory module read memory CC fCPU = 120 MHz + 2%(4) on VDD_HV_A on read access Data flash memory Program/Erase on-going Sum of the current consumption while reading flash memory CC on VDD_HV_A (program/erase) registers (3) IDFMOD fCPU = 120 MHz + 2% (4) ICFMOD(3) Code flash memory Typ Max 33 mA 13 52 mA Data flash memory 13 Sum of the current consumption ICFLPW(3) CC on VDD_HV_A during flash memory low power mode Code flash memory 1.1 ICFPWD(3) Code flash memory 150 IDFPWD Data flash memory 150 Sum of the current consumption CC on VDD_HV_A during flash (3) memory power down mode mA µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Data based on characterization results, not tested in production. 4. fCPU 120 MHz + 2% can be achieved over full temperature 125 °C ambient, 150 °C junction temperature. Doc ID 17478 Rev 4 71/118 Electrical Characteristics SPC564Bxx - SPC56ECxx 4.10.3 Flash memory start-up/switch-off timings Table 31. Start-up time/Switch-off time Symbol C Delay for flash memory module to exit TFLARSTEXIT CC D reset mode TFLALPEXIT TFLAPDEXIT CC T Delay for flash memory module to exit low-power mode Delay for flash memory module to exit CC T power-down mode TFLALPENTRY CC T Value Conditions Parameter (1) Code flash memory Unit Min Typ — — — — — — — — — — — — — Data flash memory Code flash memory — Code flash memory 125 — Data flash memory Delay for flash memory module to enter Code flash low-power mode memory — Max 0.5 30 µs 0.5 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 4.11 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 4.11.1 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application. ● ● Software recommendations − The software flowchart must include the management of runaway conditions such as: – Corrupted program counter – Unexpected reset – Critical data corruption (control registers) Pre-qualification trials − Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note Software Techniques For Improving Microcontroller EMC Performance (AN1015)). 72/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 4.11.2 Electrical Characteristics Electromagnetic interference (EMI) The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements. EMI radiated emission measurement(1)(2) Table 32. Value Symbol C Parameter Conditions Unit Min — SR — Scan range Typ Max — 0.150 fCPU SR — Operating frequency — — 120 — MHz VDD_LV SR — LV operating voltages — — 1.28 — V — — 18 dBµV — — 14(3) dBµV SEMI CC T Peak level No PLL frequency VDD = 5 V, TA = 25 °C, modulation LQFP176 package Test conforming to IEC 61967-2, ± 2% PLL frequency fOSC = 40 MHz/fCPU = 120 MHz modulation 1000 MHz 1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4. 2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative. 3. All values need to be confirmed during device validation. 4.11.3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the application note Electrostatic Discharge Sensitivity Measurement (AN1181). Table 33. Symbol ESD absolute maximum ratings(1)(2) Ratings Conditions Class Max value(3) VESD(HBM) Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 VESD(MM) Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 VESD(CDM) Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A Unit V 500 750 (corners) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3. Data based on characterization results, not tested in production. Doc ID 17478 Rev 4 73/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply over-voltage is applied to each power supply pin. ● A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 34. Latch-up results Symbol Parameter LU 4.12 Static latch-up class Conditions Class TA = 125 °C conforming to JESD 78 II level A Fast external crystal oscillator (4–40 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Table 35 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulations. Figure 10. Crystal oscillator and resonator connection scheme EXTAL C1 Crystal XTAL XTAL RD DEVICE VDD I R EXTAL EXTAL Resonator DEVICE XTAL DEVICE 74/118 Doc ID 17478 Rev 4 C2 SPC564Bxx - SPC56ECxx Electrical Characteristics Note: XTAL/EXTAL must not be directly used to drive external circuits. Table 35. Crystal description Crystal motional capacitance (Cm) fF Crystal motional inductance (Lm) mH Load on xtalin/xtalout C1 = C2 (pF)(1) Shunt capacitance between xtalout and xtalin C0(2) (pF) Nominal frequency (MHz) NDK crystal reference Crystal equivalent series resistance ESR Ω 4 NX8045GB 300 2.68 591.0 21 2.93 8 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 120 3.11 56.5 15 2.93 120 3.90 25.3 10 3.00 50 6.18 2.56 8 3.49 12 NX5032GA 16 40 NX5032GA 1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics S_MTRANS bit (ME_GS register) 1 0 VXTAL 1/fMXOSC VFXOSC 90% VFXOSCOP 10% TMXOSCSU Table 36. Symbol fFXOSC valid internal clock Fast external crystal oscillator (4 to 40 MHz) electrical characteristics C SR — Parameter Fast external crystal oscillator frequency Value(2) Conditions(1) — Doc ID 17478 Rev 4 Unit Min Typ Max 4.0 — 40.0 MHz 75/118 Electrical Characteristics Table 36. Symbol SPC564Bxx - SPC56ECxx Fast external