TS615 Dual Wide-Band Operational Amplifier with High Output Current ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Low noise: 2.5 nV/√Hz High output current: 420 mA Very low harmonic and intermodulation distortion High slew rate: 410 V/µs -3 dB bandwidth: 40 MHz @ gain = 12 dB on 25 Ω single-ended load 21.2 Vp-p differential output swing on 50 Ω load, 12 V power supply Current feedback structure 5 V to 12 V power supply Specified for 20 Ω and 50 Ω differential load Power down function with short-circuited output to keep matching with the line in sleep mode P TSSOP14 Exposed-Pad (Plastic Micropackage) Pin Connections (top view) Description -VCC1 1 The TS615 is a dual operational amplifier featuring a high output current of 410 mA. This driver can be configured differentially for driving signals in telecommunication systems using multiple carriers. The TS615 is ideally suited for xDSL (High Speed Asymmetrical Digital Subscriber Line) applications. This circuit is capable of driving a 10 Ω or 25 Ω load on a range of power supplies: ±2.5 V, 5 V, ±6 V or +12 V. The TS615 is capable of reaching a -3 dB bandwidth of 40 MHz on a 25 Ω load with a 12 dB gain. This device is designed for high slew rates and demonstrates low harmonic distortion and intermodulation. The TS615 offers a power-down function to order to decrease power consumption. During sleep mode, the device short circuits its output in order to keep the impedance matched to the line. The TS615 is housed in TSSOP14 exposed-pad plastic package for a very low thermal resistance. 14 -VCC2 Output1 2 +VCC1 3 13 Output2 + - - + 12 +VCC2 11 Non Inverting Input2 Non Inverting Input1 4 10 Inverting Input2 Inverting Input1 5 PowerDown 6 9 NC NC 7 8 NC Top View dice Pad Cross Section View Showing Exposed-Pad. This pad must be connected to a (-Vcc) copper area on the PCB. Applications ■ ■ Line driver for xDSL Multiple video line driver Order Codes Part Number Temperature Range Package Packaging Marking TS615IPWT -40, +85°C TSSOP (Thin Shrink Outline Package) Tape & Reel TS615 December 2004 Revision 2 1/36 TS615 Typical Application 1 Typical Application Figure 1 shows a schematic of a typical xDSL application using the TS615. Figure 1. Differential line driver for xDSL applications 11 12 + +Vcc 1/2TS615 10 _ 14 12.5Ω 13 -Vcc Vi Vo R2 1:2 R1 25Ω GND R4 R3 Vi 5 4 3 _ 6 Pw-Dwn 2/36 +Vcc 1/2TS615 + 1 Vo -Vcc 2 12.5Ω 100Ω Absolute Maximum Ratings TS615 2 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Vid Vin Parameter Supply voltage 1 Differential Input Voltage 2 3 Value Unit ±7 V ±2 V ±6 V Toper Input Voltage Range Operating Free Air Temperature Range -40 to + 85 °C Tstd Storage Temperature -65 to +150 °C Tj Maximum Junction Temperature 150 °C Rthjc Thermal Resistance Junction to Case 4 °C/W Rthja Thermal Resistance Junction to Ambient Area 40 °C/W Pmax. Maximum Power Dissipation (@25°C) 3.1 W ESD CDM: Charged Device Model 1.5 kV except HBM: Human Body Model pins 4, 5, MM: Machine Model 10, 11 ESD CDM: Charged Device Model 2 kV 200 V 1 kV only pins HBM: Human Body Model 4, 5, 10, MM: Machine Model 11 Output Short Circuit 1 kV 100 V 4 1) All voltage values, except differential voltage are with respect to network terminal. 2) Differential voltage are non-inverting input terminal with respect to the inverting input terminal. 3) The magnitude of input and output voltage must never exceed VCC +0.3V. 4) An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers. Table 2. Operating conditions Symbol VCC Vicm Parameter Power Supply Voltage Common Mode Input Voltage Value Unit ±2.5 to ±6 -VCC+1.5V to +VCC-1.5V V V 3/36 TS615 Electrical Characteristics 3 Electrical Characteristics Table 3. VCC = ±6V, Rfb=910Ω,Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Tamb 1.25 3.5 Tmin. < Tamb < Tmax. 2.1 Unit DC performance Vio ∆Vio Iib+ Iib- Input Offset Voltage Differential Input Offset Voltage Tamb = 25°C Positive Input Bias Current Tamb 2.5 6 Tmin. < Tamb < Tmax. Negative Input Bias Current 30 7.8 Tamb 3 Tmin. < Tamb < Tmax. 15 3.2 mV mV µA µA kΩ ZIN+ Input(+) Impedance 82 ZIN- Input(-) Impedance 54 Ω CIN+ Input(+) Capacitance 1 pF CMR SVR ICC Common Mode Rejection Ratio ∆Vic = ±4.5V 20 log (∆Vic/∆Vio) Tmin. < Tamb < Tmax. Supply Voltage Rejection Ratio ∆Vcc=±2.5V to ±6V 20 log (∆Vcc/∆Vio) Tmin. < Tamb < Tmax. 78 Total Supply Current per Operator No load 14 58 63 dB 61 72 79 dB 17 mA Dynamic performance and output characteristics ROL Open Loop Transimpedance Vout = 7Vp-p, RL = 25Ω 5 Tmin. < Tamb. < Tmax. 21 MΩ 8.9 -3dB Bandwidth Small Signal Vout<20mVp AV = 12dB, RL = 25Ω Full Power Bandwidth Large Signal Vout=3Vp AV = 12dB, RL = 25Ω 26 Gain Flatness @ 0.1dB Small Signal Vout<20mVp AV = 12dB, RL = 25Ω 7 MHz Rise Time Vout = 6Vp-p, AV = 12dB, RL = 25Ω 10.6 ns Fall Time Vout = 6Vp-p, AV = 12dB, RL = 25Ω 12.2 ns Settling Time Vout = 6Vp-p, AV = 12dB, RL = 25Ω 50 ns Slew Rate Vout = 6Vp-p, AV = 12dB, RL = 25Ω 330 410 V/µs VOH High Level Output Voltage RL=25Ω Connected