TSH300 Ultra Low-Noise High-Speed Operational Amplifier ■ Structure: VFA ■ 200 MHz bandwidth ■ Input noise: 0.65 nV/√Hz ■ Stable for gains > 5 ■ Slew rate: 230 V/µs ■ Specified on 100Ω load ■ Tested on 5 V power supply OUT 1 ■ Single or dual supply operation -VCC 2 ■ Minimum and maximum limits are tested in full production Pin Connections (top view) 5 +VCC +- +IN 3 4 -IN SOT23-5 Description The TSH300 is a voltage feedback amplifier featuring ultra-low input voltage and current noise. This feature, associated with a large bandwidth, large slew rate and a good linearity, makes the TSH300 a good choice for high-speed data acquisition systems where sensitivity and signal integrity are the main priorities. The TSH300 is a single operator available in SO8 and the tiny SOT23-5L plastic package, saving board space as well as providing excellent thermal performances. NC 1 Applications ■ ■ ■ ■ ■ High speed data acquisition systems Probe equipment Communication & video test equipment Medical instrumentation ADC drivers 8 NC -IN 2 _ 7 +VCC +IN 3 + 6 5 NC -VCC 4 SO8 Order Codes Part Number Temperature Range TSH300ILT TSH300ID TSH300IDT September 2005 -40°C to +85°C Package Packing Marking SOT23-5L Tape & Reel K308 SO-8 Tube TSH300I SO-8 Tape & Reel TSH300I Rev. 2 1/18 www.st.com 18 Absolute Maximum Ratings 1 TSH300 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter Value Unit 6 V VCC Supply Voltage (1) Vid Differential Input Voltage(2) +/-0.5 V Vin Input Voltage Range(3) +/-2.5 V Toper Operating Free Air Temperature Range -40 to +85 °C Tstg Storage Temperature -65 to +150 °C Maximum Junction Temperature 150 °C R thja Thermal Resistance Junction to Ambient SOT23-5L SO8 250 150 °C/W R thjc Thermal Resistance Junction to Case SOT23-5L SO8 80 28 °C/W Pmax Maximum Power Dissipation(4) (@Ta=25°C) for Tj=150°C SOT23-5L SO8 500 830 mW 1 kV MM: Machine Model (6) (all packages) 150 V CDM: Charged Device Model (SO8) 1.5 kV Latch-up Immunity 200 mA Tj HBM: Human Body Model (5) (all packages) ESD 1. All voltage values are measured with respect to the ground pin. 2. Differential voltage is between the non-inverting input terminal and the inverting input terminal. 3. The magnitude of input and output voltage must never exceed VCC +0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuits on amplifiers. 5. Human body model, 100pF discharged through a 1.5kΩ resistor into Pmin of device. 6. This is a minimum value. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. Table 2. Operating conditions Symbol Parameter VCC Supply Voltage (1) Vicm Common Mode Input Voltage 1. Tested in full production at 5V (±2.5V) supply voltage. 2/18 Value Unit 4.5 to 5.5 V -1.5 to +1.6 V TSH300 2 Electrical Characteristics Electrical Characteristics Table 3. Symbol Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified) Parameter Test Condition Min. Typ. Max. -1.8 0.5 1.8 Unit DC performance Vio Input Offset Voltage Offset Voltage between both inputs ∆Vio Tamb Tmin. < Tamb < Tmax. 0.5 Vio drift vs. Temperature Tmin. < Tamb < Tmax. -3.8 Iib+ Non Inverting Input Bias Current DC current necessary to bias the input + Tamb 30 Tmin. < Tamb < Tmax. 33 Iib- Inverting Input Bias Current DC current necessary to bias the input - Tamb -46 Tmin. < Tamb < Tmax. ∆Vic = ±1V 60 88 SVR Supply Voltage Rejection Ratio 20 log (∆Vcc/∆Vio) Tmin. < Tamb < Tmax. 74 PSRR Power Supply Rejection Ratio 20 log (∆Vcc/∆Vout) Gain = +5, ∆Vcc=±100mV at 1kHz 76 Positive Supply Current DC consumption with no input signal No load Tmin. < Tamb < Tmax. dB 83 ∆Vcc= 3.5V to 5V 70 77 15 Tmin. < Tamb < Tmax. µA µA -34 Common Mode Rejection Ratio 20 log (∆Vic/∆Vio) ICC µV/°C 46 -30 CMR mV dB dB 19.5 15.3 mA Dynamic performance and output characteristics AVD Bw Open Loop Gain Output Voltage/Input Voltage Gain in open loop of a VFA. RL = 100Ω,Vout = ±1V Tmin. < Tamb < Tmax. Bandwidth Frequency where the gain is 3dB below the DC gain Small Signal V out=20mVp-p RL = 100Ω Gain = +5 Gain = +20 Gain Flatness @ 0.1dB Band of frequency where the gain variation does not exceed 0.1dB Small Signal V out=20mVp-p Gain = +5 SR Slew Rate Vout = 2Vp-p, Gain = +20, Maximum output speed of sweep in large RL = 100Ω signal VOH High Level Output Voltage VOL Low Level Output Voltage Iout RL = 100Ω 30 67 dB 66 dB 200 43 MHz 160 160 1.39 230 V/µs 1.45 V Tmin. < Tamb < Tmax. 1.46 RL = 100Ω -1.45 Tmin. < Tamb < Tmax. -1.46 Output to GND Isink Short-circuit output current entering op-amp. Tmin. < Tamb < Tmax. Isource Output current coming out of the op-amp. 65 44 -1.39 V 77 78 Output to GND -82 Tmin. < Tamb < Tmax. -78 -44 mA 3/18 Electrical Characteristics Table 3. Symbol TSH300 Electrical characteristics for VCC = ±2.5V, Tamb = 25°C (unless otherwise specified) Parameter Test Condition Min. Typ. Max. Unit Noise and distortion eN Equivalent Input Noise Voltage see application note on page 13 F = 100kHz 0.65 0.77(1) nV/√Hz iN Equivalent Input Noise Current (+) see application note on page 13 F = 100kHz 3.3 5.5(1) Spurious Free Dynamic Range The highest harmonic of the output spectrum when injecting a filtered sine wave Vout = 2Vp-p, Gain = +5, RL = 100Ω, F = 10MHz 55 SFDR 1. This parameter is guaranteed by design and evaluated using corner lots. This value is not tested in full production. 4/18 pA/√Hz dBc Electrical Characteristics Figure 1. TSH300 Frequency response G=+5, SO8 Figure 2. 20 25 15 20 Gain (dB) Gain (dB) 10 5 0 Vcc=+5V SO8 Gain=+5 (Rfb=200Ω /Rg=50Ω ) Vin=64mVp-p Load=100Ω -5 100k 1M 10M 15 10 5 100M Vcc=+5V SO8 Gain=+7.8 (Rfb=680Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 0 100k 1G Frequency response G=+7.8, SO8 1M Frequency (Hz) Frequency response G=+10.2, SO8 Figure 4. 25 30 20 25 15 20 Gain (dB) Gain (dB) Figure 3. 10 5 Vcc=+5V SO8 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 0 100k 1M 10M 10 100M 1M 15 10 10 Gain (dB) Gain (dB) Figure 6. 15 5 Vcc=+5V SO8 Gain= -5 (Rfb=270Ω //1pF, Rg=43Ω ) Vin=64mVp-p Load=100Ω 10M Frequency (Hz) 5/18 10M 1G 100M 1G Frequency (Hz) Frequency response G=-5, SO8 1M 100M Vcc=+5V SO8 Gain=+19.9 (Rfb=510Ω /Rg=27Ω ) Vin=64mVp-p Load=100Ω 5 100k 1G 20 -5 100k 1G 15 20 0 100M Frequency response G=+19.9, SO8 Frequency (Hz) Figure 5. 10M Frequency (Hz) 5 0 100M 1G Frequency response G=-7.8, SO8 -5 100k Vcc=+5V SO8 Gain= -7.8 (Rfb=390Ω //1pF, Rg=43Ω ) Vin=64mVp-p Load=100Ω 1M 10M Frequency (Hz) Electrical Characteristics Frequency response G=-10.2, SO8 Figure 8. 