crystal oscillator (4 to 40 MHz) electrical characteristics (continued) C Parameter gmFXOSC CC C Fast external crystal VDD = 3.3 V ± 10% oscillator transconductance VDD = 5.0 V ± 10% VFXOSC fOSC = 40 MHz Oscillation For both VDD = 3.3 V ± CC T amplitude at EXTAL 10%, VDD = 5.0 V ± 10% VFXOSCOP CC P Value(2) Conditions(1) Oscillation operating point Unit IFXOSC — VDD = 5.0 V ± 10%, Fast external crystal f OSC = 40 MHz CC T oscillator VDD = 3.3 V ± 10%, consumption fOSC = 16 MHz Max 8.699 13.159 15.846 9.440 13.159 16.859 — 0.95 — — 1.8 — 2 2.2 — 2.3 2.5 — 1.3 1.5 V V mA VDD = 5.0 V ± 10%, fOSC = 16 MHz TFXOSCSU Typ mA/V VDD = 3.3 V ± 10%, fOSC = 40 MHz (3) Min f = 40 MHz Fast external crystal OSC For both VDD = 3.3 V ± CC T oscillator start-up 10%, VDD = 5.0 V ± time 10% — 1.6 1.8 — — 5 ms VIH Input high level SR P CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD_HV_A — VDD_HV_A + 0.4 V VIL Input low level SR P CMOS (Schmitt Trigger) Oscillator bypass mode −0.3 — 0.35VDD_HV_A V 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals). 4.13 Slow external crystal oscillator (32 kHz) electrical characteristics The device provides a low power oscillator/resonator driver. 76/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics Figure 12. Crystal oscillator and resonator connection scheme OSC32K_EXTAL OSC32K_EXTAL Resonator Crystal C1 RP OSC32K_XTAL OSC32K_XTAL C2 DEVICE Note: DEVICE OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits. Figure 13. lEquivalent circuit of a quartz crystal C0 Crystal C1 Cm C2 Rm Lm C1 Table 37. C2 Crystal motional characteristics(1) Value Symbol Parameter Conditions Unit Min Typ Max Lm Motional inductance — — 11.796 — KH Cm Motional capacitance — — 2 — fF Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground(2) — 18 — 28 pF C1/C2 Doc ID 17478 Rev 4 77/118 Electrical Characteristics Table 37. SPC564Bxx - SPC56ECxx Crystal motional characteristics(1) (continued) Value Symbol Parameter Conditions Unit Min Typ Max — — 65 AC coupled @ C0 = 4.9 pF(4) — — 50 (4) — — 35 pF(4) — — 30 AC coupled @ C0 = 2.85 pF(4) Rm(3) Motional resistance AC coupled @ C0 = 7.0 pF AC coupled @ C0 = 9.0 kW 1. The crystal used is Epson Toyocom MC306. 2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package. 3. Maximum ESR (Rm) of the crystal is 50 kΩ. 4. C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins. Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics OSCON bit (OSC_CTL register) 1 0 VOSC32K_XTAL 1/fLPXOSC32K VLPXOSC32K 90% 10% TLPXOSC32KSU Table 38. Symbol Slow external crystal oscillator (32 kHz) electrical characteristics C SR — Slow external crystal oscillator frequency gmSXOSC CC — Slow external crystal oscillator transconductance VSXOSC CC T Oscillation amplitude ISXOSCBIAS CC T Oscillation bias current Value(2) Conditions(1) Parameter fSXOSC 78/118 valid internal clock Unit Min Typ Max 32 32.768 40 VDD = 3.3 V ± 10%, 17.45 — 28.23 VDD = 5.0 V ± 10% 17.79 — 29.91 — 1.2 1.4 1.7 V — 1.2 — 4.4 µA — Doc ID 17478 Rev 4 kHz µA/V SPC564Bxx - SPC56ECxx Table 38. Electrical Characteristics Slow external crystal oscillator (32 kHz) electrical characteristics (continued) Symbol C Value(2) Conditions(1) Parameter Unit Min Typ Max ISXOSC CC T Slow external crystal oscillator consumption — — — 7 µA TSXOSCSU CC T Slow external crystal oscillator start-up time — — — 2(3) s 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal. 4.14 FMPLL electrical characteristics The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver. Table 39. FMPLL electrical characteristics Symbol C Unit Min Typ Max — 4 — 64 MHz FMPLL reference clock duty cycle(3) — 40 — 60 % FMPLL output clock frequency — 16 — 120 MHz fPLLIN SR — FMPLL reference clock(3) ΔPLLIN SR — fPLLOUT CC P Value(2) Conditions(1) Parameter 120 + 2%(4) MHz fCPU SR — System clock frequency — — — fFREE CC P Free-running frequency — 20 — 150 MHz tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs ΔtLTJIT CC — FMPLL long term jitter fPLLIN = 40 MHz (resonator), fPLLCLK @ 120 MHz, 4000 cycles — — 6 (for < 1ppm) ns CC C FMPLL consumption TA = 25 °C — — 3 mA IPLL 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN. 4. fCPU 120 + 2% MHz can be achieved at 125 °C. 4.15 Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device and can also be used as input to PLL. Doc ID 17478 Rev 4 79/118 Electrical Characteristics Table 40. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol fFIRC SPC564Bxx - SPC56ECxx C Parameter Conditions CC P Fast internal RC oscillator high SR — frequency Fast internal RC oscillator high IFIRCRUN(3) CC T frequency current in running mode IFIRCPWD Typ Max TA = 25 °C, trimmed — 16 — — 12 TA = 25 °C, trimmed — — 200 µA TA = 25 °C — — 100 nA TA = 55 °C — — 200 nA TA = 125 °C — — 1 µA sysclk = off — 500 — sysclk = 2 MHz — 600 — sysclk = 4 MHz — 700 — sysclk = 8 MHz — 900 — sysclk = 16 MHz — 1250 — VDD = 5.0 V ± 10% — — 2.0 VDD = 3.3 V ± 10% — — 5 VDD = 5.0 V ± 10% — — 2.0 VDD = 3.3 V ± 10% — — 5 +1 Fast internal RC oscillator high TA = 25 °C IFIRCSTOP CC T frequency and system clock current in stop mode C TFIRCSU CC — Fast internal RC oscillator start— up time ΔFIRCPRE MHz 20 TA = 25 °C −1 — Fast internal RC oscillator trimming step TA = 25 °C — 1.6 — −5 — Fast internal RC oscillator variation over temperature and CC C supply with respect to fFIRC at TA = 25 °C in high-frequency configuration µA µs Fast internal RC oscillator CC C precision after software trimming of fFIRC ΔFIRCTRIM CC C ΔFIRCVAR TA = 55 °C TA = 125 °C — Unit Min D Fast internal RC oscillator high CC D frequency current in power down mode D Value(2) (1) % % +5 % 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 4.16 Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module. 