to GND 4.8 5.1 V VOL Low Level Output Voltage RL=25Ω Connected to GND Output Sink Current Vout = -4Vp BW Tr Tf Ts SR Output Source Current Vout = +4Vp Tmin. < Tamb < Tmax. 40 MHz -5.5 -350 Tmin. < Tamb < Tmax. Iout 4/36 25 V -530 -440 330 -5.2 420 365 mA Electrical Characteristics TS615 Table 3. VCC = ±6V, Rfb=910Ω,Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Noise and distortion 2.5 nV/√Hz iNp Equivalent Input Noise Current (+) F = 100kHz 15 pA/√Hz iNn Equivalent Input Noise Current (-) F = 100kHz 21 pA/ √Hz HD2 2nd Harmonic distortion (differential configuration) Vout = 14Vp-p, AV = 12dB F= 110kHz, RL = 50Ω diff. -87 dBc HD3 3rd Harmonic distortion (differential configuration) Vout = 14Vp-p, AV = 12dB F= 110kHz, RL = 50Ω diff. -83 dBc 2nd Order Intermodulation Product (differential configuration) F1= 100kHz, F2 = 110kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. -76 F1= 370kHz, F2 = 400kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. -75 F1 = 100kHz, F2 = 110kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. -88 F1 = 370kHz, F2 = 400kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. -87 eN Equivalent Input Noise Voltage IM2 3rd Order Intermodulation Product (differential configuration) IM3 F = 100kHz dBc dBc 5/36 TS615 Electrical Characteristics Table 4. VCC = ±2.5V, Rfb=910Ω,Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Tamb 0.5 2.5 Tmin. < Tamb < Tmax. 1.2 Unit DC performance Vio ∆Vio Iib+ Iib- Input Offset Voltage Differential Input Offset Voltage Tamb = 25°C Positive Input Bias Current Tamb 5 Tmin. < Tamb < Tmax. 8 Negative Input Bias Current 2.5 Tamb 0.8 Tmin. < Tamb < Tmax. 1.24 30 11 mV mV µA µA ZIN+ Input(+) Impedance 71 kΩ ZIN- Input(-) Impedance 62 Ω CIN+ Input(+) Capacitance 1.5 pF CMR SVR ICC Common Mode Rejection Ratio ∆Vic = ±1V 20 log (∆Vic/∆Vio) Tmin. < Tamb. < Tmax. Supply Voltage Rejection Ratio ∆Vcc=±2V to ±2.5V 20 log (∆Vcc/∆Vio) Tmin. < Tamb. < Tmax. Total Supply Current per Operator No load 55 60 dB 58 63 77 dB 76 11.9 15 mA Dynamic performance and output characteristics ROL Open Loop Transimpedance Vout = 2Vp-p, RL = 10Ω 2 Tmin. < Tamb. < Tmax. 5.4 MΩ 2.1 -3dB Bandwidth Small Signal Vout<20mVp AV = 12dB, RL = 10Ω Full Power Bandwidth Large Signal Vout = 1.4Vp AV = 12dB, RL = 10Ω 20 Gain Flatness @ 0.1dB Small Signal Vout<20mVp AV = 12dB, RL = 10Ω 5.7 MHz Rise Time Vout = 2.8Vp-p, AV = 12dB RL = 10Ω 11 ns Fall Time Vout = 2.8Vp-p, AV = 12dB RL = 10Ω 11.5 ns Settling Time Vout = 2.2Vp-p, AV = 12dB RL = 10Ω 39 ns Slew Rate Vout = 2.2Vp-p, AV = 12dB RL = 10Ω 100 130 V/µs VOH High Level Output Voltage RL=10Ω Connected to GND 1.5 VOL Low Level Output Voltage RL=10Ω Connected to GND Output Sink Current Vout = -1.25Vp BW Tr Tf Ts SR Output Source Current Vout = +1.25Vp Tmin. < Tamb < Tmax. 30 MHz 1.75 -2.05 -350 Tmin. < Tamb < Tmax. Iout 6/36 20 V -470 -450 200 V -1.8 270 245 mA Electrical Characteristics TS615 Table 4. VCC = ±2.5V, Rfb=910Ω,Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Noise and distortion Equivalent Input Noise Voltage iNp Equivalent Input Noise Current (+) F = 100kHz 15 pA/√Hz iNn Equivalent Input Noise Current (-) F = 100kHz 21 pA/ √Hz HD2 2nd Harmonic distortion (differential configuration) Vout = 6Vp-p, AV = 12dB F= 110kHz, RL = 20Ω diff. -97 dBc HD3 3rd Harmonic distortion (differential configuration) Vout = 6Vp-p, AV = 12dB F= 110kHz, RL = 20Ω diff. -98 dBc 2nd Order Intermodulation Product (differential configuration) F1= 100kHz, F2 = 110kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -86 F1= 370kHz, F2 = 400kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -88 F1 = 100kHz, F2 = 110kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -90 F1 = 370kHz, F2 = 400kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -85 IM2 3rd Order Intermodulation Product (differential configuration) IM3 F = 100kHz nV/ √Hz eN 2.5 dBc dBc Power-down mode features The power-down command is a MOS input featuring a high input impedance. Table 5. VCC = ±2.5V, 5V, ±6V or 12V, Tamb = 25°C Symbol Parameter Min. Typ. Max. Unit V Pin (6) Threshold Voltage for Power Down Mode Vpdw Iccpdw Rpdw Cpdw Low Level -VCC -VCC+0.8 High Level -VCC+2 +VCC Power Down Mode Total Current Consumption@ VCC=5V 69 80 µA Power Down Mode Total Current Consumption@ VCC=12V 148 180 µA Power Down Mode Output Impedance @ VCC=5V 19 23 Ω Power Down Mode Output Impedance @ VCC=12V 15.3 19 Ω Power Down Mode Output Capacitance 63 Power down control Circuit status Vpdw=Low Level Active Vpdw=High Level Standby pF 7/36 TS615 Electrical Characteristics Figure 2. Load configuration Figure 5. Load configuration Load: RL=25Ω, VCC=±6V +6V + TS615 _ Load: RL=10Ω, VCC=±2.5V 50Ω cable 49.9Ω TS615 25Ω Figure 3. Closed loop gain vs. frequency 50Ω Figure 6. Closed loop gain vs. frequency AV=-1 2 40 2 -140 (Vcc=±6V) gain gain 0 0 20 -160 (Vcc=±2.5V) (Vcc=±2.5V) phase -2 0 -4 phase (Vcc=±6V) -180 (Vcc=±2.5V) -40 -8 (Vcc=±6V) -60 -10 -12 -220 -8 (Vcc=±6V) -240 -10 -12 -80 (Vcc=±2.5V, Rfb=1.1kΩ, Rload=10Ω) (Vcc=±6V, Rfb=750Ω, Rload=25Ω) -14 -200 (Vcc=±2.5V) -6 -260 (Vcc=±2.5V, Rfb=1kΩ, Rin=1kΩ, Rload=10Ω) (Vcc=±6V, Rfb=680Ω, Rin=680Ω, Rload=25Ω) -14 -100 -16 -280 -16 -120 100 1k 10k 100k 1M 10M -300 100M 100 1k Frequency (Hz) 100k 1M 100M AV=-2 8 40 8 -140 (Vcc=±6V) gain gain 6 6 20 (Vcc=±2.5V) phase -160 (Vcc=±2.5V) phase 4 (Vcc=±6V) 0 2 -180 -40 -2 (Vcc=±6V) -4 -60 -6 -80 -8 -100 -10 -200 (Vcc=±2.5V) 0 -220 -2 (Vcc=±6V) -240 -4 -6 -260 (Vcc=±2.5V, Rfb=1kΩ, Rin=510Ω, Rload=10Ω) (Vcc=±6V, Rfb=680Ω, Rin=750//620Ω, Rload=25Ω) -8 -280 -10 -120 100 1k 10k 100k 1M Frequency (Hz) 10M 100M -300 100 1k 10k 100k 1M Frequency (Hz) 10M 100M Phase (°) -20 (Vcc=±2.5V) 0 (gain (dB)) 2 Phase (°) (gain (dB)) 10M Figure 7. Closed loop gain vs. frequency AV=+2 4 10k Frequency (Hz) Figure 4. Closed loop gain vs. frequency 8/36 Phase (°) Phase (°) -6 (gain (dB)) -4 -20 (gain (dB) 49.9Ω 11Ω 0.5W -2.5V AV=+1 -2 50Ω cable 10Ω _ 50Ω 33Ω 1W -6V +2.5V + Electrical Characteristics TS615 Figure 8. Closed loop gain vs. frequency Figure 11. Closed loop gain vs. frequency AV=+4 AV=-4 14 -140 14 40 gain gain 12 12 20 phase 10 (Vcc=±6V) phase (Vcc=±6V) 0 -180 -40 4 (Vcc=±6V) -60 2 0 (gain (dB)) Phase (°) -20 (Vcc=±2.5V) 6 -220 4 (Vcc=±6V) -240 2 0 -80 (Vcc=±2.5V, Rfb=910Ω, Rg=300Ω, Rload=10Ω) (Vcc=±6V, Rfb=620Ω, Rg=560//330Ω, Rload=25Ω) -2 -200 (Vcc=±2.5V) 6 -260 (Vcc=±2.5V, Rfb=1kΩ, Rin=320//360Ω, Rload=10Ω) (Vcc=±6V, Rfb=620Ω, Rin=360//270Ω, Rload=25Ω) -2 -100 -280 -4 -4 -300 -120 100 1k 10k 100k 1M 10M 100 100M 1k Figure 9. Closed loop gain vs. frequency 100k 1M 10M 100M Figure 12. Closed loop gain vs. frequency AV=+8 AV=-8 20 20 40 -140 gain gain 18 18 20 phase -160 (Vcc=±2.5V) (Vcc=±2.5V) 16 10k Frequency (Hz) Frequency (Hz) 16 (Vcc=±6V) phase 0 -180 (Vcc=±6V) -40 10 (Vcc=±6V) 8 -60 6 -80 -200 (Vcc=±2.5V) 12 -220 10 (Vcc=±6V) 8 -240 6 -260 (Vcc=±2.5V, Rfb=680Ω, Rin=160//180Ω, Rload=10Ω) (Vcc=±6V, Rfb=510Ω, Rin=150//110Ω, Rload=25Ω) 4 (Vcc=±2.5V, Rfb=680Ω, Rg=240//160Ω, Rload=10Ω) (Vcc=±6V, Rfb=510Ω, Rg=270//100Ω, Rload=25Ω) 4 (gain (dB)) Phase (°) -20 (Vcc=±2.5V) 12 -100 Phase (°) 14 14 (gain (dB)) Phase (°) 8 8 (gain (dB)) -160 (Vcc=±2.5V) (Vcc=±2.5V) 10 -280 2 2 -300 -120 100 1k 10k 100k 1M 10M 100 100M 1k 10k 100k 1M 10M 100M Frequency (Hz) Frequency (Hz) Figure 10. Bandwidth vs. temperature: AV=+4, Rfb=910Ω Figure 13. Positive slew rate: AV=+4, Rfb=620Ω, VCC=±6V, RL=25Ω 4 50 Vcc=±6V Load=25Ω 45 2 VOUT (V) Bw (MHz) 40 35 0 30 -2 Vcc=±2.5V Load=10Ω 25 20 -40 -20 0 20 40 Temperature (°C) 60 80 -4 0.0 10.0n 20.0n 30.0n 40.0n 50.0n Time (s) 9/36 TS615 Electrical Characteristics Figure 14. Positive slew rate: AV=+4, Rfb=910Ω, Figure 17. Positive slew rate: AV= - 4, Rfb=620Ω, VCC=±6V, RL=25Ω 2 4 1 2 VOUT (V) VOUT (V) VCC=±2.5V, RL=10Ω 0 -2 -1 -2 0.0 0 10.0n 20.0n 30.0n 40.0n -4 0.0 50.0n 10.0n Figure 15. Negative slew rate: AV=+4, Rfb =620Ω, 2 1 VOUT (V) VOUT (V) 2 0 -2 -1 10.0n 20.0n 30.0n 40.0n -2 0.0 50.0n 10.0n 20.0n 30.0n 40.0n 50.0n Time (s) Figure 16. Negative slew rate: AV=+4, Rfb =910Ω, Figure 19. Negative slew rate: AV= - 4, Rfb =620Ω, VCC=±2.5V, RL=10Ω VCC=±6V, RL=25Ω 2 4 1 2 VOUT (V) VOUT (V) 50.0n 0 Time (s) 0 -1 0 -2 10.0n 20.0n 30.0n Time (s) 10/36 40.0n VCC=±2.5V, RL=10Ω 4 -2 0.0 30.0n Figure 18. Positive slew rate: AV= - 4, Rfb=910Ω, VCC=±6V, RL=25Ω -4 0.0 20.0n Time (s) Time (s) 40.0n 50.0n -4 0.0 10.0n 20.0n 30.0n Time (s) 40.0n 50.0n Electrical Characteristics TS615 Figure 20. Negative slew rate: AV= - 4, Rfb=910Ω, VCC=±2.5V, RL=10Ω Figure 23. Input voltage noise level: AV=+92, Rfb=910Ω, Input+ connected to Gnd via 10Ω 2 5.0 Input Voltage Noise (nV/√Hz) VOUT (V) + 0 -2 0.0 10.0n 20.0n 30.0n 40.0n 4.5 _ 4.0 10Ω Output - 6V Ω 910Ω 910 3.5 3.0 2.5 2.0 100 50.0n + 6V 1k 10k Time (s) 100k 1M (Frequency (Hz) Figure 21. Slew rate vs. temperature: AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω Figure 24. Transimpedance vs. temperature, open loop 30 200 25 150 Vcc=±6V 20 Positive SR ROL (MΩ) Slew Rate (V/µs) 100 50 0 −50 15 10 Negative SR −100 Vcc=±2.5V 5 −150 −200 −40 −20 0 20 40 60 0 -40 80 Temperature (°C) -20 0 20 40 60 80 Temperature (°C) Figure 22. Slew rate vs. temperature: AV=+4, Rfb=910Ω, VCC=±6V, RL=25Ω Figure 25. Icc vs. power supply Open loop, no load 16 600 14 500 12 10 400 8 200 100 0 4 Positive&Negative SR Rfb=620Ω Positive&Negative SR Rfb=910Ω −100 2 0 -2 -4 −200 -6 −300 Icc(-) -8 −400 -10 −500 -12 −600 −40 Icc(+) 6 ICC (mA) Slew Rate (V/µs) 300 -14 −20 0 20 40 Temperature (°C) 60 80 -16 5 6 7 8 9 10 11 12 VCC (V) 11/36 TS615 Electrical Characteristics Figure 26. Iib vs. power supply Open loop, no load Figure 29. Iib(+) vs. temperature Open loop, no load 7 8 Iib I ++ 6 7 B Vcc=±6V 6 5 5 IIB(+) (µA) Iib IB (µA) 4 3 IibI -- 2 4 3 2 B Vcc=±2.5V 1 1 0 0 5 6 7 8 9 10 11 12 -1 -40 -20 0 Vcc (V) 40 60 80 Figure 30. Voh & Vol vs. power supply Open loop, RL=25Ω Figure 27. Iib(-) vs. temperature Open loop, no load 5 6 5 VOH 4 4 3 VOH & VOL (V) Vcc=±6V IIB(-) (µA) 20 