NEC UPD75112CW

µPD75112(A), 75116(A)
4-Bit Single Chip-Microcomputer
Data Sheet
Description
The µPD75116(A) is one of the 4-bit single-chip microcomputer 75X series.
The µPD75116(A) is a product with the extended ROM
capacity of the µPD75108(A). In addition of high-speed
operations, it can manipulate data in units of 1, 4 and 8
bits. In particular, the I/O operation of the µPD75116
have been improved by a wide variety of bit control
instructions. The µPD75116 is provided with interface
inputs/outputs with peripheral circuits having different
power voltages, and analog inputs and suitable for
controlling automobile electrical equipment, etc. For
the µPD75116(A), an on-chip pin-compatible one-time
PROM product (µPD75P116) is separately available for
system development evaluation.
Functions are described in detail in the following User’s
Manual, which should be read when carrying out
design work.
µPD751×× Series User’s Manual: IEM-992
Ordering Code
Qualty Grade
Package
µPD75112CW(A)-×××
64-pin plastic shrink DIP
(750 mil)
µPD75112GF(A)-×××-3BE 64-pin plastic QFP
(14 × 20 mm)
64-pin plastic shrink DIP
µPD75116CW(A)-×××
(750 mil)
µPD75116GF(A)-×××-3BE 64-pin plastic QFP
(14 × 20 mm)
Special
Special
Special
Special
Remarks: ××× is a ROM code number.
Please refer to "Quality Grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
Unless there are any particular functional differences,
the µPD75116(A) is described in this document as a
representative product.
Features
• Higher reliability than µPD75116
• Architecture "75X" equivalent to 8-bit microcomputer
• Minimum instruction execution time (high-speed
operation): 0.95 µs (when operated at 4.19 MHz and
5 V)
• Instruction execution variable function: 0.95µs/1.91µs/
15.3 µs (when operated at 4.19 MHz)
• Many input/output ports: 58
• 3-channel on-chip 8-bit timers
• 8-bit on-chip serial interface
• Multi-interruptible vector interrupt function
Applications
Automobile electrical equipment, etc.
The information in this document is subject to change without notice.
The mark
Document No. IC-2811A
(O. D. No. IC-8261A)
Date Published March 1994 P
Printed in Japan
★ shows major revised points.
©NEC Corporation 1990
µPD75112(A), 75116(A)
Defferences between µPD75112(A), 75116(A) and µPD75112, 75116
Product Name
µPD75112(A), 75116(A)
Item
Quality grade
Special
Electrical specifications
µPD75112, 75116
Standard
Absolute maximum ratings
Different high-level output current and low-level output current
DC characteristics
Different low-level output voltage
Direct LED drive
Not possible
Possible
Outline of Functions
Item
2
Description
No. of basic instruction
43
Min. instruction execution time
0.95 µs/1.91 µs/15.3 µs (when operated at 4.19 MHz), switchable at 3 levels
On-chip memory
ROM
12160 × 8 (µPD75112(A)), 16256 × 8 (µPD75116(A))
RAM
512 × 4
General register
4 bits × 8 × 4 banks (memory mapping)
Accumulator
Three accumulated in compliance with controlled date lengths
•1-bit accumulator (CY), 4-bit accumulator (A), 8-bit accumulator (XA)
Input/output port
58 in total
• CMOS input pin
: 10
• CMOS input/output pin (LED direct drive enable) : 32
• Intermediate withstand voltage N-ch open drain : 12
input/output pin (bit-wise pull-up resistor inscorporation possible)
• Comparator input pin (4-bit accuracy)
:
4
Timer/counter
• 8-bit timer/event counter × 2
• 8-bit basic interval timer (applicable to watchdog timer)
Serial interface
• 8-bits
• First LSB/first MSB switchable
• Two transfer modes (transmit and receiver/receive dedicated mode)
Vector interrupt
External : 3,
Test input
External : 2
Standby
• STOP/HALT mode
Operating temperature range
-40 to +85°C
Operating voltage
2.7 to 6.0 V
Others
• On-chip power-on reset circuit (mask option)
• On-chip bit contol memory (bit sequential buffer)
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 20 mm)
Internal : 4
µPD75112(A), 75116(A)
CONTENTS
1.
Pin Configuration (Top View)............................................................................................... 4
2.
Block Diagram......................................................................................................................... 6
3.
Pin Functions.........................................................................................................................
3.1
3.2
3.3
3.4
3.5
7
Port Pins...................................................................................................................................................... 7
Non-Port Pins............................................................................................................................................... 8
Pin Input/Output Circuits............................................................................................................................ 9
Recommended Connection of Unused Pins............................................................................................. 10
Caution Relating to Use of P00/INT4 Pin and RESET Pin........................................................................ 10
4.
Memory Configuration............................................................................................................. 11
5.
Peripheral Hardware Functions.............................................................................................. 14
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
Digital Input/Output Port......................................................................................................................... 14
Clock Generator......................................................................................................................................... 14
Clock Output Circuit.................................................................................................................................. 16
Basic Interval Timer.................................................................................................................................... 16
Timer/Event Counter................................................................................................................................. 17
Serial Interface............................................................................................................................................ 19
Programmable Threshold Port (Analog Input Port)............................................................................... 21
Bit Sequential Buffer................................................................................................................................... 22
Power-On Flag (Mask Option).................................................................................................................... 22
6.
Interrupt Functions.................................................................................................................. 23
7.
Standby Functions ............................................................................................................... 25
8.