80/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 41. Symbol fSIRC Electrical Characteristics Slow internal RC oscillator (128 kHz) electrical characteristics C Value(2) (1) Parameter Conditions CC P Slow internal RC oscillator low SR — frequency Unit Min Typ Max TA = 25 °C, trimmed — 128 — — 100 — 150 TA = 25 °C, trimmed — — 5 µA µs kHz ISIRC(3) CC C Slow internal RC oscillator low frequency current TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10% time — 8 12 ΔSIRCPRE CC C Slow internal RC oscillator precision after software trimming of fSIRC −2 — +2 ΔSIRCTRIM Slow internal RC oscillator trimming CC C step ΔSIRCVAR Slow internal RC oscillator variation in temperature and supply with CC C High frequency configuration respect to fSIRC at TA = 55 °C in high frequency configuration TA = 25 °C % — — 2.7 — −10 — +10 % 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. All values need to be confirmed during device validation. 3. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 4.17 ADC electrical characteristics 4.17.1 Introduction The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit). Note: Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done, neither of the ADCs can guarantee their conversion accuracies. Doc ID 17478 Rev 4 81/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 15. ADC_0 characteristic and error definitions Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (2) The ideal transfer curve (5) (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source 82/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc × CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: Equation 4 R +R +R +R +R S F L SW AD • --------------------------------------------------------------------------- < 1--- LSB VA R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. Figure 16. Input equivalent circuit (precise channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter Current Limiter RF RL CF CP1 Channel Selection Sampling RSW1 RAD CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RADSampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Doc ID 17478 Rev 4 83/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 17. Input equivalent circuit (extended channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS Current Limiter RF RL CF VA CP1 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW Channel Selection Switch Impedance (two contributions RSW1 and RSW2) RADSampling Switch Impedance CP Pin Capacitance (three contributions, CP1, CP2 and CP3) CS Sampling Capacitance A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Figure 18. Transient behavior during sampling phase Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS << TS τ2 = RL (CS + CP1 + CP2) VA1 TS t In particular two different transient periods can be distinguished: 1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is Equation 5 τ 1 = ( R SW + R AD ) 84/118 Doc ID 17478 Rev 4 CP • CS • ---------------------CP + CS SPC564Bxx - SPC56ECxx Electrical Characteristics Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Equation 6 τ 1 < ( R SW + R AD ) • C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Equation 7 V A1 • ( C S + C P1 + C P2 ) = V A • ( C P1 + C P2 ) 2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Equation 8 τ 2 < R L • ( C S + C P1 + C P2 ) In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Equation 9 10 • τ 2 = 10 • R L • ( C S + C P1 + C P2 ) < TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Equation 10 VA2 • ( C S + C P1 + C P2 + C F ) = V A • C F + V A1 • ( C P1 + C P2 + C S ) The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Doc ID 17478 Rev 4 85/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 19. Spectral representation of input signal Analog source bandwidth (VA) TC < 2 RFCF (Conversion rate vs. filter pole) Noise fF = f0 (Anti-aliasing filtering condition) 2 f0 < fC (Nyquist) f0 f Anti-aliasing filter (fF = RC filter pole) fF Sampled signal spectrum (fC = Conversion rate) f0 f fC f Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Equation 11 C P1 + C P2 + C F + C S VA ----------- = -------------------------------------------------------V A2 C P1 + C P2 + C F From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Equation 12 ADC_0 (10-bit) C F > 2048 • C S Equation 13 ADC_1 (12-bit) C F > 8192 • C S 86/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics ADC electrical characteristics Table 42. ADC input leakage current Value Symbol C