DATA SHEET MOS INTEGRATED CIRCUIT µPD160010 384-/360-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 256 GRAY SCALES, mini-LVDS INTERFACE SUPPORTED) DESCRIPTION The µ PD160010 is a source driver for TFT-LCDS that supports the display of 256 gray scales and employs mini-LVDS interface. Which can realize a full-color display of 16,777,216 colors by output of 256 values γ -corrected by an internal D/A converter and 10-by-2 external power modules. Because the output dynamic range is as large as VSS2 + 0.2 V to VDD2 − 0.2 V, level inversion operation of the LCD’s common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion, this source driver is equipped with a built-in 8-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Because of the incorporation of mini-LVDS interface, the data transfer speed has improved and the amount of wiring on the PCB has been significantly reduced. Remark "mini-LVDS" is the technology with Texas Instruments applied LVDS technology and developed. (LVDS: Low Voltage Differential Signaling) FEATURES • Differential interface: CLK, gray scale data, • CMOS interface: STHR(L), R,/L, STB, SB, POL, Osel, Vsel1, Vsel2, SRC, ORC, RxBIAS1, RxBIAS2 • 384/360 outputs (Osel) • Capable of outputting 256 values by means of 10-by-2 external power modules (20 units) and a D/A converter • Logic power supply voltage (VDD1): 2.7 to 3.6V • Driver power supply voltage (VDD2): 10.0 to 16.5V • High-speed data transfer: fCLK = 190 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.7 V) • Output dynamic range: VSS2 + 0.2 V to VDD2 − 0.2 V • Apply for dot-line inversion, n-line inversion • Output voltage polarity inversion function (POL) ★ ORDERING INFORMATION Part Number Package µPD160010N-xxx TCP (TAB package) µPD160010NL-xxx COF (COF package) Remark The TCP/COF’s external shape is customized. To order the required shape, please contact one of our sales representatives. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. Document No. S16316EJ2V0DS00 (2nd edition) Date Published March 2004 NS CP (K) Printed in Japan The mark ★ shows major revised points. 2003 µPD160010 D3A D3B D2A D2B D1A D1B D0A D0B CLKA CLKB ★ 1. BLOCK DIAGRAM RxBIAS1, RxBIAS2 SB STHR STHL STB VDD1A VSS1A VDD1D VSS1D Logic Controller Osel R,/L CLK D0 to D3 Serial to Parallel Converter STHR STHL Bi-directional shift register Latch VDD2 V0-V19 D/A converter VSS2 POL SRC ORC Voltage follower output MODE Vsel1, Vsel2 -------------------------------S1 S2 S3 S384 Remark /xxx indicates active low signals. 2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER S1 S2 S383 S384 • • • • POL 10 ····· V0 V9 8-bit D/A converter 10 ····· V10 Multiplexer V19 2 Data Sheet S16316EJ2V0DS µPD160010 3. PIN CONFIGURATION (µPD160010NL-xxx:COF, Copper Foil Surface, Face-down) VSS2 VDD2 V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 (VD D 1D ) TEST (VSS 1D ) TEST (VD D 1D ) TEST (VSS 1D ) ORC (VD D 1D ) S TH R STH L PO L S TB (VSS 1D ) SR C (VD D 1D ) TEST TEST TEST VS S1D V SS1A (VS S1A) D 0A D 0B (VS S1A) D 1A D 1B (VS S1A) C LK A C LK B (VS S1A) D 2A D 2B (VS S1A) D 3A D 3B V D D 1A V D D 1D TEST TEST TEST (VD D 1D ) R xBIA S2 (VSS 1D ) R xBIA S1 (VD D 1D ) Vsel1 (VSS 1D ) Vsel2 (VD D 1D ) O sel (VSS 1D ) R ,/L (VD D 1D ) MODE (VSS 1D ) SB (VD D 1D ) V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 VDD2 VSS2 S1 S2 S3 C opper foil surface S 382 S 383 S 384 Remarks 1. This figure does not specify the COF package. 2. (VDD1D) and (VSS1D) is available for supply to logic input terminal. Please don’t use these pins for power supply terminal with current. (VSS1A) must be connected to analog GND on PCB. Data Sheet S16316EJ2V0DS 3 µPD160010 4. PIN FUNCTIONS (1/2) Pin Symbol Pin Name S1 to S384 Driver D0A, D0B Gray scale data I/O Output Input (mini-LVDS) D1A, D1B Description The D/A converted 256-gray-scale analog voltage is output. Display data with gray-scale data (8-bit) and control signal (RST = reset). Refer to Table 4−1. D2A, D2B D3A, D3B CLKA, Shift clock CLKB R,/L Input (mini-LVDS) Shift direction control Input (CMOS) Shift clock. Refer to Table 4−1. The shift direction control pin of shift register. The shift directions of the shift registers are as follows. R,/L = H (right shift): STHR input, S1→S384, STHL output R,/L = L (left shift): STHL input, S384→S1, STHR