Temperature (°C) 3 2 2 1 0 VOL -1 -2 Vcc=±2.5V -3 1 -4 -5 0 -40 -6 -20 0 20 40 60 5 80 6 7 8 Temperature (°C) 9 10 11 12 Vcc (V) Figure 28. Icc vs. temperature Open loop, no load Figure 31. Voh vs. temperature Open loop 6 14 12 10 5 Icc(+) for Vcc=±2.5V 8 6 Icc(+) for Vcc=±6V 4 2 VOH (V) ICC (mA) 4 0 -2 Vcc=±6vV Load=25Ω 3 -4 -6 -8 2 Icc(-) for Vcc=±6V Icc(-) for Vcc=±2.5V -10 1 -12 Vcc=±2.5V Load=10Ω -14 -40 -20 0 20 40 Temperature (°C) 12/36 60 80 0 -40 -20 0 20 40 Temperature (°C) 60 80 Electrical Characteristics TS615 Figure 32. Vol vs. temperature Open loop Figure 35. CMR vs. temperature Open loop, no load 0 70 Vcc=±2.5V Load=10Ω -1 68 66 CMR (dB) -2 VOL (V) Vcc=±6V 64 -3 Vcc=±6V Load=25Ω -4 62 60 58 56 Vcc=±2.5V 54 -5 52 -6 -40 -20 0 20 40 60 50 -40 80 -20 0 Temperature (°C) 20 40 60 80 Temperature (°C) Figure 33. Differential Vio vs. temperature Open loop, no load Figure 36. SVR vs. temperature Open loop, no load 450 84 400 82 350 SVR (dB) ∆VIO (µV) Vcc=±2.5V 300 Vcc=±6V 80 78 Vcc=±6V 250 76 200 -40 -20 0 20 40 60 80 -40 Vcc=±2.5V -20 0 Temperature (°C) 20 40 60 80 Temperature (°C) Figure 34. Vio vs. temperature Open loop, no load Figure 37. Iout vs. temperature Open loop, VCC=±6V, RL=10Ω 2.0 300 250 Vcc=±6V 200 1.5 150 100 Isource 1.0 Iout (mA) VIO (mV) 50 0.5 0 -50 -100 -150 -200 -250 0.0 -350 Vcc=±2.5V -0.5 -40 Isink -300 -20 0 20 -400 40 Temperature (°C) 60 80 -450 -40 -20 0 20 40 60 80 Temperature (°C) 13/36 TS615 Electrical Characteristics Figure 38. Iout vs. temperature Open loop, VCC=±2.5V, RL=25Ω Figure 41. Isource vs. output amplitude VCC=±2.5V, open loop, no load 700 300 250 600 200 150 Iout (mA) 50 Isource (mA) 100 Isource 0 -50 -100 -150 -200 -250 500 400 300 200 Isink -300 100 -350 -400 -450 -40 -20 0 20 40 60 0 0.0 80 0.5 1.0 Temperature (°C) 1.5 2.0 2.5 Vout (V) Figure 39. Maximum output amplitude vs. load: AV=+4, Rfb=620Ω, VCC=±6V Figure 42. Isink vs. output amplitude VCC=±6V, open loop, no load 0 12 10 -100 Vcc=±6V Isink (mA) VOUT-MAX (VP-P) -200 8 6 -300 -400 4 -500 Vcc=±2.5V 2 -600 0 -700 0 50 100 150 200 -6 -5 -4 RLOAD (Ω) 0 700 -100 600 -200 500 -300 -400 -1 0 400 300 -500 200 -600 100 0 -2.0 -1.5 -1.0 Vout (V) 14/36 -2 Figure 43. Isource vs. output amplitude VCC=±6V, open loop, no load Isource (mA) Isink (mA) Figure 40. Isink vs. output amplitude VCC=±2.5V, open loop, no load -700 -2.5 -3 Vout (V) -0.5 0.0 0 1 2 3 Vout (V) 4 5 6 Electrical Characteristics TS615 Figure 44. Icc (power down) vs. temperature no load, open loop 200 150 ICC pdw (µA) 100 50 Vcc=±6V 0 Vcc=±2.5V -50 -100 -150 -200 -40 -20 0 20 40 60 80 Temperature (°C) 15/36 TS615 Safe Operating Area 4 Safe Operating Area Figure 45 shows the safe operating zone for the TS615. The curve shows the input level vs. the input frequency—a characteristic curve which must be considered in order to ensure a good application design. In the dash-lined zone, the consumption increases, and this increased consumption could do damage to the chip if the temperature increases Figure 45. Safe operating area 100 90700 80 600 60500 VINPUT (mVRMS) Delay (ns) 70 Vcc=+/-6V Ta=25°C G=12dB RL=100Ω Av=4 Vcc=±6V, Rfb=620Ω, Load=25Ω Vcc=±2.5V, Rfb=910Ω, Load=10Ω IF Bw = 10Hz Smoothing=19.247MHz on 10ns/div scale 50 400 40 SAFE OPERATING AREA 30300 20 200 10 300k 100 0 1M 1M 10M 10M Frequency (Hz) 16/36 50M Frequency (Hz) 100M Intermodulation Distortion Product TS615 5 Intermodulation Distortion Product The non-ideal output of the amplifier can be described by the following series, due to a non-linearity in the input-output amplitude transfer: 2 V out = C o + C 1 V in + C 2 V in … + C n V in n where the single-tone input is Vin=Asinωt, and C0 is the DC component, C1(Vin) is the fundamental, Cn is the amplitude of the harmonics of the output signal Vout. A one-frequency (one-tone) input signal contributes to a harmonic distortion. A two-tone input signal contributes to a harmonic distortion and an intermodulation product. This intermodulation product, or rather, the study of the intermodulation distortion of a two-tone input signal is the first step in characterizing the amplifiers capability for driving multi-tone signals. The two-tone input is equal to: V in = A sin ω t + B sin ω t 1 2 giving: V 2 n C C ( A sin ω t + B sin ω t ) + C ( A sin ω t + B sin ω t ) … + C ( A sin ω t + B sin ω t ) out = 0 + 1 1 2 1 2 1 2 2 n In this expression, we can extract distortion terms and intermodulations terms from a single sine wave: second-order intermodulation terms IM2 by the frequencies (ω1-ω2) and (ω1+ω2) with an amplitude of C2A2 and third-order intermodulation terms IM3 by the frequencies (2ω1-ω2), (2ω1+ω2), (−ω1+2ω2) and (ω1+2ω2) with an amplitude of (3/4)C3A3. We can measure the intermodulation product of the driver by using the driver as a mixer via a summing amplifier configuration. In doing this, the non-linearity problem of an external mixing device is avoided. Figure 46. Non-inverting summing amplifier 1k Ω 1kΩ 49.9Ω 11 Vin1 + +Vcc 1/2TS615 