Parameter Unit TA = −40 °C C C ILKG CC Conditions Input leakage current TA = 25 °C Min Typ Max — 1 — — 1 — No current injection on adjacent pin nA C TA = 105 °C — 8 200 P TA = 125 °C — 45 400 Table 43. ADC conversion characteristics (10-bit ADC_0) Symbol C Parameter Value Conditions(1) Unit Min Typ Max Voltage on VSS_HV_ADC0 VSS_ADC0 SR — (ADC_0 reference) pin with respect to ground (VSS_HV)(2) — −0.1 — 0.1 V Voltage on VDD_HV_ADC0 pin VDD_ADC0 SR — (ADC_0 reference) with respect to ground (VSS_HV) — VDD_HV_A − 0.1 — VDD_HV_A + 0.1 V VAINx SR — Analog input voltage(3) — VSS_ADC0 − 0.1 — VDD_ADC0 + 0.1 V fADC0 SR — ADC_0 analog frequency — 6 — 32 + 2% MHz ADC_0 power up delay — — — 1.5 µs fADC = 32 MHz 500 — fADC = 32 MHz 0.625 — fADC = 30 MHz 0.700 — — — — 3 pF tADC0_PU SR — tADC0_S CC T Sample time(4) tADC0_C CC P Conversion time(5),(6) ns µs CS ADC_0 input CC D sampling capacitance CP1 CC D ADC_0 input pin capacitance 1 — — — 3 pF CP2 CC D ADC_0 input pin capacitance 2 — — — 1 pF CP3 CC D ADC_0 input pin capacitance 3 — — — 1 pF Doc ID 17478 Rev 4 87/118 Electrical Characteristics Table 43. SPC564Bxx - SPC56ECxx ADC conversion characteristics (10-bit ADC_0) (continued) Symbol C Parameter Value Conditions(1) Unit Min Typ Max RSW1 CC D Internal resistance of analog source — — — 3 kΩ RSW2 CC D Internal resistance of analog source — — — 2 kΩ RAD CC D Internal resistance of analog source — — — 2 kΩ −5 — 5 IINJ Current injection on one ADC_0 SR — Input current Injection input, different from the converted one VDD = 3.3 V ± 10% mA VDD = 5.0 V ± 10% −5 — 5 | INL | CC T Absolute value for No overload integral non-linearity — 0.5 1.5 LSB | DNL | CC T Absolute differential non-linearity — 0.5 1.0 LSB | OFS | CC T Absolute offset error — — 0.5 — LSB | GNE | CC T Absolute gain error — — 0.6 — LSB −2 0.6 2 TUEP Without current injection P Total unadjusted error(7) for precise CC T channels, input only With current injection pins T Total unadjusted Without current injection error(7) for extended T channel With current injection −3 TUEX CC No overload LSB −3 −4 3 1 3 LSB 4 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Analog and digital VSS_HV must be common (to be tied together externally). 3. VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. 4. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC0_S depend on programming. 5. Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay. 6. Refer to ADC conversion table for detailed calculations. 7. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. 88/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics Figure 20. ADC_1 characteristic and error definitions Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 1 LSB ideal = AVDD / 4096 4090 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Offset Error OSE Doc ID 17478 Rev 4 89/118 Electrical Characteristics Table 44. SPC564Bxx - SPC56ECxx Conversion characteristics (12-bit ADC_1) Symbol Value Conditions(1) Parameter Unit Min SR Voltage on VSS_HV_ADC1 (ADC_1 reference) — pin with respect to ground (VSS_HV)(2) VDD_ADC13 SR Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (VSS_HV) VAINx(3),(4) SR fADC1 tADC1_PU VSS_ADC1 tADC1_S Typ Max −0.1 0.1 V — VDD_HV_A − 0.1 VDD_HV_A + 0.1 V Analog input voltage(5) — VSS_ADC1 − 0.1 VDD_ADC1 + 0.1 V SR ADC_1 analog frequency — 8 + 2% 32 + 2% MHz SR ADC_1 power up delay — Sample time(6) VDD=5.0 V — CC 1.5 µs 440 ns Sample time(6) VDD=3.3 V — 530 fADC1 = 32 MHz 2 fADC 1= 30 MHz 2.1 fADC 1= 20 MHz 3 fADC1 = 15 MHz 3.01 Conversion time(7), (8) VDD=5.0 V Conversion time(7), (6) tADC1_C VDD =5.0 V CC Conversion time(7), (6) µs VDD=3.3 V Conversion time(7), (6) VDD =3.3 V CS CC ADC_1 input sampling capacitance — 5 pF CP1 CC ADC_1 input pin capacitance 1 — 3 pF CP2 CC ADC_1 input pin capacitance 2 — 1 pF CP3 CC ADC_1 input pin capacitance 3 — 1.5 pF 90/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 44. Electrical Characteristics Conversion characteristics (12-bit ADC_1) (continued) Symbol Parameter Value Conditions(1) Unit Min Typ Max RSW1 CC Internal resistance of analog source — 1 kΩ RSW2 CC Internal resistance of analog source — 2 kΩ RAD CC Internal resistance of analog source — 0.3 kΩ IINJ SR Input current Injection Current injection on one ADC_1 input, different from the converted one VDD = 3.3 V ± 10% −5 — 5 VDD = 5.0 V ± 10% −5 — 5 mA INLP CC Absolute Integral non-linearityPrecise channels No overload 1 3 LSB INLS CC Absolute Integral non-linearityStandard channels No overload 1.5 5 LSB DNL CC Absolute Differential nonlinearity No overload 0.5 1 LSB OFS CC Absolute Offset error — 2 LSB GNE CC Absolute Gain error — 2 LSB CC Total Unadjusted Error for precise channels, input only pins Without current injection −6 6 With current injection −8 8 Total Unadjusted Error for standard channel Without current injection −10 10 LSB With current injection −12 12 LSB (9) TUEP TUES(9) CC 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 2. Analog and digital VSS_HV must be common (to be tied together externally). 3. PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1. 