output STHR Right shift start pulse STHL I/O (CMOS) Left shift start pulse This is the start pulse I/O pin when connected in cascade. Loading of display data starts when a high level is read. For right shift, STHR is input and STHL is output. For left shift, STHL is input and STHR is output. STB Latch Input (CMOS) POL Polarity Input (CMOS) Change the input mode, latched the registered data and transfer to DAC at the rising edge. And supplied voltage to LCD pixel is output at falling edge. Control the polarity of the output. Input of the POL signal is allowed the setup time (t14) with respect to STB’s rising edge. Refer to Table 4−3. SB Bus-line set-back Input (CMOS) Change the data order of mini-LVDS input. Refer to Table 4−1. Input “L” level to this pin. RxBIAS1, mini-LVDS receiver Input RxBIAS2 bias voltage control (CMOS) Osel Number of output pins select pin Input (CMOS) This pin controls the bias current of mini-LVDS receiver circuit. Please refer to the following table. RxBIAS1 RxBIAS2 L L H H L H L H IBIAS I1 (Low power) I2 I3 I4 (High power) This pin selects the number of output pins. Osel = L: 384-output mode Osel = H: 360-output mode Output pins S181 through S204 are invalid in 360-output mode. SRC ORC Slew-rate control Output resistance control MODE Output reset control Input SRC = H: High-slew-rate mode (large current consumption) (CMOS) SRC = L: Low-slew-rate mode (small current consumption) Input ORC = H: Low output resistance mode (CMOS) ORC = L: High output resistance mode Input (CMOS) 4 MODE = H: Output reset MODE = L: No output reset Data Sheet S16316EJ2V0DS µPD160010 (2/2) Pin Symbol Vsel1, Vsel2 Pin Name VDD2 selector I/O Input (CMOS) Description This pin controls the bias current of output amplifier. Logic input to Vsel1 and Vsel2 have a dependence on VDD2 and load condition and so on. Output waveform simulation should be done before decision. V0 to V19 γ -corrected power − supplies Vsel1 Vsel2 L L H H L H L H VDD2 Range (reference) 10.5 V TYP. 12.5 V TYP. 16.0 V TYP. Non-assign Input the γ -corrected power supplies from outside. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 ≥ 0.5 VDD2 0.5 VDD2 ≥ V10 > V11 >V12 > V13 > V14 > V15 > V16 >V17 > V18 > V19 ≥ VSS2 + 0.2 V VDD1D Low-voltage logic − VDD1A Low-voltage analog − VDD2 Driver power supply − VSS1D Low-voltage logic − Driver ground TEST TEST Ground for internal logic circuit. − Ground for internal mini-LVDS receiver circuit. − Ground for internal high voltage circuit. Please wire VSS1D and VSS1A in external circuit boards. ground VSS2 10.0 to 16.5 V Please wire VSS1D and VSS1A in external circuit boards. ground Low-voltage analog 2.7 to 3.6 V VDD1D and VDD1A should be same electric potential. power supply VSS1A 2.7 to 3.6 V VDD1D and VDD1A should be same electric potential. power supply Input Please leave these pins open in normal operation mode. (CMOS) Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0-V19 in that order. Reverse this sequence to shut down. 2. To stabilize the supply voltage, please be sure to insert a 0.47 µ F bypass capacitor between VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 µ F is also advised between the γ -corrected power supply terminals (V0, V1, V2,....., V19) and VSS2. Data Sheet S16316EJ2V0DS 5 µPD160010 Table 4−1. Function (Bus-line Set-Back) Pin Name SB = L D0A D0(+) D0B D0(−) D1A D1(+) D1B D1(−) CLKA CLK(+) CLKB CLK(−) D2A D2(+) D2B D2(−) D3A D3(+) D3B D3(−) Remark Suffix "+" indicates positive polarity and "−" indicates negative polarity at each differential signal input pair. Table 4−2. Function (R,/L and STHR(L)) R,/L STHR STHL Shift Direction H (Right shift) IN OUT S1 → S384 L (Left shift) OUT IN S384 → S1 Table 4−3. Function (POL and γ -corrected power supplies) 6 POL Odd Numbered Output H V10-V19 V0-V9 L V0-V9 V10-V19 Data Sheet S16316EJ2V0DS Even Numbered Output µPD160010 5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE µ PD160010 incorporates a 8-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. Figure 5−1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2, VSS2 and common electrode potential VCOM, and γ -corrected voltages V0-V19 and the input data. Be sure to maintain the voltage relationships of below. VDD2 – 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 ≥ 0.5 