1:√2 49.9Ω 10 49.9Ω 13 _ 400Ω 50Ω Rfb1 North Hills 0315PB 33Ω Rg1 Vin2 Vout diff. 1:√2 400Ω 50Ω √2:1 100Ω 50Ω 33Ω Rg2 North Hills 0315PB Rfb2 North Hills 0315PB 49.9Ω 1kΩ _ 49.9Ω 1/2TS615 + -Vcc 1k Ω 49.9Ω 17/36 TS615 Intermodulation Distortion Product The following graphs show the IM2 and the IM3 of the amplifier in different configurations. The two-tone input signal is created by a Marconi 2026 multisource generator. Each tone has the same amplitude. The measurement was carried out using an HP3585A spectrum analyzer. Figure 48. Intermodulation vs. output amplitude: 370 kHz & 400 kHz, AV = +1.5, Rfb = 1 kΩ, R L = 28 Ω diff., VCC = ±2.5 V -30 -30 -40 -40 -50 -50 IM2 30kHz IM2 770kHz -60 IM2 and IM3 (dBc) IM2 and IM3 (dBc) Figure 47. Intermodulation vs. output amplitude: 370 kHz & 400 kHz, AV = +1.5, R fb = 1 kΩ, RL = 14 Ω diff., VCC = ±2.5 V IM3 340kHz, 430kHz -70 -80 -90 -60 -70 -80 -90 IM3 1140kHz, 1170kHz IM3 1140kHz, 1170kHz -100 -100 0 1 2 3 4 5 6 7 0 8 1 Figure 49. Intermodulation vs. gain: 370kHz & 5 6 7 8 -30 -40 -40 IM3 340kHz, 430kHz, 1140kHz, 1170kHz -60 IM2 30kHz IM2 770kHz -70 IM3 340kHz, 430kHz, 1140kHz, 1170kHz -50 IM2 and IM3 (dBc) IM2 and IM3 (dBc) 4 AV=+1.5, Rfb=1kΩ, Vout=6.5Vpp, VCC=±2.5V -30 -80 -60 IM2 30kHz IM2 770kHz -70 -80 -90 -90 -100 -100 -110 1.0 3 Figure 50. Intermodulation vs. Load: 370kHz & 400kHz, 400kHz, RL=20Ω diff., Vout=6Vpp, V CC=±2.5V -50 2 Differential Output Voltage (Vp-p) Differential Output Voltage (Vp-p) -110 1.5 2.0 2.5 3.0 Closed Loop Gain (Linear) 18/36 IM2 770kHz IM2 30kHz IM3 340kHz, 430kHz 3.5 4.0 0 20 40 60 80 100 120 140 Differential Load (Ω) 160 180 200 Intermodulation Distortion Product TS615 Figure 51. Intermodulation vs. Output Amplitude: 100kHz & 110kHz, AV=+4, Rfb=620Ω, RL=50Ω diff., VCC=±6V VCC=±6V -30 -30 -40 -40 -60 IM3 90kHz, 120kHz, 310kHz, 320kHz -50 IM3 90kHz, 120kHz IM2 210kHz IM3 310kHz -70 IM2 and IM3 (dBc) -50 IM2 and IM3 (dBc) Figure 52. Intermodulation vs. Output Amplitude: 100kHz & 110kHz, AV=+4, Rfb=620Ω, RL=200Ω diff., IM3 320kHz -80 IM2 210kHz -60 -70 -80 -90 -90 -100 -100 -110 -110 2 4 6 8 10 12 14 16 18 20 2 22 4 6 Figure 53. Intermodulation vs. Frequency Range: 10 12 14 16 18 20 22 Figure 54. Intermodulation vs. Output Amplitude: AV=+4, Rfb=620Ω, RL=50Ω diff., Vout=16Vpp, 370kHz & 400kHz, AV=+4, Rfb=620Ω, RL=50Ω diff., VCC=±6V VCC=±6V -30 -30 -40 IM2 30kHz -40 -50 IM2 770kHz IM2 30kHz -60 -50 IM2 and IM3 (dBc) IM2 and IM3 (dBc) 8 Differential Output Voltage (Vp-p) Differential Output Voltage (Vp-p) IM3 1140kHz, 1170kHz -70 IM3 340kHz, 430kHz -80 -90 IM3 1140kHz, 1170kHz -60 IM2 770kHz IM3 340kHz, 430kHz -70 -80 -90 -100 -100 -110 0 2 4 6 8 10 12 14 16 18 Differential Output Voltage (Vp-p) 20 22 -110 0 2 4 6 8 10 12 14 16 18 20 22 Differential Output Voltage (Vp-p) 19/36 TS615 Printed Circuit Board Layout Considerations 6 Printed Circuit Board Layout Considerations In the ADSL frequency rangey, printed circuit board parasites can affect the closed-loop performance. The use of a proper ground plane on both sides of the PCB is necessary to provide low inductance and a low resistance common return. The most important factors affecting gain flatness and bandwidth are stray capacitance at the output and inverting input. To minimize capacitance, the space between signal lines and ground plane should be maximized. Feedback component connections must be as short as possible in order to decrease the associated inductance which affects high-frequency gain errors. It is very important to choose the smallest possible external components—for example, surface mounted devices (SMD)—in order to minimize the size of all DC and AC connections. 6.1 Thermal information The TS615 is housed in an exposed-pad plastic package. As described in Figure 55, this package has a lead frame upon which the dice is mounted. This lead frame is exposed as a thermal pad on the underside of the package. The thermal contact is direct with the dice. This thermal path provides an excellent thermal performance. The thermal pad is electrically isolated from all pins in the package. It must be soldered to a copper area of the PCB underneath the package. Through these thermal paths within this copper area, heat can be conducted away from the package. The copper area must be connected to -VCC available on pin 4. Figure 55. Exposed-pad package Figure 56. Evaluation board DICE 1 Side View Bottom View DICE Cross Section View 20/36 Printed Circuit Board Layout Considerations TS615 Figure 57. Schematic diagram J106 R107 J110 R111 R112 R103 R118 2 R114 R111 R114 1/2TS615 _ 5 R120 R116 R102 2 _ 5 J110 R118 + R102 + 1/2 TS615 4 R107 J106 4 R120 R106 R116 R101 Non-Inverting Amplifier J105 J108 R109 Inverting Amplifier R115 10 R115 _ J111 10 R109 J108 _ 1/2TS615 R104 R117 11 R119 13 R121 R104 1/2TS615 + + R119 13 11 J111 R121 R108 R117 J107 R110 R113 R105 R113 J109 Differential Amplifier 4 R107 + J110 R118 2 R116 Non-Inverting Summing Amplifier R107 _ 4 + R119 1/2TS615 13 