30 30 25 25 20 20 Gain (dB) Gain (dB) Figure 7. TSH300 15 Vcc=+5V SO8 Gain= -10.2 (Rfb=510Ω//1pF, Rg=43Ω) Vin=64mVp-p Load=100Ω 10 5 100k 1M 10M 100M 15 10 5 100k 1G Frequency response G=-19.9, SO8 Vcc=+5V SO8 Gain= -20 (Rfb=1k Ω //1pF, Rg=47Ω ) Vin=64mVp-p Load=100Ω 1M Frequency (Hz) Frequency response G=+5, SOT23-5L 20 20 15 15 10 10 5 0 -5 100k Vcc=+5V SOT23-5 Gain=+5 (Rfb=200Ω/Rg=50Ω) Vin=64mVp-p Load=100Ω 1M 10M 0 100M -5 100k 1G 1M 20 25 Gain (dB) Gain (dB) 30 15 10 Vcc=+5V SOT23-5 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 10M Frequency (Hz) 6/18 10M 1G 100M 1G Figure 12. Frequency response G=+19.9, SOT23-5L 25 1M 100M Vcc=+5V SOT23-5 Gain=+7.8 (Rfb=680Ω /Rg=100Ω) Vin=64mVp-p Load=100Ω Frequency (Hz) Figure 11. Frequency response G=+10.1, SOT23-5L 0 100k 1G 5 Frequency (Hz) 5 100M Figure 10. Frequency response G=+7.8, SOT23-5L Gain (dB) Gain (dB) Figure 9. 10M Frequency (Hz) 20 15 10 100M 1G 5 100k Vcc=+5V SOT23-5 Gain=+19.9 (Rfb=510Ω/Rg=27Ω) Vin=64mVp-p Load=100Ω 1M 10M Frequency (Hz) Electrical Characteristics TSH300 Figure 14. Gain flatness, G=+7.8, SO8 14,2 18,0 14,0 17,8 Gain (dB) Gain (dB) Figure 13. Gain flatness, G=+5, SO8 13,8 13,6 13,4 13,2 100k Vcc=+5V SO8 Gain=+5 (Rfb=200Ω /Rg=50Ω ) Vin=64mVp-p Load=100Ω 1M 10M 17,6 17,4 17,2 100M 17,0 10k 1G Vcc=+5V SO8 Gain=+7.8 (Rfb=680Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 20,4 26,2 20,2 26,0 20,0 19,6 10k 1M 100M 25,8 25,6 Vcc=+5V SO8 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 10M Figure 16. Gain flatness, G=+19.9, SO8 Gain (dB) Gain (dB) Figure 15. Gain flatness, G=+10.2, SO8 19,8 1M Frequency (Hz) Frequency (Hz) 25,4 10M 10k 100M Vcc=+5V SO8 Gain=+19.9 (Rfb=510Ω /Rg=27Ω ) Vin=64mVp-p Load=100Ω 100k 1M 10M 100M Frequency (Hz) Frequency (Hz) Figure 17. Gain flatness, G=+5, SOT23-5L Figure 18. Gain flatness, G=+7.8, SOT23-5L 18,0 14,2 17,8 Gain (dB) Gain (dB) 14,0 13,8 13,6 13,4 100k Vcc=+5V SOT23-5 Gain=+5 (Rfb=200Ω /Rg=50Ω ) Vin=64mVp-p Load=100Ω 1M 10M Frequency (Hz) 7/18 17,6 17,4 17,2 100M 1G 17,0 10k Vcc=+5V SOT23-5 Gain=+7.8 (Rfb=680Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 100k 1M Frequency (Hz) 10M 100M Electrical Characteristics TSH300 Figure 19. Gain flatness, G=+10.1, SOT23-5L Figure 20. Gain flatness, G=+19.9, SOT23-5L 20,4 26,2 26,0 Gain (dB) Gain (dB) 20,2 20,0 19,8 19,6 Vcc=+5V SOT23-5 Gain=+10.1 (Rfb=910Ω /Rg=100Ω ) Vin=64mVp-p Load=100Ω 10k 100k 1M 25,8 25,6 25,4 10M 100M Vcc=+5V SOT23-5 Gain=+19.9 (Rfb=510Ω /Rg=27Ω ) Vin=64mVp-p Load=100Ω 10k 100k Frequency (Hz) Figure 21. Input voltage noise 3,5 3,0 0,7 2,5 2,0 0,5 0,4 0,3 1,0 0,2 0,5 0,1 10k 100k 1M 10M Typ. 0,6 1,5 1k Max. 0,8 en (nV/VHz) en (nV/VHz) 0,9 Gain=26dB Rg=27Ω Rfb=510Ω non-inverting input in short-circuit Vcc=+5V 4,0 0,0 100 Gain=26dB Rg=27Ω Rfb=510Ω non-inverting input in short-circuit Vcc=+5V 1k Figure 23. Input current noise 100k 1M 10M Figure 24. Input current noise (corner lot) 8 30 28 Gain=26dB Rg=27Ω Rfb=510Ω 1000Ω to GND on non-inverting input Vcc=+5V 26 24 22 20 7 6 18 in (pA/VHz) in (pA/VHz) 10k Frequency (Hz) Frequency (Hz) 16 14 12 10 8 Typ. 4 3 2 4 1 2 1k 10k 100k Frequency (Hz) 1M 10M Max. 5 6 8/18 100M 1,0 4,5 0 100 10M Figure 22. Input voltage noise (corner lot) 5,0 0,0 100 1M Frequency (Hz) 0 100 Gain=26dB Rg=27Ω Rfb=510 Ω 1000Ω to GND on non-inverting input Vcc=+5V 1k 10k 100k Frequency (Hz) 1M 10M Electrical Characteristics TSH300 Figure 26. Distortion vs. Vout, SOT23-5L -20 -20 -25 -25 -30 -30 -35 -35 -40 -40 -45 -45 HD2 & HD3 (dBc) HD2 & HD3 (dBc) Figure 25. Distortion vs. Vout, SO8 -50 HD2 -55 -60 -65 -70 HD3 -75 Vcc=+5V Gain=+5, Rfb=200 Ω S08 F=10MHz Load=100Ω -80 -85 -90 -95 -50 -55 HD3 -60 -65 -70 -75 Vcc=+5V Gain=+5, Rfb=200Ω SOT23-5 F=10MHz Load=100 Ω HD2 -80 -85 -90 -95 -100 -100 0 1 2 3 0 4 1 2 3 4 Output Amplitude (Vp-p) Output Amplitude (Vp-p) Figure 27. Slew-rate Figure 28. Reverse isolation vs. frequency 0 -20 1,5 Isolation (dB) Output Response (V) 2,0 1,0 0,5 Vcc=+5V SO8/SOT23-5 Gain=+5 (Rfb=200Ω ) Load=100 Ω 0,0 0 2 4 6 8 10 12 -40 -60 -80 Vcc=+5V Small Signal SO8/SOT23-5 Load=100Ω -100 100k 14 1M Time (ns) 10M 100M 1G Frequency (Hz) Figure 29. Quiescent current vs. Vcc Figure 30. Vout max vs. Vcc 5 15 Icc(+) 4 Icc (mA) 5 Vcc=+5V SO8/SOT23-5 Gain=+5 (Rfb=200Ω ) Input to mid-supply (+2.5V) no load 0 -5 Vout max. (Vp-p) 10 3 2 1 Vcc=+5V SO8/SOT23 Gain=+5 (Rfb=200Ω ) F=10MHz Load=100 Ω 0 -10 -1 Icc(-) -15 0,0 0,5 1,0 1,5 2,0 2,5 Vcc (V) 9/18 3,0 3,5 4,0 4,5 5,0 -2 0 1 2 3 Frequency (Hz) 4 5 Electrical Characteristics TSH300 Figure 31. Vio vs. temperature Figure 32. Ibias vs. temperature 40 1,0 0,9 30 Ib(+) 0,8 20 10 0,6 IBIAS (µA) VIO (mV) 0,7 0,5 0,4 0 -10 0,3 -20 0,2 Ib(-) -30 0,1 Vcc=+5V Vcc=+5V -40 0,0 -40 -20 0 20 40 60 80 100 -40 120 -20 0 20 40 60 80 100 120 80 100 120 80 100 120 Temperature (°C) Temperature (°C) Figure 33. Supply current vs. temperature Figure 34. AVD vs. temperature 20 80 15 78 10 76 5 74 0 72 AVD (dB) ICC (mA) Icc(+) -5 -10 70 68 Icc(-) -15 -20 -25 66 64 Vcc=+5V no Load In+/In- to GND 62 -30 Vcc=+5V 60 -40 -20 0 20 40 60 80 100 120 -40 -20 0 Temperature (°C) 20 40 60 Temperature (°C) Figure 35. Output rails vs. temperature Figure 36. Iout vs. temperature 100 2 1 80 60 VOH 20 Iout (mA) VOH & OL (V) 0 -1 Isource 40 VOL -2 0 -20 -40 -60 Isink -80 -3 -100 -4 -5 -40 -120 Vcc=+5V Load=100Ω -20 -140 0 20 40 Temperature (°C) 10/18 60 80 Vcc=+5V Output: short-circuit -160 -40 -20 0 20 40 60 Temperature (°C) Electrical Characteristics TSH300 Figure 38. Bandwidth vs. temperature 100 70 98 65 96 60 94 55 92 50 Bw (MHz) CMR (dB) Figure 37. CMR vs. temperature 90 88 45 40 86 35 84 30 82 25 Vcc=+5V Vcc=+5V Gain=+20 Load=100Ω 20 80 -40 -20 0 20 40 60 80 100 -40 120 -20 0 20 40 60 80 100 120 Temperature (°C) Temperature (°C) Figure 39. Slew-rate vs. temperature Figure 40. Isink 280 90 80 70 60 SR+ 240 Isink (mA) Slew Rate (V/µs) 260 SR220 50 +2.5V 40 -1V 30 200 -20 V - 2.5V RG Amplifier in open loop without load 10 180 -40 Isink _ 20 Vcc=+5V Gain=+20 Load=100 Ω VOL without load + 0 20 40 60 80 100 0 -2,0 120 -1,5 -1,0 Temperature (°C) -0,5 0,0 1,5 2,0 Vout (V) Figure 41. SVR vs. temperature Figure 42. Isource 90 0 85 -10 +2.5V -20 Isource (mA) SVR (dB) 80 75 70 65 60 without load +1V Isource _ V - 2.5V RG Amplifier in open loop without load -40 -50 -60 -70 55 -80 Vcc=+5V 50 -40 -20 0 20 40 60 Temperature (°C) 11/18 -30 V OH + 80 100 120 -90 0,0 0,5 1,0 Vout (V) Power Supply Considerations 3 TSH300 Power Supply Considerations Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than 1µF is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF can be added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. Figure 43. Circuit for power supply bypassing +VCC 10microF + 10nF + - 10nF 10microF + -VCC 12/18 Evaluation Boards 4 TSH300 Evaluation Boards An evaluation board kit optimized for high-speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual: ● SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5L package. ● SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package. ● SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package. ● SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and single supply. ● SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations. Board material description: ● 2 layers ● FR4 (ε r=4.6) ● epoxy 1.6mm ● copper thickness: 35µm Figure 44. Evaluation kit for high-speed op-amps 13/18 Noise Measurements 5 TSH300 Noise Measurements The noise model is shown in Figure 45, where: ● eN: input voltage noise of the amplifier ● iNn: negative input current noise of the amplifier ● iNp: positive input current noise of the amplifier Figure 45. Noise model + iN+ R3 output HP3577 Input noise: 8nV/√Hz _ N3 iN- eN R2 N2 R1 N1 The thermal noise of a resistance R is: 4kTR ∆ F where ∆F is the specified bandwidth. On a 1Hz bandwidth the thermal noise is reduced to 4kTR where k is the Boltzmann's constant, equal to 1,374.10-23J/°K. T is the temperature (°K). The output noise eNo is calculated using the Superposition Theorem. However eNo is not the simple sum of all noise sources, but rather the square root of the sum of the square of each noise source, as shown in Equation 1: eNo = eNo 14/18 2 2 2 2 2 2 2 V1 + V2 + V3 + V4 + V5 + V6 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R3 × g R2 2 -) + ( ------R1 (Equation 1) 2 × 4kTR1 + 4kTR2 + g × 4kTR3 (Equation 2) Noise Measurements TSH300 The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is: eNo = 2 2 ( Measured ) – ( instrumentation ) (Equation 3) The input noise is called the Equivalent Input Noise as it is not directly measured but is evaluated from the measurement of the output divided by the closed loop gain (eNo/g). After simplification of the fourth and the fifth term of Equation 2 we obtain: eNo 2 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R3 × g + g × 4kTR2 + g2 × 4kTR3 (Equation 4) Measurement of the input voltage noise eN If we assume a short-circuit on the non-inverting input (R3=0), from Equation 4 we can derive: eNo = 2 2 2 2 eN × g + iNn × R2 + g × 4kTR2 (Equation 5) In order to easily extract the value of eN, the resistance R2 will be chosen to be as low as possible. In the other hand, the gain must be large enough: R3=0, gain: g=100 Measurement of the negative input current noise iNn To measure the negative input current noise iNn, we set R3=0 and use Equation 5. This time the gain must be lower in order to decrease the thermal noise contribution: R3=0, gain: g=10 Measurement of the positive input current noise iNp To extract iNp from Equation 3, a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise contribution as low as possible against the iNp contribution: R3=100Ω, gain: g=10 15/18 Package Mechanical Data 6 TSH300 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 SOT23-5L package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 16/18 TYP 0.35 0.55 13.7 21.6 Package Mechanical Data 6.2 TSH300 SO8 package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 17/18 Revision History 7 TSH300 Revision History Date Revision Description of Changes Sept. 2005 1 Release of mature product datasheet Sept. 2005 2 Update to ESD information in Table 1 on page 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 18/18