4. VDD_HV_ADC1 can operate at 5V condition while VDD_HV_B can operate at 3.3V provided that ADC_1 channels coming from VDD_HV_B domain are limited in max swing as VDD_HV_B. Doc ID 17478 Rev 4 91/118 Electrical Characteristics SPC564Bxx - SPC56ECxx 5. VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF. 6. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC1_S depend on programming. 7. Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay. 8. Refer to ADC conversion table for detailed calculations. 9. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. 4.18 Fast Ethernet Controller MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics. 4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency in 2:1 mode and two times the RX_CLK frequency in 1:1 mode. Table 45. MII Receive Signal Timing Spec Characteristic Min Max Unit M1 RXD[3:0], RX_DV, RX_ER to RX_CLK setup 5 — ns M2 RX_CLK to RXD[3:0], RX_DV, RX_ER hold 5 — ns M3 RX_CLK pulse width high 35% 65% RX_CLK period M4 RX_CLK pulse width low 35% 65% RX_CLK period Figure 21. MII receive signal timing diagram M3 RX_CLK (input) M4 RXD[3:0] (inputs) RX_DV RX_ER M1 4.18.2 M2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must 92/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics exceed four times the TX_CLK frequency in 2:1 mode and two times the TX_CLK frequency in 1:1 mode. The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs. Refer to the Fast Ethernet Controller (FEC) chapter of the SPC564B74 and SPC56EC74 Reference Manual for details of this option and how to enable it. MII transmit signal timing(1) Table 46. Spec Characteristic Min Max Unit M5 TX_CLK to TXD[3:0], TX_EN, TX_ER invalid 5 — ns M6 TX_CLK to TXD[3:0], TX_EN, TX_ER valid — 25 ns M7 TX_CLK pulse width high 35% 65% TX_CLK period M8 TX_CLK pulse width low 35% 65% TX_CLK period 1. Output pads configured with SRE = 0b11. Figure 22. MII transmit signal timing diagram M7 TX_CLK (input) M5 M8 TXD[3:0] (outputs) TX_EN TX_ER M6 4.18.3 MII Async Inputs Signal Timing (CRS and COL) Table 47. MII Async Inputs Signal Timing(1) Spec Characteristic Min Max Unit M9 CRS, COL minimum pulse width 1.5 — TX_CLK period 1. Output pads configured with SRE = 0b11. Figure 23. MII async inputs timing diagram CRS, COL M9 Doc ID 17478 Rev 4 93/118 Electrical Characteristics 4.18.4 SPC564Bxx - SPC56ECxx MII Serial Management Channel Timing (MDIO and MDC) The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. MII serial management channel timing(1) Table 48. Spec Characteristic Min Max Unit M10 MDC falling edge to MDIO output invalid (minimum propagation delay) 0 — ns M11 MDC falling edge to MDIO output valid (max prop delay) — 25 ns M12 MDIO (input) to MDC rising edge setup 28 — ns M13 MDIO (input) to MDC rising edge hold 0 — ns M14 MDC pulse width high 40% 60% MDC period M15 MDC pulse width low 40% 60% MDC period 1. Output pads configured with SRE = 0b11. Figure 24. MII serial management channel timing diagram M14 M15 MDC (output) M10 MDIO (output) M11 MDIO (input) M12 94/118 M13 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics 4.19 On-chip peripherals 4.19.1 Current consumption Table 49. On-chip peripherals current consumption(1) Value(2) Symbol C Parameter Conditions Unit Min 500 Kbps IDD_HV_A(CAN) CAN (FlexCAN) CC D supply current on VDD_HV_A eMIOS supply IDD_HV_A(eMIOS) CC D current on VDD_HV_A IDD_HV_A(SCI) SCI (LINFlex) supply CC D current on VDD_HV_A 125 Kbps Total (static + dynamic) consumption: FlexCAN in loopback mode XTAL@8 MHz used as CAN engine clock source Message sending period is 580 µs Static consumption: eMIOS channel OFF Global prescaler enabled Dynamic consumption: It does not change varying the frequency (0.003 mA) Total (static + dynamic) consumption: LIN mode Baudrate: 20 Kbps Ballast static consumption (only clocked) IDD_HV_A(SPI) SPI (DSPI) supply CC D current on VDD_HV_A Ballast dynamic consumption (continuous communication): Baudrate: 2 Mbit Trasmission every 8 µs Frame: 16 bits VDD = 5.5 V IDD_HV_A(ADC) ADC supply CC D current on VDD_HV_A VDD = 5.5 V Ballast static consumption (no conversion) Ballast dynamic consumption (continuous conversion) Doc ID 17478 Rev 4 Typ Max 7.652 × fperiph + 84.73 8.0743 × fperiph + 26.757 28.7 × fperiph 3 µA 4.7804 × fperiph + 30.946 1 16.3 × fperiph 0.0409 × fperiph mA 0.0049 × fperiph 95/118 Electrical Characteristics Table 49. SPC564Bxx - SPC56ECxx On-chip peripherals current consumption(1) (continued) Value(2) Symbol C Parameter Conditions ADC_0 supply VDD = IDD_HV_ADC0 CC D current on 5.5 V VDD_HV_ADC0 VDD = 5.5 V ADC_1 supply IDD_HV_ADC1 CC D current on VDD_HV_ADC1 V = DD 5.5 V IDD_HV(FLASH) IDD_HV(PLL) CFlash + DFlash CC D supply current on VDD_HV_ADC VDD = 5.5 V PLL supply CC D current on VDD_HV VDD = 5.5 V Unit Min Typ Max Analog static consumption (no conversion) — 200 — µA Analog dynamic consumption (continuous conversion) — 4 — mA Analog static consumption (no conversion) 300 × fperiph µA Analog dynamic consumption (continuous conversion) 6 mA — 13.25 mA 0.0031 × fperiph — 1. Operating conditions: TA = 25 °C, fperiph = 8 MHz to 120 MHz. 2. fperiph is in absolute value. 