VDD2 0.5 VDD2 ≥ V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 > V18 > V19 ≥ VSS2 + 0.2 V Figures 5−2 shows γ -corrected power supply and ladder resistors ratio and figure 5−3 shows the relationship between the input data and the output data. Figure 5−1. Relationship between Input Data and γ -corrected Power Supplies VDD2 0.2 V V0 1 V1 14 V2 48 V3 64 V4 64 V5 32 17 V6 V7 14 V8 1 V9 Split interval 0.5 VDD2 V10 1 V11 14 V12 V13 17 32 V14 64 V15 64 V16 48 V17 14 V18 1 V19 0.2 V VSS2 00 01 0F 3F 7F Input data (HEX.) Data Sheet S16316EJ2V0DS BF DF F0 FE FF 7 µPD160010 Figure 5−2. γ -corrected Power Supply and Ladder Resistors Ratio V0 V10 R1 R10 V1 V11 R2 R11 V2 V12 R3 R12 V3 V13 R4 R13 V4 V14 R5 R14 V5 V15 R6 R15 V6 V16 R7 R16 V7 V17 R8 R17 V8 V18 R9 R18 V9 V19 Positive Polarity R1, R18: r0 R2, R17: r1 to r14 R3, R16: r15 to r62 R4, R15: r63 to r126 R5, R14: r127 to r190 R6, R13: r191 to r222 R7, R12: r223 to r239 R8, R11: r240 to r253 R9, R10: r254 Rn 8 Ratio R1, R18 173 R2, R17 1475 R3, R16 2419 R4, R15 2083 R5, R14 1940 R6, R13 1219 R7, R12 794 R8, R13 1373 R9, R10 525 Negative Polarity rn r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60 r61 r62 r63 Ratio 173 155 142 131 122 114 107 102 97 93 89 85 82 79 77 74 72 70 69 67 65 64 62 61 60 59 58 57 56 55 54 53 52 51 51 50 49 49 48 47 47 46 46 45 45 44 44 43 43 43 42 42 41 41 41 40 40 40 39 39 39 38 38 38 rn r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75 r76 r77 r78 r79 r80 r81 r82 r83 r84 r85 r86 r87 r88 r89 r90 r91 r92 r93 r94 r95 r96 r97 r98 r99 r100 r101 r102 r103 r104 r105 r106 r107 r108 r109 r110 r111 r112 r113 r114 r115 r116 r117 r118 r119 r120 r121 r122 r123 r124 r125 r126 r127 Data Sheet S16316EJ2V0DS Ratio 38 37 37 37 37 36 36 36 36 35 35 35 35 35 34 34 34 34 34 34 33 33 33 33 33 33 33 32 32 32 32 32 32 32 32 31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 29 29 rn r128 r129 r130 r131 r132 r133 r134 r135 r136 r137 r138 r139 r140 r141 r142 r143 r144 r145 r146 r147 r148 r149 r150 r151 r152 r153 r154 r155 r156 r157 r158 r159 r160 r161 r162 r163 r164 r165 r166 r167 r168 r169 r170 r171 r172 r173 r174 r175 r176 r177 r178 r179 r180 r181 r182 r183 r184 r185 r186 r187 r188 r189 r190 r191 Ratio 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 32 32 32 32 32 32 32 33 33 33 33 33 33 34 34 rn r192 r193 r194 r195 r196 r197 r198 r199 r200 r201 r202 r203 r204 r205 r206 r207 r208 r209 r210 r211 r212 r213 r214 r215 r216 r217 r218 r219 r220 r221 r222 r223 r224 r225 r226 r227 r228 r229 r230 r231 r232 r233 r234 r235 r236 r237 r238 r239 r240 r241 r242 r243 r244 r245 r246 r247 r248 r249 r250 r251 r252 r253 r254 Ratio 34 34 35 35 35 35 35 36 36 36 37 37 37 37 38 38 38 39 39 39 40 40 40 41 41 41 42 42 42 43 43 43 44 44 44 45 45 46 46 46 47 47 48 48 49 50 50 52 53 55 57 59 62 66 71 78 86 98 114 138 178 258 525 µPD160010 Figure 5−3. Relationship between Input Data and Output Voltage (1/2) (Output voltage) VDD2 − 0.2 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 ≥ 0.5 VDD2 Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Output Voltage V0' V1' V2' V3' V4' V5' V6' V7' V8' V9' V10' V11' V12' V13' V14' V15' V16' V17' V18' V19' V20' V21' V22' V23' V24' V25' V26' V27' V28' V29' V30' V31' V32' V33' V34' V35' V36' V37' V38' V39' V40' V41' V42' V43' V44' V45' V46' V47' V48' V49' V50' V51' V52' V53' V54' V55' V56' V57' V58' V59' V60' V61' V62' V63' V0 V1 V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2+(V1-V2) X V2 V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3+(V2-V3) X V3 1320 1178 1047 925 811 704 602 505 412 323 238 156 77 / / / / / / / / / / / / / 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 2345 2273 2203 2134 2067 2002 1938 1876 1815 1755 1696 1638 1581 1525 1470 1416 1363 1311 1260 1209 1159 1110 1061 1013 966 919 873 827 782 737 693 649 606 563 520 478 436 395 354 313 273 233 193 154 115 76 38 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 Data 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH V64' V65' V66' V67' V68' V69' V70' V71' V72' V73' V74' V75' V76' V77' V78' V79' V80' V81' V82' V83' V84' V85' V86' V87' V88' V89' V90' V91' V92' V93' V94' V95' V96' V97' V98' V99' V100' V101' V102' V103' V104' V105' V106' V107' V108' V109' V110' V111' V112' V113' V114' V115' V116' V117' V118' V119' V120' V121' V122' V123' V124' V125' V126' V127' Output