R114 R121 R117 + J111 J110 R118 2 _ 5 R111 1/2TS615 11 R106 R102 R115 10 J105 J106 R120 R112 R101 R111 R114 R116 R102 1/2TS615 _ 5 R120 J106 Power down J112 Differential Amplifier -Vcc 100nF + 1/2TS615 5 4 J102 GND 5 J103 -Vcc C106 R114 R111 2 -Vcc +Vcc C107 R112 -Vcc Exposed-Pad 100uF C104 C103 100nF 100nF -Vcc R115 10 100nF 11 12 1/2TS615 3 11 + 14 C108 -Vcc + J111 R119 13 13 J109 R110 R113 2 _ R105 J104 _ 1/2TS615 +Vcc R121 _ 1 10 J110 6 + 1/2 TS615 1 R118 2 _ 3 J101 +Vcc R117 100uF C101 C102 100nF R122 +Vcc 4 R107 J106 C105 R120 +Vcc R116 Power Supply R102 R105 R113 R110 J109 100nF -Vcc 21/36 TS615 Printed Circuit Board Layout Considerations Figure 58. Component locations - top side Figure 59. Component locations - bottom side Figure 60. Top side board layout Figure 61. Bottom side board layout 22/36 Noise Measurements TS615 7 Noise Measurements The noise model is shown in Figure 62, where: l eN: input voltage noise of the amplifier l iNn: negative input current noise of the amplifier l iNp: positive input current noise of the amplifier Figure 62. Noise model + iN+ R3 TS615 HP3577 Input noise: 8nV/√Hz _ N3 iN- output eN R2 N2 R1 N1 The closed loop gain is: R fb A V = g = 1 + ---------Rg The six noise sources are: R2 V1 = eN × 1 + -------- R1 V2 = iNn × R2 R2 V3 = iNp × R3 × 1 + -------- R1 R2 V4 = – -------- × 4kTR1 R1 V5 = 4kTR2 R2 V6 = 1 + -------- 4kTR3 R1 We assume that the thermal noise of a resistance R is: 4 kTR DF where ∆F is the specified bandwidth. 23/36 TS615 Noise Measurements On a 1Hz bandwidth the thermal noise is reduced to 4kTR where k is Boltzmann's constant, equals to 1374 x 10-23J/°K. T is the temperature (°K). The output noise eNo is calculated using the Superposition Theorem. However eNo is not the sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in Equation 1. eNo = eNo 2 2 2 2 2 2 2 V1 + V2 + V3 + V4 + V 5 + V6 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R 3 × g Equation 1 Equation 2 R2 2 R2 2 … + -------- × 4kTR1 + 4kTR2 + 1 + -------- × 4kTR3 R1 R1 The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is: eNo = 2 2 ( Measured ) – ( instrumentation ) Equation 3 The input noise is called the Equivalent Input Noise as it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eNo/g). After simplification of the fourth and the fifth term of Equation 2 we obtain: eNo 2 2 2 2 2 2 2 2 R2 2 = eN × g + iNn × R2 + iNp × R3 × g … + g × 4kTR2 + 1 + -------- × 4kTR 3 R1 Equation 4 7.1 Measurement of eN If we assume a short-circuit on the non-inverting input (R3=0), Equation 4 becomes: eNo = 2 2 2 2 eN × g + iNn × R 2 + g × 4kTR2 Equation 5 In order to easily extract the value of eN, the resistance R2 will be chosen as low as possible. On the other hand, the gain must be large enough: l R1=10Ω, R2=910Ω, R3=0, Gain=92 l Equivalent Input Noise: 2.57nV/√Hz l Input Voltage Noise: eN=2.5nV/√Hz 24/36 Noise Measurements TS615 7.2 Measurement of iNn To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This time the gain must be lower in order to decrease the thermal noise contribution: l R1=100Ω, R2=910Ω, R3=0, gain=10.1 l Equivalent input noise: 3.40nV/√Hz l Negative input current noise: iNn =21pA/√Hz 7.3 Measurement of iNp To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise contribution as low as possible against the iNp contribution. l R1=100Ω, R2=910Ω, R3=100Ω, Gain=10.1 l Equivalent input noise: 3.93nV/√Hz l Positive input current noise: iNp=15pA/√Hz l Conditions: Frequency=100kHz, VCC =±2.5V l Instrumentation: HP3585A Spectrum Analyzer (the input noise of the HP3585A is 8nV/√Hz) 25/36 TS615 Power Supply Bypassing 8 Power Supply Bypassing Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1µF is necessary to minimize the distortion. For a better quality bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. Figure 63. Circuit for power supply bypassing +VCC 10µF + 10nF + TS615 - 10nF 10µF + -VCC 8.1 Single power supply The TS615 can operate with power supplies ranging from 12V to 5V. The power supply can either be single (12V or 5V referenced to ground), or dual (such as ±6V and ±2.5V). In the event that a single supply system is used, new biasing is necessary to assume a positive output dynamic range between 0V and +VCC supply rails. Considering the values of VOH and V OL, the amplifier will provide an output dynamic from +0.5V to 10.6V on 25Ω load for a 12V supply and from 0.45V to 3.8V on 10Ω load for a 5V supply. The amplifier must be biased with a mid-supply (nominally +VCC/2), in order to maintain the DC component of the signal at this value. Several options are possible to provide this bias supply, such as a virtual ground using an operational amplifier or a two-resistance divider (which is the cheapest solution). A high resistance value is required to limit the current consumption. On the other hand, the current must be high enough to bias the non-inverting input of the amplifier. If we consider this bias current (30µA max.) as the 1% of the current through the resistance divider to keep a stable mid-supply, two resistances of 2.2kΩ can be used in the case of a 12V power supply and two resistances of 820Ω can be used in the case of a 5V power supply. The input provides a high-pass filter with a break frequency below 10Hz which is necessary to remove the original 0 volt DC component of the input signal, and to fix it at +VCC/2. 