4.19.2 DSPI characteristics Table 50. DSPI timing Spec Characteristic Symbol Unit Min Max tSCK Refer note(1) — ns 1 DSPI Cycle Time — Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->0 ΔtCSC — 115 ns — Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->1 ΔtASC 15 — ns 2 CS to SCK Delay(2) tCSC 7 — ns 3 After SCK Delay(3) tASC 15 — ns 4 SCK Duty Cycle tSDC 0.4 × tSCK 0.6 × tSCK ns — Slave Setup Time (SS active to SCK setup time) tSUSS 5 — ns 96/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 50. Electrical Characteristics DSPI timing (continued) Spec Characteristic Symbol Unit Min Max — Slave Hold Time (SS active to SCK hold time) tHSS 10 — ns 5 Slave Access Time (SS active to SOUT valid)(4) tA — 42 ns 6 Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) tDIS — 25 ns 7 CSx to PCSS time tPCSC 0 — ns 8 PCSS to PCSx time tPASC 0 — ns 9 Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)(5) Master (MTFE = 1, CPHA = 1) tSUI 36 5 36 36 — — — — ns ns ns ns 10 Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)(5) Master (MTFE = 1, CPHA = 1) tHI 0 4 0 0 — — — — ns ns ns ns 11 Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) — — — — 12 37 12 12 ns ns ns ns 12 Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) 0(6) 9.5 0(7) 0(8) — — — — ns ns ns ns tSUO tHO 1. This value of this parameter is dependent upon the external device delays and the other parameters mentioned in this table. 2. The maximum value is programmable in DSPI_CTARn [PSSCK] and DSPI_CTARn [CSSCK]. For SPC564B74 and SPC56EC74, the spec value of tCSC will be attained only if TDSPI x PSSCK x CSSCK > ΔtCSC . 3. The maximum value is programmable in DSPI_CTARn [PASC] and DSPI_CTARn [ASC]. For SPC564B74 and SPC56EC74, the spec value of tASC will be attained only if TDSPI x PASC x ASC > ΔtASC. 4. The parameter value is obtained from tSUSS and tSUO for slave. 5. This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00. 6. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is −2 ns. 7. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is −2 n. 8. For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is −2 ns. Doc ID 17478 Rev 4 97/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 25. DSPI classic SPI timing–master, CPHA = 0 2 3 CSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 10 9 SIN First Data Last Data Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 50. Figure 26. DSPI classic SPI timing–master, CPHA = 1 CSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Note: Numbers shown reference Table 50. 98/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics Figure 27. DSPI classic SPI timing–slave, CPHA = 0 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Note: Numbers shown reference Table 50. Figure 28. DSPI classic SPI timing–slave, CPHA = 1 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 50. Doc ID 17478 Rev 4 99/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 29. DSPI modified transfer format timing–master, CPHA = 0 3 CSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Note: Numbers shown reference Table 50. Figure 30. DSPI modified transfer format timing–master, CPHA = 1 CSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Note: Numbers shown reference Table 50. 100/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics Figure 31. DSPI modified transfer format timing–slave, CPHA = 0 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) First Data SOUT Data 6 Last Data 10 9 Data First Data SIN 12 11 5 Last Data Note: Numbers shown reference Table 50. Figure 32. DSPI modified transfer format timing–slave, CPHA = 1 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 First Data SOUT 9 SIN Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 50. Doc ID 17478 Rev 4 101/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 33. DSPI PCS strobe (PCSS) timing 8 7 PCSS CSx Note: Numbers shown reference Table 50. 4.19.3 Nexus characteristics Table 51. Nexus debug port timing(1) Spec Characteristic Symbol Min Max Unit 1 MCKO Cycle Time(2) tMCYC 16.3 — ns 2 MCKO Duty Cycle tMDC 40 60 % 3 MCKO Low to MDO, MSEO, EVTO Data Valid(3) tMDOV –0.1 0.25 tMCYC 4 EVTI Pulse Width tEVTIPW 4.0 — tTCYC 5 EVTO Pulse Width tEVTOPW 1 6 TCK Cycle Time(4) tTCYC 40 — ns 7 TCK Duty Cycle tTDC 40 60 % 8 TDI, TMS Data Setup Time tNTDIS, tNTMSS 8 — ns 9 TDI, TMS Data Hold Time tNTDIH, tNTMSH 5 — ns 10 TCK Low to TDO Data Valid tJOV 0 25 ns tMCYC 1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE = 4.0 – 5.5 V, TA = TL to TH, and CL = 30 pF with SRC = 0b11. 2. MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz. 3. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 4. The system clock frequency needs to be three times faster than the TCK frequency. 