Voltage V4+(V3-V4) X 2045 V4+(V3-V4) X 2007 V4+(V3-V4) X 1970 V4+(V3-V4) X 1933 V4+(V3-V4) X 1896 V4+(V3-V4) X 1859 V4+(V3-V4) X 1823 V4+(V3-V4) X 1787 V4+(V3-V4) X 1751 V4+(V3-V4) X 1715 V4+(V3-V4) X 1680 V4+(V3-V4) X 1645 V4+(V3-V4) X 1610 V4+(V3-V4) X 1575 V4+(V3-V4) X 1540 V4+(V3-V4) X 1506 V4+(V3-V4) X 1472 V4+(V3-V4) X 1438 V4+(V3-V4) X 1404 V4+(V3-V4) X 1370 V4+(V3-V4) X 1336 V4+(V3-V4) X 1303 V4+(V3-V4) X 1270 V4+(V3-V4) X 1237 V4+(V3-V4) X 1204 V4+(V3-V4) X 1171 V4+(V3-V4) X 1138 V4+(V3-V4) X 1105 V4+(V3-V4) X 1073 V4+(V3-V4) X 1041 V4+(V3-V4) X 1009 V4+(V3-V4) X 977 V4+(V3-V4) X 945 V4+(V3-V4) X 913 V4+(V3-V4) X 881 V4+(V3-V4) X 849 V4+(V3-V4) X 818 V4+(V3-V4) X 787 V4+(V3-V4) X 756 V4+(V3-V4) X 725 V4+(V3-V4) X 694 V4+(V3-V4) X 663 V4+(V3-V4) X 632 V4+(V3-V4) X 601 V4+(V3-V4) X 570 V4+(V3-V4) X 539 V4+(V3-V4) X 509 V4+(V3-V4) X 479 V4+(V3-V4) X 449 V4+(V3-V4) X 419 V4+(V3-V4) X 389 V4+(V3-V4) X 359 V4+(V3-V4) X 329 V4+(V3-V4) X 299 V4+(V3-V4) X 269 V4+(V3-V4) X 239 V4+(V3-V4) X 209 V4+(V3-V4) X 179 V4+(V3-V4) X 149 V4+(V3-V4) X 119 V4+(V3-V4) X 89 V4+(V3-V4) X 59 V4+(V3-V4) X 29 V4 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 Data 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH BFH V128' V129' V130' V131' V132' V133' V134' V135' V136' V137' V138' V139' V140' V141' V142' V143' V144' V145' V146' V147' V148' V149' V150' V151' V152' V153' V154' V155' V156' V157' V158' V159' V160' V161' V162' V163' V164' V165' V166' V167' V168' V169' V170' V171' V172' V173' V174' V175' V176' V177' V178' V179' V180' V181' V182' V183' V184' V185' V186' V187' V188' V189' V190' V191' Data Sheet S16316EJ2V0DS Output Voltage V5+(V4-V5) X 1911 V5+(V4-V5) X 1882 V5+(V4-V5) X 1853 V5+(V4-V5) X 1824 V5+(V4-V5) X 1795 V5+(V4-V5) X 1766 V5+(V4-V5) X 1737 V5+(V4-V5) X 1708 V5+(V4-V5) X 1679 V5+(V4-V5) X 1650 V5+(V4-V5) X 1621 V5+(V4-V5) X 1592 V5+(V4-V5) X 1563 V5+(V4-V5) X 1534 V5+(V4-V5) X 1505 V5+(V4-V5) X 1476 V5+(V4-V5) X 1447 V5+(V4-V5) X 1418 V5+(V4-V5) X 1389 V5+(V4-V5) X 1360 V5+(V4-V5) X 1331 V5+(V4-V5) X 1302 V5+(V4-V5) X 1273 V5+(V4-V5) X 1244 V5+(V4-V5) X 1215 V5+(V4-V5) X 1185 V5+(V4-V5) X 1155 V5+(V4-V5) X 1125 V5+(V4-V5) X 1095 V5+(V4-V5) X 1065 V5+(V4-V5) X 1035 V5+(V4-V5) X 1005 V5+(V4-V5) X 975 V5+(V4-V5) X 945 V5+(V4-V5) X 915 V5+(V4-V5) X 885 V5+(V4-V5) X 855 V5+(V4-V5) X 825 V5+(V4-V5) X 795 V5+(V4-V5) X 765 V5+(V4-V5) X 735 V5+(V4-V5) X 704 V5+(V4-V5) X 673 V5+(V4-V5) X 642 V5+(V4-V5) X 611 V5+(V4-V5) X 580 V5+(V4-V5) X 549 V5+(V4-V5) X 518 V5+(V4-V5) X 487 V5+(V4-V5) X 456 V5+(V4-V5) X 424 V5+(V4-V5) X 392 V5+(V4-V5) X 360 V5+(V4-V5) X 328 V5+(V4-V5) X 296 V5+(V4-V5) X 264 V5+(V4-V5) X 232 V5+(V4-V5) X 199 V5+(V4-V5) X 166 V5+(V4-V5) X 133 V5+(V4-V5) X 100 V5+(V4-V5) X 67 V5+(V4-V5) X 34 V5 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 Data C0H C1H C2H C3H C4H C5H C6H C7H C8H C9H CAH CBH CCH CDH CEH CFH D0H D1H D2H D3H D4H D5H D6H D7H D8H D9H DAH DBH DCH DDH DEH DFH E0H E1H E2H E3H E4H E5H E6H E7H E8H E9H EAH EBH ECH EDH EEH EFH F0H F1H F2H F3H F4H F5H F6H F7H F8H F9H FAH FBH FCH FDH FEH FFH V192' V193' V194' V195' V196' V197' V198' V199' V200' V201' V202' V203' V204' V205' V206' V207' V208' V209' V210' V211' V212' V213' V214' V215' V216' V217' V218' V219' V220' V221' V222' V223' V224' V225' V226' V227' V228' V229' V230' V231' V232' V233' V234' V235' V236' V237' V238' V239' V240' V241' V242' V243' V244' V245' V246' V247' V248' V249' V250' V251' V252' V253' V254' V255' Output Voltage V6+(V5-V6) X 1185 V6+(V5-V6) X 1151 V6+(V5-V6) X 1117 V6+(V5-V6) X 1082 V6+(V5-V6) X 1047 V6+(V5-V6) X 1012 V6+(V5-V6) X 977 V6+(V5-V6) X 942 V6+(V5-V6) X 906 V6+(V5-V6) X 870 V6+(V5-V6) X 834 V6+(V5-V6) X 797 V6+(V5-V6) X 760 V6+(V5-V6) X 723 V6+(V5-V6) X 686 V6+(V5-V6) X 648 V6+(V5-V6) X 610 V6+(V5-V6) X 572 V6+(V5-V6) X 533 V6+(V5-V6) X 494 V6+(V5-V6) X 455 V6+(V5-V6) X 415 V6+(V5-V6) X 375 V6+(V5-V6) X 335 V6+(V5-V6) X 294 V6+(V5-V6) X 253 V6+(V5-V6) X 212 V6+(V5-V6) X 170 V6+(V5-V6) X 128 V6+(V5-V6) X 86 V6+(V5-V6) X 43 V6 V7+(V6-V7) X 751 V7+(V6-V7) X 707 V7+(V6-V7) X 663 V7+(V6-V7) X 619 V7+(V6-V7) X 574 V7+(V6-V7) X 529 V7+(V6-V7) X 483 V7+(V6-V7) X 437 V7+(V6-V7) X 391 V7+(V6-V7) X 344 V7+(V6-V7) X 297 V7+(V6-V7) X 249 V7+(V6-V7) X 201 V7+(V6-V7) X 152 V7+(V6-V7) X 102 V7+(V6-V7) X 52 