26/36 Power Supply Bypassing TS615 Figure 64 shows a schematic of a 5V single power supply configuration Figure 64. Circuit for +5V single supply +5V 10µF + IN Rin 1kΩ +5V 100µF OUT ½ TS615 _ Rs Rload R1 820Ω R2 820Ω Rfb 910Ω RG + 1µF 10nF + CG 8.2 Channel separation and crosstalk Figure 65 shows an example of crosstalk from one amplifier to a second amplifier. This phenomenon, accentuated at high frequencies, is unavoidable and intrinsic to the circuit itself. Nevertheless, the PCB layout also has an effect on the crosstalk level. Capacitive coupling between signal wires, distance between critical signal nodes and power supply bypassing are the most significant factors. Figure 65. Crosstalk vs. frequency: AV=+4, Rfb =620Ω, VCC=±6V, Vout=2Vp -50 CrossTalk (dB) -60 -70 -80 -90 -100 -110 -120 -130 10k 100k 1M 10M Frequency (Hz) 27/36 TS615 Power Down Mode Behavior 9 Power Down Mode Behavior Please note that the short-circuited output in power-down mode is referenced to (-VCC). No problems appear when used in differential mode. Nevertheless, when used in single-ended mode on a load referenced to GND, the (-VCC) level contributes to a current consumption through the load. Figure 66. Equivalent schematic Vcc + .. POWER DOWN pin6 3 4 + 5 _ A1 .. . 2 Ouput 1 Rpdw 1 -Vcc Vcc Vcc 14 11 10 .. . Rpdw + _ -Vcc A2 .. 12 Vcc + 13 Ouput 2 POWER DOWN pin6 As shown in Figure 66, the interest of having an output short-circuit in power-down mode is to keep the best impedance matching between the system and the twisted pair telephone line when the modem is in sleep mode. By doing this, the modem can be woken up with a signal from the line without any damage 28/36 Power Down Mode Behavior TS615 to this signal. This concept is particularly intended for the ADSL-over-voice modems, where the modem in sleep mode, and must be woken up by the phone call. Figure 67. Matching in sleep mode Consumption=80µA Matching 12.5Ω Transformer 1:2 TS615 Line (100Ω) 25Ω 5Ω max. 12.5Ω POWER DOWN The system can be waked-up from the line Figure 68. Standby mode. Time On>Off Figure 69. Standby mode. Time Off>On 0 Enabled Output 1 Vout -1 0 (Volts) −1 -3 Enabled Output −2 −3 -4 Disabled Output −4 -5 Vpdw −5 Vpdw −6 -6 0 10 20 30 40 50 0 Time (µs) 1 2 3 4 5 Time (µs) Figure 70. Standby mode. input/output isolation vs. frequency: AV=+4, Rfb =620Ω, VCC=±6V, Vout=3Vp 0 -10 -20 -30 Isolation (dB) (Volts) Disabled Output Vout -2 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 10k 100k 1M 10M Frequency (Hz) 29/36 TS615 Choosing the Feedback Circuit 10 Choosing the Feedback Circuit As described on Figure 72 on page 31, the TS615 requires a 620 Ω feedback resistor to optimize the bandwidth with a gain of 12 dB for a 12 V power supply. Nevertheless, due to production test constraints, the TS615 is tested with the same feedback resistor for 12 V and 5 V power supplies (910Ω). Table 6. Closed-loop gain - feedback components VCC (V) ±6 ±2.5 Gain Rfb (Ω) +1 750 +2 680 +4 620 +8 510 -1 680 -2 680 -4 620 -8 510 +1 1.1k +2 1k +4 910 +8 680 -1 1k -2 1k -4 910 -8 680 10.1 The bias of an inverting amplifier A resistance is necessary to achieve a good input biasing, such as resistance R, shown in Figure 71. The magnitude of this resistance is calculated by assuming the negative and positive input bias current. The aim is to compensate for the offset bias current, which could affect the input offset voltage and the output DC component. Assuming Ib-, Ib+, Rin, Rfb and a zero volt output, the resistance R will be: R = Rin // Rfb Figure 71. Compensation of the input bias current Rfb Ib- Rin _ Vcc+ Output TS615 + R 30/36 Load Vcc- Ib+ Choosing the Feedback Circuit TS615 10.2 Active filtering Figure 72. Low-pass active filtering. Sallen-Key C1 R1 R2 + IN OUT C2 TS615 _ 25Ω RG Rfb 910Ω From the resistors Rfb and RG we can directly calculate the gain of the filter in a classical, non-inverting amplification configuration: R fb A V = g = 1 + ---------Rg We assume the following expression as the response of the system: Vout g jω T ω = ------------------- = --------------------------------------------j Vin 2 jω j ω (j ω ) 1 + 2 ζ ------- + -------------ωc 2 ω c The cutoff frequency is not gain-dependent and so becomes: 1 ω c = -------------------------------------R1R2C 1C2 The damping factor is calculated by the following expression: 1 ζ = --- ω c ( C1 R 1 + C1 R 2 + C2 R 1 – C1 R 1 g ) 2 The higher the gain the more sensitive the damping factor is. When the gain is higher than 1, it is preferable to use some very stable resistor and capacitor values. In the case of R1=R2: R fb 2C – C ---------2 