102/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Electrical Characteristics Figure 34. Nexus output timing 1 2 MCKO 3 MDO MSEO EVTO Output Data Valid 5 EVTI 4 Doc ID 17478 Rev 4 103/118 Electrical Characteristics SPC564Bxx - SPC56ECxx Figure 35. Nexus TDI, TMS, TDO timing 6 7 TCK 8 9 TMS, TDI 10 TDO 4.19.4 JTAG characteristics Table 52. JTAG characteristics Value No. Symbol C Parameter Unit Min Typ Max 1 tJCYC CC D TCK cycle time 64 — — ns 2 tTDIS CC D TDI setup time 10 — — ns 3 tTDIH CC D TDI hold time 5 — — ns 4 tTMSS CC D TMS setup time 10 — — ns 5 tTMSH CC D TMS hold time 5 — — ns 6 tTDOV CC D TCK low to TDO valid — — 33 ns 104/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Table 52. Electrical Characteristics JTAG characteristics (continued) Value No. Symbol C Parameter Unit Min Typ Max 7 tTDOI CC D TCK low to TDO invalid 6 — — ns — tTDC CC D TCK Duty Cycle 40 — 60 % — tTCKRISE CC D TCK Rise and Fall Times — — 3 ns Figure 36. Timing diagram - JTAG boundary scan TCK 2/4 DATA INPUTS 3/5 INPUT DATA VALID 6 DATA OUTPUTS OUTPUT DATA VALID 7 DATA OUTPUTS Note: Numbers shown reference Table 52. Doc ID 17478 Rev 4 105/118 Package characteristics SPC564Bxx - SPC56ECxx 5 Package characteristics 5.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 106/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Package characteristics 5.2 Package mechanical data 5.2.1 LQFP176 package mechanical drawing Figure 37. LQFP176 package mechanical drawing Doc ID 17478 Rev 4 107/118 Package characteristics Table 53. SPC564Bxx - SPC56ECxx LQFP176 mechanical data(1) inches(2) mm Symbol Min Typ Max Min Typ Max A 1.400 1.600 A1 0.050 0.150 0.002 A2 1.350 1.450 0.053 0.057 b 0.170 0.270 0.007 0.011 C 0.090 0.200 0.004 0.008 D 23.900 24.100 0.941 0.949 E 23.900 24.100 0.941 0.949 e 0.063 0.500 0.020 HD 25.900 26.100 1.020 1.028 HE 25.900 26.100 1.020 1.028 L(3) 0.450 0.750 0.018 0.030 L1 1.000 0.039 ZD 1.250 0.049 ZE 1.250 0.049 q 0° 7° 0° 7° Tolerance mm inches ccc 0.080 0.0031 1. Controlling dimension: millimeter 2. Values in inches are converted from mm and rounded to 4 decimal digits. 3. L dimension is measured at gauge plane at 0.25 mm above the seating plane 108/118 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 5.2.2 Package characteristics LQFP208 package mechanical drawing Figure 38. LQFP208 mechanical drawing Note: Exact shape of each corner is optional. Table 54. LQFP208 mechanical data mm Ref Min A A1 Typ Max 1.6 0.05 Doc ID 17478 Rev 4 0.15 109/118 Package characteristics Table 54. SPC564Bxx - SPC56ECxx LQFP208 mechanical data (continued) mm Ref Min Typ Max A2 1.35 1.40 1.45 b 0.17 0.22 0.27 c 0.09 D 29.8 30 30.2 D1 27.8 28 28.2 D3 25.5 e 0.5 E 29.8 30 30.2 E1 27.8 28 28.2 E3 L 25.5 0.45 L1 K 0.6 0.75 1 0 ccc 110/118 0.2 3.5 7.0 0.08 Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 5.2.3 Package characteristics LBGA256 package mechanical drawing Figure 39. LBGA256 mechanical drawing Doc ID 17478 Rev 4 111/118 Package characteristics Table 55. SPC564Bxx - SPC56ECxx LBGA256 mechanical data mm Ref Min A 1.210 A1 0.300 A2 Typ 1.700 0.300 A4 0.800 b 0.400 0.500 0.600 D 16.800 17.000 17.200 D1 E 15.000 16.800 E1 112/118 17.000 17.200 15.000 e 0.900 1.000 1.100 Z 0.750 1.000 1.250 ddd Note: Max 0.200 The package is designed according to the Jedec standard No 95-1 Section 14 dedicated to Ball Grid Array Package Design Guide. Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx 6 Ordering information Ordering information Figure 40. Ordering information scheme Example code: SPC56 Product identifier 4 Core C Family L7 74 C 8 E 0 Y Memory Package Temperature CPU Frequency EEPROM Options Conditioning Y = Tray X = Tape and Reel 0 = No option E = Ethernet C = CSE + Ethernet 0 = NO EEPROM E = EEPROM 8 = 80 MHz 9 = 120 MHz B = –40 to 105 °C C = –40 to 125 °C L7 = LQFP176 L8 = LQFP208 B3 = LBGA256 74 = 3 MB 70 = 2 MB 64 = 1.5 MB B = Body C = Gateway 4 = e200z4d E = e200z4d + e200 z0h SPC56 = Power Architecture in 90 nm Doc ID 17478 Rev 4 113/118 Abbreviations SPC564Bxx - SPC56ECxx Appendix A Abbreviations Table 56 lists abbreviations used but not defined elsewhere in this document. Table 56. Abbreviations Abbreviation CS 114/118 Meaning Chip select EVTO Event out MCKO Message clock out MDO Message data out MSEO Message start/end out MTFE Modified timing format enable SCK Serial communications clock SOUT Serial data out TBD To be defined TCK Test clock input TDI Test data input TDO Test data output TMS Test mode select Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Revision history Revision history Table summarizes revisions to this document Revision history . Date Revision 01-Jun-2010 1 Changes Initial Release – – – – 17-Dec-2010 2 Editing and formatting updates throughout the document. Updated Voltage regulator capacitance connection figure. Added a new sub-section “VDD_BV Options” Program and erase specifications: Updated Tdwprogram TYP to 22 us Updated T128Kpperase Max to 5000 ms Added tESUS parameter – Added recommendation in the Voltage regulator electrical characteristics section. – Added Crystal description table in Fast external crystal oscillator (4 to 140 MHz) electrical characteristics section and corrected the cross-reference to the same. – Added new sections - Pad types, System pins and functional ports – Updated TYP numbers in the Flash program and erase specifications table – Added a new table: Program and erase specifications (Data Flash) – Flash