V7 V8+(V7-V8) X 1320 V8+(V7-V8) X 1265 V8+(V7-V8) X 1208 V8+(V7-V8) X 1149 V8+(V7-V8) X 1087 V8+(V7-V8) X 1021 V8+(V7-V8) X 950 V8+(V7-V8) X 872 V8+(V7-V8) X 786 V8+(V7-V8) X 688 V8+(V7-V8) X 574 V8+(V7-V8) X 436 V8+(V7-V8) X 258 V8 V9 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 / / / / / / / / / / / / / / / / 794 794 794 794 794 794 794 794 794 794 794 794 794 794 794 794 / / / / / / / / / / / / / 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 9 µPD160010 Figure 5−3. Relationship between Input Data and Output Voltage (2/2) (Output voltage) 0.5 VDD2 ≥ V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 > V18 > V19 ≥ VSS2 + 0.2 V Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Output Voltage V0'' V1'' V2'' V3'' V4'' V5'' V6'' V7'' V8'' V9'' V10'' V11'' V12'' V13'' V14'' V15'' V16'' V17'' V18'' V19'' V20'' V21'' V22'' V23'' V24'' V25'' V26'' V27'' V28'' V29'' V30'' V31'' V32'' V33'' V34'' V35'' V36'' V37'' V38'' V39'' V40'' V41'' V42'' V43'' V44'' V45'' V46'' V47'' V48'' V49'' V50'' V51'' V52'' V53'' V54'' V55'' V56'' V57'' V58'' V59'' V60'' V61'' V62'' V63'' 10 V19 V18 V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V18+(V17-V18) X V17 V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V17+(V16-V17) X V16 155 297 428 550 664 771 873 970 1063 1152 1237 1319 1398 / / / / / / / / / / / / / 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 1475 74 146 216 285 352 417 481 543 604 664 723 781 838 894 949 1003 1056 1108 1159 1210 1260 1309 1358 1406 1453 1500 1546 1592 1637 1682 1726 1770 1813 1856 1899 1941 1983 2024 2065 2106 2146 2186 2226 2265 2304 2343 2381 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 2419 Data 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH V64'' V65'' V66'' V67'' V68'' V69'' V70'' V71'' V72'' V73'' V74'' V75'' V76'' V77'' V78'' V79'' V80'' V81'' V82'' V83'' V84'' V85'' V86'' V87'' V88'' V89'' V90'' V91'' V92'' V93'' V94'' V95'' V96'' V97'' V98'' V99'' V100'' V101'' V102'' V103'' V104'' V105'' V106'' V107'' V108'' V109'' V110'' V111'' V112'' V113'' V114'' V115'' V116'' V117'' V118'' V119'' V120'' V121'' V122'' V123'' V124'' V125'' V126'' V127'' Output Voltage V16+(V15-V16) X 38 V16+(V15-V16) X 76 V16+(V15-V16) X 113 V16+(V15-V16) X 150 V16+(V15-V16) X 187 V16+(V15-V16) X 224 V16+(V15-V16) X 260 V16+(V15-V16) X 296 V16+(V15-V16) X 332 V16+(V15-V16) X 368 V16+(V15-V16) X 403 V16+(V15-V16) X 438 V16+(V15-V16) X 473 V16+(V15-V16) X 508 V16+(V15-V16) X 543 V16+(V15-V16) X 577 V16+(V15-V16) X 611 V16+(V15-V16) X 645 V16+(V15-V16) X 679 V16+(V15-V16) X 713 V16+(V15-V16) X 747 V16+(V15-V16) X 780 V16+(V15-V16) X 813 V16+(V15-V16) X 846 V16+(V15-V16) X 879 V16+(V15-V16) X 912 V16+(V15-V16) X 945 V16+(V15-V16) X 978 V16+(V15-V16) X 1010 V16+(V15-V16) X 1042 V16+(V15-V16) X 1074 V16+(V15-V16) X 1106 V16+(V15-V16) X 1138 V16+(V15-V16) X 1170 V16+(V15-V16) X 1202 V16+(V15-V16) X 1234 V16+(V15-V16) X 1265 V16+(V15-V16) X 1296 V16+(V15-V16) X 1327 V16+(V15-V16) X 1358 V16+(V15-V16) X 1389 V16+(V15-V16) X 1420 V16+(V15-V16) X 1451 V16+(V15-V16) X 1482 V16+(V15-V16) X 1513 V16+(V15-V16) X 1544 V16+(V15-V16) X 1574 V16+(V15-V16) X 1604 V16+(V15-V16) X 1634 V16+(V15-V16) X 1664 V16+(V15-V16) X 1694 V16+(V15-V16) X 1724 V16+(V15-V16) X 1754 V16+(V15-V16) X 1784 V16+(V15-V16) X 1814 V16+(V15-V16) X 1844 V16+(V15-V16) X 1874 V16+(V15-V16) X 1904 V16+(V15-V16) X 1934 V16+(V15-V16) X 1964 V16+(V15-V16) X 1994 V16+(V15-V16) X 2024 V16+(V15-V16) X 2054 V15 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 2083 Data 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH BFH V128'' V129'' V130'' V131'' V132'' V133'' V134'' V135'' V136'' V137'' V138'' V139'' V140'' V141'' V142'' V143'' V144'' V145'' V146'' V147'' V148'' V149'' V150'' V151'' V152'' V153'' V154'' V155'' V156'' V157'' V158'' V159'' V160'' V161'' V162'' V163'' V164'' V165'' V166'' V167'' V168'' V169'' V170'' V171'' V172'' V173'' V174'' V175'' V176'' V177'' V178'' V179'' V180'' V181'' V182'' V183'' V184'' V185'' V186'' V187'' V188'' V189'' V190'' V191'' Output Voltage V15+(V14-V15) X 29 V15+(V14-V15) X 58 V15+(V14-V15) X 87 V15+(V14-V15) X 116 V15+(V14-V15) X 145 V15+(V14-V15) X 174 V15+(V14-V15) X 203 V15+(V14-V15) X 232 V15+(V14-V15) X 261 V15+(V14-V15) X 290 V15+(V14-V15) X 319 V15+(V14-V15) X 348 V15+(V14-V15) X 377 