1R g ζ = -----------------------------------2 C C 1 2 31/36 TS615 Increasing the Line Level Using Active Impedance Matching 11 Increasing the Line Level Using Active Impedance Matching With passive matching, the output signal amplitude of the driver must be twice the amplitude on the load. To go beyond this limitation an active matching impedance can be used. With this technique, it is possible to maintain good impedance matching with an amplitude on the load higher than half of the output driver amplitude. This concept is shown in Figure 73 for a differential line. Figure 73. TS615 as a differential line driver with active impedance matching 1µ 100n Vcc+ + _ Vcc+ 10n Rs1 GND 1k R2 Vi Vo° 1:n Vo 1/2 R3 R1 RL Vcc/2 1/2 10µ Vi 1k R1 R5 100n GND Hybrid & Transformer R4 Vcc+ + _ Vo Vo° Rs2 GND 100n Component calculation Let us consider the equivalent circuit for a single-ended configuration, as shown in Figure 74. Figure 74. Single-ended equivalent circuit + Rs1 Vi _ Vo° Vo R2 -1 R3 1/2R1 32/36 1/2RL 100Ω Increasing the Line Level Using Active Impedance Matching TS615 First let’s consider the unloaded system. We can assume that the currents through R1, R2 and R3 are respectively: 2Vi ( Vi – Vo ° ) ( Vi + Vo ) ---------, --------------------------- and -----------------------R2 R3 R1 As Vo° equals Vo without load, the gain in this case becomes: 2R2 R2 1 + ----------- + -------Vo ( noload ) R1 R3 G = --------------------------------- = -----------------------------------R2 Vi 1 – -------R3 The gain, for the loaded system is given by Equation 6: 2R2 R2 1 + ----------- + -------Vo ( withload ) R1 R3 1 GL = -------------------------------------- = --- -----------------------------------R2 Vi 2 1 – -------R3 Equation 6 The system shown in Figure 74 is an ideal generator with a synthesized impedance acting as the internal impedance of the system. From this, the output voltage becomes: Vo = ( ViG ) – ( R o ⋅ Iou t ) Equation 7 where Ro is the synthesized impedance and Iout the output current. On the other hand Vo can be expressed as: 2R2 R2 Vi 1 + ----------- + -------- R1 R3 Rs1Iout Vo = ------------------------------------------------ – ----------------------R2 R2 1 – -------1 – -------R3 R3 Equation 8 By identification of both Equation 7 and Equation 8, the synthesized impedance is, with Rs1=Rs2=Rs: Rs Ro = ----------------R2 1 – -------R3 Equation 9 Figure 75: Equivalent schematic. Ro is the synthesized impedance Ro Vi.Gi Iout 1/2RL 33/36 TS615 Increasing the Line Level Using Active Impedance Matching Let us write Vo°=kVo, where k is the matching factor varying between 1 and 2. If we assume that the current through R3 is negligible, we can calculate the output resistance, Ro: kV oRL Ro = -----------------------------RL + 2R s1 After choosing the k factor, Rs will equal to 1/2RL(k-1). For a good impedance matching we assume that: 1 Ro = --- RL 2 Equation 10 R2 -------- = 1 – 2Rs ----------R3 RL Equation 11 From Equation 9 and Equation 10, we derive: By fixing an arbitrary value of R2, Equation 11 becomes: R2 R3 = --------------------2Rs 1 – ----------RL Finally, the values of R2 and R3 allow us to extract R1 from Equation 6, so that: 2R2 R1 = ----------------------------------------------------------R2 2 2 1 – -------- GL – 1 – R ------- R3 R3 with GL the required gain. Table 7. Components calculation for impedance matching implementation GL (gain for the loaded system) R1 2R2/[2(1-R2/R3)GL-1-R2/R3] R2 (=R4) Arbitrarily fixed R3 (=R5) R2/(1-Rs/0.5RL) Rs Load viewed by each driver 34/36 GL is fixed for the application requirements GL=Vo/Vi=0.5(1+2R2/R1+R2/R3)/(1-R2/R3) 0.5RL(k-1) kRL/2 Equation 12 Package Mechanical Data TS615 12 Package Mechanical Data TSSOP14 EXPOSED PAD MECHANICAL DATA mm. inch DIM. MIN. TYP A MIN. TYP. 1.2 A1 A2 MAX. 0.047 0.15 0.8 1 1.05 MAX. 0.031 0.004 0.006 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 5.1 0.193 D 4.9 D1 1.7 5 0.197 0.201 0.067 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.5 0.169 0.173 0.177 E2 1.5 e 0.059 0.65 K 0° L 0.45 0.60 0.0256 8° 0° 0.75 0.018 8° 0.024 0.030 7256412B 35/36 Revision History TS615 13 Revision History Date Revision 01 Nov 2002 1 Description of Changes First Release General grammatical and formatting changes to entire document. Specific changes: • 03 Dec 2004 2 • • • • Moved note in Table 3 to Chapter 10: Choosing the Feedback Circuit on page 30. Added Chapter 4: Safe Operating Area on page 16. Simplified mathematical representations of the intermodulation product in Chapter 5: Intermodulation Distortion Product on page 17. In Chapter 6: Printed Circuit Board Layout Considerations on page 20, change from “The copper area can be connected to (-Vcc) available on pin 4.” to “The copper area must be connected to -Vcc available on pin 4.”. In Section 10.1: The bias of an inverting amplifier on page 30, change of section title, and correction of referred figure to Figure 71. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 36/36