read access timing table: Added Data flash memory numbers – Flash power supply DC electrical characteristics table: Updated IDFREAD and IDFMOD values for Data flash, Removed IDFLPW parameter – Updated feature list. – SPC564Bxx and SPC56ECxx family comparison table: Updated ADC channels and added ADC footnotes. – SPC564Bxx and SPC56ECxx block diagram: Updated ADC channels and added legends. – SPC564Bxx and SPC56ECxx series block summary: Added new blocks. – Functional Port Pin Descriptions table: Added OSC32k_XTAL and OSC32k_EXTAL function at PB8 and PB9 port pins. – Electrical Characteristics: Replaced VSS with VSS_HV throughout the section. – Absolute maximum ratings, Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: VRC_CTRL min is updated to "0". – Recommended operating conditions (3.3 V) and Recommended operating conditions (5.0 V) tables: Clarified VIN parameter, clarified footnote 2 in both tables. – LQFP thermal characteristics section: Added numbers for LQFP packages. – Low voltage power domain electrical characteristics table: Clarified footnotes based upon review comments. – Code flash memory—Program and erase specifications: Updated tESRT to 20 ms. – ADC electrical characteristics section: Replace ADC0 with ADC_0 and ADC1 with ADC_1 throughout the document. DSPI characteristics section: Replaced PCSx with CSx in all figures and tables. Doc ID 17478 Rev 4 115/118 Revision history SPC564Bxx - SPC56ECxx Revision history (continued) Date 28-Apr-2011 116/118 Revision 3 Changes – Replaced VIL min from –0.4 V to –0.3 V in the following tables: - I/O input DC electrical characteristics - Reset electrical characteristics - Fast external crystal oscillator (4 to 40 MHz) electrical characteristics – Updated Crystal oscillator and resonator connection scheme figure – Specified NPN transistor as the recommended BCP68 transistor throughout the document – Code and Data flash memory—Program and erase specifications tables: Renamed the parameter tESUS to Teslat – Revised the footnotes in the “Functional port pin descriptions” table. – In the “System pin descriptions” table, added a footnote to the A pads regarding not using IBE. For ports PB[12–15], changed ANX to ADC0_X. – Revised the presentation of the ADC functions on the following ports: PB[4–7] PD[0–11] – ADC conversion characteristics (10-bit ADC_0) table and Conversion characteristics (12-bit ADC_1) table- Updated footnote 5 and 7 respectively for the definition of the conversion time. – Data flash memory—Program and erase specifications: Updated Twprogram to 500 µs and T16Kpperase to 500 µs. Corrected Teslat classsification from “C” to “D”. – Code flash memory—Program and erase specifications: Corrected Teslat classification from “C” to “D”. – Flash Start-up time/Switch-off time: Changed TFLARSTEXIT classification from “C” to “D”. – Functional port pin description: Added a footnote at the PB [9] port pin. – Absolute maximum ratings table: Added footnote 1. – Low voltage power domain electrical characteristics table: Updated IDDHALT, IDDSTOP, IDDSTBY3, IDDSTDBY2, IDDSTDBY1. – Updated commercial product code structure. – Slow external crystal oscillator (32 kHz) electrical characteristics table: Updated gmSXOSC, VSXOSC, ISXOSCBIAS and ISXOSC. – FMPLL electrical characteristics table: Updated ΔtLTJIT. – Fast internal RC oscillator (16 MHz) electrical characteristics table: Updated TFIRCSU and IFIRCPWD. – MII serial management channel timing table: Updated M12 – JTAG characteristics table: Updated tTDOV. – Low voltage monitor electrical characteristics table: Updated VLVDHV3H, VLVDHV3L, VLVDHV5H, VLVDHV5L. – DSPI electricals table: Updated spec 1, 5, 6. Updated footnote 2 and 3. Added ΔtCSC, ΔtASC, tSUSS, tHSS. – IO consumption table: Updated all parameter values. – DSPI electricals: Updated ΔtCSC max to 115 ns. – Low voltage power domain electrical characteristics table: Added footnote 9. – ADC electrical characteristics: Added 2 notes above 10-bit and 12-bit conversion tables. Doc ID 17478 Rev 4 SPC564Bxx - SPC56ECxx Revision history Revision history (continued) Date 01-Dec-2011 Revision Changes 4 – Interchanged the denominator with numerator in Equation 11 of Input impedance and ADC accuracy section – Removed the note (All ADC conversion characteristics described in the table below are applicable only for the precision channels. The data for semi-precision and extended channels is awaited and same will be subsequently updated in later revs.) in the ADC electrical characteristics section. – Table 49 (On-chip peripherals current consumption). Replaced IDD_HV_ADC with IDD_HV_ADC0 and IDD_HV_ADC1 values as per ADC specs – In Table 43, the minimum sample time of ADC0 changed to 500 at 32 MHz – In Table 43, removed the entry for sample time at 30 MHz – In Table 44, changed TUEX to TUES and INLX to INLS (Extended channels are not supported by the device. So, changed to standard channel.) Doc ID 17478 Rev 4 117/118 SPC564Bxx - SPC56ECxx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2011 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 118/118 Doc ID 17478 Rev 4