V15+(V14-V15) X 406 V15+(V14-V15) X 435 V15+(V14-V15) X 464 V15+(V14-V15) X 493 V15+(V14-V15) X 522 V15+(V14-V15) X 551 V15+(V14-V15) X 580 V15+(V14-V15) X 609 V15+(V14-V15) X 638 V15+(V14-V15) X 667 V15+(V14-V15) X 696 V15+(V14-V15) X 725 V15+(V14-V15) X 755 V15+(V14-V15) X 785 V15+(V14-V15) X 815 V15+(V14-V15) X 845 V15+(V14-V15) X 875 V15+(V14-V15) X 905 V15+(V14-V15) X 935 V15+(V14-V15) X 965 V15+(V14-V15) X 995 V15+(V14-V15) X 1025 V15+(V14-V15) X 1055 V15+(V14-V15) X 1085 V15+(V14-V15) X 1115 V15+(V14-V15) X 1145 V15+(V14-V15) X 1175 V15+(V14-V15) X 1205 V15+(V14-V15) X 1236 V15+(V14-V15) X 1267 V15+(V14-V15) X 1298 V15+(V14-V15) X 1329 V15+(V14-V15) X 1360 V15+(V14-V15) X 1391 V15+(V14-V15) X 1422 V15+(V14-V15) X 1453 V15+(V14-V15) X 1484 V15+(V14-V15) X 1516 V15+(V14-V15) X 1548 V15+(V14-V15) X 1580 V15+(V14-V15) X 1612 V15+(V14-V15) X 1644 V15+(V14-V15) X 1676 V15+(V14-V15) X 1708 V15+(V14-V15) X 1741 V15+(V14-V15) X 1774 V15+(V14-V15) X 1807 V15+(V14-V15) X 1840 V15+(V14-V15) X 1873 V15+(V14-V15) X 1906 V14 Data Sheet S16316EJ2V0DS / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 Data C0H V192'' C1H V193'' C2H V194'' C3H V195'' C4H V196'' C5H V197'' C6H V198'' C7H V199'' C8H V200'' C9H V201'' CAH V202'' CBH V203'' CCH V204'' CDH V205'' CEH V206'' CFH V207'' D0H V208'' D1H V209'' D2H V210'' D3H V211'' D4H V212'' D5H V213'' D6H V214'' D7H V215'' D8H V216'' D9H V217'' DAH V218'' DBH V219'' DCH V220'' DDH V221'' DEH V222'' DFH V223'' E0H V224'' E1H V225'' E2H V226'' E3H V227'' E4H V228'' E5H V229'' E6H V230'' E7H V231'' E8H V232'' E9H V233'' EAH V234'' EBH V235'' ECH V236'' EDH V237'' EEH V238'' EFH V239'' F0H V240'' F1H V241'' F2H V242'' F3H V243'' F4H V244'' F5H V245'' F6H V246'' F7H V247'' F8H V248'' F9H V249'' FAH V250'' FBH V251'' FCH V252'' FDH V253'' FEH V254'' FFH V255'' Output Voltage V14+(V13-V14) X 34 V14+(V13-V14) X 68 V14+(V13-V14) X 102 V14+(V13-V14) X 137 V14+(V13-V14) X 172 V14+(V13-V14) X 207 V14+(V13-V14) X 242 V14+(V13-V14) X 277 V14+(V13-V14) X 313 V14+(V13-V14) X 349 V14+(V13-V14) X 385 V14+(V13-V14) X 422 V14+(V13-V14) X 459 V14+(V13-V14) X 496 V14+(V13-V14) X 533 V14+(V13-V14) X 571 V14+(V13-V14) X 609 V14+(V13-V14) X 647 V14+(V13-V14) X 686 V14+(V13-V14) X 725 V14+(V13-V14) X 764 V14+(V13-V14) X 804 V14+(V13-V14) X 844 V14+(V13-V14) X 884 V14+(V13-V14) X 925 V14+(V13-V14) X 966 V14+(V13-V14) X 1007 V14+(V13-V14) X 1049 V14+(V13-V14) X 1091 V14+(V13-V14) X 1133 V14+(V13-V14) X 1176 V13 V13+(V12-V13) X 43 V13+(V12-V13) X 87 V13+(V12-V13) X 131 V13+(V12-V13) X 175 V13+(V12-V13) X 220 V13+(V12-V13) X 265 V13+(V12-V13) X 311 V13+(V12-V13) X 357 V13+(V12-V13) X 403 V13+(V12-V13) X 450 V13+(V12-V13) X 497 V13+(V12-V13) X 545 V13+(V12-V13) X 593 V13+(V12-V13) X 642 V13+(V12-V13) X 692 V13+(V12-V13) X 742 V12 V12+(V11-V12) X 53 V12+(V11-V12) X 108 V12+(V11-V12) X 165 V12+(V11-V12) X 224 V12+(V11-V12) X 286 V12+(V11-V12) X 352 V12+(V11-V12) X 423 V12+(V11-V12) X 501 V12+(V11-V12) X 587 V12+(V11-V12) X 685 V12+(V11-V12) X 799 V12+(V11-V12) X 937 V12+(V11-V12) X 1115 V11 V10 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 1219 / / / / / / / / / / / / / / / / 794 794 794 794 794 794 794 794 794 794 794 794 794 794 794 794 / / / / / / / / / / / / / 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 1373 µPD160010 6. FUNCTION DESCRIPTION 6.1 Input Data Mapping Display data and control data (RST) are input to D0(+/−) to D3(+/−). Data mapping is changed in response to the mode, and the mode is changed by STB. <Data Input Mode> CL K (+) D0(+) D00 D01 D02 D03 D04 D05 D06 D07 D00 D01 D1(+) D10 D11 D12 D13 D14 D15 D16 D17 D10 D11 D2(+) D20 D21 D22 D23 D24 D25 D26 D27 D20 D21 D3(+) D30 D31 D32 D33 D34 D35 D36 D37 D30 D31 Data Input Cycle 6.2 Composition of Display Data MSB Dn7 LSB Dn6 Dn5 Dn4 Dn3 Dn2 Dn1 Dn0 Remark n = 0 to 3 Data Sheet S16316EJ2V0DS 11 µPD160010 6.3 Relation between Display Data and Output Number This relationship is irrespective of R,/L condition. (1) In case of 384 channel output (a) Right shift (R,/L = H) Output Display Data S1 S2 S3 Æ S382 S383 D00 to D07 D10 to D17 D20 to D27 Æ D10 to D17 D20 to D27 S384 S383 S382 Æ S3 S2 D30 to D37 D20 to D27 D10 to D17 Æ D20 to D27 D10 to D17 S384 D30 to D37 (b) Left shift (R,/L = L) Output Display Data S1 D00 to D07 (2) In case of 360 channel output (a) Right shift (R,/L = H) Output Display Data S1 S2 S3 S180 S181 to S204 S205 Æ D30 to D37 NA D00 to D07 Æ S205 S204 to S181 S180 Æ D00 to D07 NA D30 to D37 Æ Æ D00 to D07 D10 to D17 D20 to D27 Æ S382 D10 to D17 S383 S384 D20 to D27 D30 to D37 Remark NA: Non-assign (b) Left shift (R,/L = L) Output Display Data S384 S383 S382 Æ D30 to D37 D20 to D27 D10 to D17 Æ S3 D20 to D27 S2 D10 to D17 Remark NA: Non-assign 6.4 Cascade Multiple chips can be used in a cascade connection. • Input STHR(L) pad at lead (head) chip is fixed to H. • Input STHR(L) after secondary chips are connected from output STHR(L) at foregoing chip. • Output STHR(L) of final stage driver IC can support current load up to ±1.0 mA (MAX.) by using pull-up or pull-down resistor. 12 Data Sheet S16316EJ2V0DS S1 D00 to D07 µPD160010 6.5 Taking in the Display Data (1) The lead (head) chip is set to control signal input mode (so called control mode), and the receivers at D0(+/−) and CLK(+/−) of all chips are activated by rising edge of STB. (2) Input the reset (RST) signal as L to D0(+/−). This RST should be kept over 200 ns after rising of STB. (3) RST as H is input to D0(+/−) and H width should be over 50 ns and also over 3 CLK cycles. (4) Input the RST as L to D0(+/−) and then changed to the data input mode function. By the way, input STB again when a second RST is necessary. (5) Data sampling starts at the rising edge of CLK after reading of "RST = L". (6) At the same time data sampling starts, internal counter starts counting the data cycle for STHR(L) signal generation. (7) After data sampling is finished, the receivers turn OFF. (8) After the receivers turn OFF, keep the timing for more than 5 CLK cycles until STB is applied. (9) Figure 6−1 shows the rough timing chart from application of STB to the start of data sampling. Figure 6−1 Timing from Start to Sampling (reference) Read the Reset (RST) Read the RST = L CL K 1 CLK(+) D0(+) RST Data1 Data2 Data1 Data2 Over than 50 ns & 3 CLK cycle D1(+) to D3(+) 200 ns Start the data sampling STB STHR(L) Control signal input mode Data Sheet S16316EJ2V0DS Data input mode 13 µPD160010 7. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V) Parameter Symbol Ratings Unit V Logic power supply voltage VDD1 −0.5 to +4.0 Driver power supply voltage VDD2 −0.5 to +18.0 V Logic input voltage VI1 −0.5 to VDD1 + 0.5 V Logic output voltage VO1 −0.5 to VDD1 + 0.5 V Logic output current IO ± 1.0 mA Driver input voltage VI2 −0.5 to VDD2 + 0.5 V Driver output voltage VO2 −0.5 to VDD2 + 0.5 V Operating ambient temperature TA −10 to +90 °C Storage temperature Tstg −55 to +125 °C Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range (TA = −10 to +90 °C, VSS1 = VSS2 = 0 V) Parameter Symbol Logic power supply voltage VDD1 Driver power supply voltage VDD2 CMOS high-level input voltage VIH CMOS low-level input voltage VIL mini-LVDS input voltage VI Condition MIN. TYP. MAX. Unit 2.7 3.0 3.6 V 10.0 15.4 16.5 V 0.7 VDD1 VDD1 V 0 0.3 VDD1 V 0.3 + (VID/2) (VDD1−1.2) − V STHR(L), R,/L, STB, SB, POL, Osel, RxBIAS1, RxBIAS2, SRC, ORC, Vsel1, Vsel2 VDD1 =3.0 V, VID = 200 mV (VID/2) (Center) mini-LVDS differential voltage range VID VDD1 = 3.0 V, VI = 1.7 V 200 600 mV 0.5 VDD2 VDD2 − 0.2 V 0.2 0.5 VDD2 V 0.2 VDD2 − 0.2 V 190 MHz (Amplitude: peak to peak) γ - corrected voltage V0-V9 V10-V19 Driver output voltage VOUT Clock frequency fCLK CLKA, CLKB, TA = 25°C, VDD1 = 3.0 V, VID = 200 mV, VI = 1.7 V 14 Data Sheet S16316EJ2V0DS 159 µPD160010 Electrical Characteristics (TA = 25 °C, VDD1 = 3.0 V, VDD2 = 13.0 V, VSS1 = VSS2 = 0 V) Parameter Input leakage current Symbol IIL Condition MIN. TYP. MAX. Unit ± 1.0 µA 12.0 16.3 kΩ − 334 − 200 µA STHR(L), R,/L, STB, SB, POL, Osel, RxBIAS1, RxBIAS2, SRC, ORC, Vsel1, Vsel2, CLKA, CLKB, D0A, D0B to D3A, D3B γ -corrected resistor value Driver output current Rγ IVOH V0-V9 = V10 -V19 VX = VDD2 − 0.2 V, VOUT = VX − 1.0 V 7.8 Note1 , low output resistance mode (ORC = H) Note1 µA IVOL VX = VSS2 + 0.2 V, VOUT = VX + 1.0 V ∆VP-P 1 Input: 00H to 3FH ± 10 ± 20 mV ∆VP-P 2 Input: 40H to 7FH, 80H to BFH ±7 ± 15 mV ∆VP-P 3 Input: C0H to FFH ±4 ± 10 mV AVO Input: 3FH, 7FH, BFH ± 16 ± 20 mV 7.50 mA No CLK & Input, VDD1 = 3.6 V 4.50 mA Raster pattern, VDD2 = 16.5 V, 30.0 mA 30.0 mA , 360 527 low output resistance mode (ORC = H) Output swing voltage difference deviation Note2 Output swing voltage average deviation Note3 Logic dynamic current consumption IDD11 Checkered, fSTB = 100 kHz (PW = 500 ns), fCLK =159 MHz, VDD1 = 3.6 V Logic static current consumption IDD12 Driver dynamic current consumption IDD21 fSTB = 100 kHz (PW = 500 ns), with no load Driver static current consumption IDD22 Raster pattern, VDD2 = 16.5 V, Input: FFH, with no load ★ Notes1. VX refers to the output voltage of analog output pins S1 to S384. VOUT refers to the voltage applied to analog output pins S1 to S384. 2. Amplitude offset when all of output ports out same data. 3. Deviation of averaged amplitude offset value between chips. Data Sheet S16316EJ2V0DS 15 µPD160010 Switching Characteristics (TA = 25 °C, VDD1 = 3.0 V, VDD2 = 13.0 V, VSS1 = VSS2 = 0 V) Parameter Symbol Condition MIN. 6 TYP. MAX. Unit Start pulse delay time t1 CL = 50 pF 15 22 ns Driver output delay time t2 RL = 7 kΩ, CL = 65 pF 2.1 2.5 µs t3 Refer to <Test Condition > 3.9 5.0 µs 1.3 2.5 µs t4 3.4 5.0 µs CMOS interface, STHR(L) 10 15 pF mini-LVDS interface, 5 10 pF t5 Input capacitance CI1 CI2 Except STHR(L), V0-V19 <Test Condition> Measurement point RL1 RL2 RL3 RL4 RL5 Output RLn = 1.4 kΩ CLn = 13 pF CL1 CL2 CL3 CL4 CL5 GND Timing Requirements (TA = 25 °C, VDD1 = 3.0 V, VSS1 = 0 V, tr = tf = 0.5 ns) Parameter Symbol Condition MIN. TYP. MAX. Unit Clock pulse width t6 5.2 6.2 ns Clock pulse high period t7 2.1 2.6 ns Clock pulse low period t8 2.1 2.6 ns Data setup time t9 1.0 ns Data hold time t10 1.0 ns Start pulse setup time t11 0 ns STB pulse width t13 200 ns POL setup time t14 −5.0 ns RST high period t16 50.0 ns 3 CLK Receiver OFF to STB timing t17 5 CLK STB to RST input time t18 200 ns Remark Unless otherwise specified, VIH and VIL of the CMOS signals are defined as VIH = 0.7 VDD1, VIL = 0.3 VDD1. 16 Data Sheet S16316EJ2V0DS CLK(+) 50% CLK(−) 365/2525 50% 50% 50% 1/1 50% LV0(+) Data Data Data NA NA 80% 20% 20% NA NA NA NA RST = L RST = L RST = H RST = H NA RST = L NA Data Sheet S16316EJ2V0DS STHR(L)/Input@#1 Data Data NA NA NA NA NA NA NA NA NA 50% Data Data Control Signal Input Mode LV0(+/−) to Data LV3(+/−) 2/2 50% 359/359 1/361 5/365 9/369 50% 50% 50% 50% NA NA Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Data Input Mode NA NA Data Data Data Data Fixed "H" t1 t 12 70% "L" 30% STHR(R)/Output@#1 STHR(L)/Input@#2 t 19 t 17 t 18 t 13 70% 30% STB 70% t 14 POL 10/370 t 9 t 10 t 9 t 10 t 16 Last Data Timing LV0(−) t 21 t 20 361/2521 30% t 15 70% 30% 70% 30% t3 t2 8 Bit Accuracy −0.1 VDD2 Hi-Z Output t4 t5 8 Bit Accuracy "H" "H" 70% 30% t 11 "L" 17 µPD160010 +0.1 VDD2 t1 t 12 t 11 Switching Characteristic Waveform (R,/L = H) t8 t7 360/2520 Unless otherwise specified, VIH and VIL of the CMOS signals are defined as VIH = 0.7 VDD1, VIL = 0.3 VDD1. Read the Reset = L Also, unless otherwise specified, VIH and VIL of the mini-LVDS signals are defined as VIH = VIL = VI (Center of VID). Read the Reset = H t6 (Clock and display data numbers are examples when W-SXGA+ is used.) <Mode = "H" (360ch mode)> @W-SXGA+: 1680 x 1050 µPD160010 ★ 8. RECOMMENDED MOUNTING CONDITIONS The following conditions must be met for mounting conditions of the µPD160010. For more details, refer to the [Semiconductor Device Mount Manual] (http://www.necel.com/pkg/en/mount/index.html) Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions. µPD160010N-xxx: TCP (TAB Package) Mounting Condition Thermocompression Mounting Method Soldering Condition Heating tool 300 to 350°C, heating for 2 to 3 sec, pressure 100g (per solder). 2 ACF Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm , time 3 to 5 (Adhesive Conductive sec. Real bonding 165 to 180°C pressure 25 to 45 kg/cm , time 30 to Film) 40 sec. (When using the anisotropy conductive film SUMIZAC1003 of 2 Sumitomo Bakelite, Ltd.) Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time. 18 Data Sheet S16316EJ2V0DS µPD160010 NOTES FOR CMOS DEVICES 1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN). 2 HANDLING OF UNUSED INPUT PINS Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device. 3 PRECAUTION AGAINST ESD A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices. 4 STATUS BEFORE INITIALIZATION Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions. Data Sheet S16316EJ2V0DS 19