Reset Functions..................................................................................................................... 26
9.
Instruction Set....................................................................................................................... 29
10. Mask Option Selection.......................................................................................................... 37
11. Electrical Specifications........................................................................................................ 38
12. Package Information ............................................................................................................ 48
13. Recommended Soldering Conditions ................................................................................. 51
APPENDIX A. Diffeences between µPD751××(A) Series Products
and Related PROM Products.............................................................................. 52
APPENDIX B. Development Tools ............................................................................................ 53
APPENDIX C. Related Documentations ................................................................................... 54
3
µPD75112(A), 75116(A)
1. Pin Configuration (Top View)
64-Pin Plastic Shrink DIP (750 mil)
1
64
V SS
P12/INT2
2
63
P90
P11/INT1
3
62
P91
P10/INT0
4
61
P92
PTH03
5
60
P93
PTH02
6
59
P80
PTH01
7
58
P81
PTH00
8
57
P82
TI0
9
56
P83
TI1
10
55
P70
P23
11
54
P71
P22/PCL
12
53
P72
P21/PTO1
13
52
P73
P20/PTO0
14
51
P60
P03/SI
15
50
P61
49
P62
48
P63
µPD75112CW(A)-×××
µPD75116CW(A)-×××
4
P13/INT3
P02/SO
16
P01/SCK
17
P00/INT4
18
47
X1
P123
19
46
X2
P122
20
45
RESET
P121
21
44
P50
P120
22
43
P51
P133
23
42
P52
P132
24
41
P53
P131
25
40
P40
P130
26
39
P41
P143
27
38
P42
P142
28
37
P43
P141
29
36
P30
P140
30
35
P31
NC
31
34
P32
V DD
32
33
P33
µPD75112(A), 75116(A)
P130
P143
P142
P141
P140
NC
V DD
P33
P32
P31
P30
P43
P42
64-Pin Plastic QFP (14 × 20 mm)
64 63 62 61 60 59 58 57 56 55 54 53 52
2
50
P132
3
49
P133
P52
4
48
P120
P51
5
47
P121
P50
6
46
P122
RESET
7
45
P123
X2
8
44
P00/INT4
X1
9
43
P01/SCK
42
P02/SO
41
P03/SI
40
P20/PTO0
P40
P53
µPD75112GF(A)-×××-3BE
P131
1
µPD75116GF(A)-×××-3BE
51
P41
P63
10
P62
11
P61
12
P60
13
39
P21/PTO1
P73
14
38
P22/PCL
P72
15
37
P23
P71
16
36
T11
P70
17
35
T10
P83
18
34
PTH00
P82
19
33
PTH01
PTH02
PTH03
P10/INT0
P11/INT1
P12/INT2
V SS
P13/INT3
P90
P91
P92
P93
P80
P81
20 21 22 23 24 25 26 27 28 29 30 31 32
Pin Name ★
P00-P03
P10-P13
P20-P23
P30-P33
P40-P43
P50-P53
P60-P63
P70-P73
P80-P83
P90-P93
P120-P123
P130-P133
P140-P143
:
:
:
:
:
:
:
:
:
:
:
:
:
Port0
Port1
Port2
Port3
Port4
Port5
Port6
Port7
Port8
Port9
Port12
Port13
Port14
SCK
SO
SI
PTO0, PTO1
PCL
PTH00-PTH03
INT0, INT1, INT4
INT2, INT3
TI0, TI1
X1, X2
RESET
NC
VDD
VSS
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Serial Clock
Serial Output
Serial Input
Programmable Timer Output
Programmable Clock
Programmable Threshold Input
External Vectored Interrupt Input
External Test Input
Timer Input
Clock Oscillation
Reset
No Connection
Positive Power Supply
Ground
5
INTBT
PROGRAM
CY
ALU
COUNTER (14)
TIMER/EVENT
COUNTER
#0
TI0
PTO0/P20
PORT0
4
P00-P03
PORT1
4
P10-P13
PORT2
4
P20-P23
PORT3
4
P30-P33
PORT4
4
P40-P43
PORT5
4
P50-P53
PORT6
4
P60-P63
PORT7
4
P70-P73
PORT8
4
P80-P83
PORT9
4
P90-P93
PORT12
4
P120-P123
PORT13
4
P130-P133
PORT14
4
P140-P143
SP (8)
BANK
INTT0
TI1
TIMER/EVENT
COUNTER
#1
PTO1/P21
GENERAL REG.
PROGRAM
INTT1
MEMORY
SERIAL
INTERFACE
12160 × 8 BITS
( µPD75112(A))
INTSIO
16256 × 8 BITS
( µPD75116(A))
SI/P03
SI/P02
ROM
DECODE
RAM
AND
SCK/P01
DATA MEMORY
CONTROL
512 × 4 BIT
INT0/P10
INT1/P11
INTERRUPT
INT2/P12
CONTROL
INT3/P13
fX/2 N
INT4/P00
PTH00-PTH03
4
PROGRAMMABLE
THRESHOLD
PORT # 0
CLOCK
OUTPUT
CONTROL
PCL/P22
CLOCK
DIVIDER
CLOCK
GENERATOR
X1
X2
CPU CLOCK
STAND BY
CONTROL
Φ
VDD
VSS
RESET
µPD75112(A), 75116(A)
BASIC
INTERVAL
TIMER
2. Block Diagram
6
BIT SEQ.
BUFFER(16)
µPD75112(A), 75116(A)
3. Pin Functions
3.1 Port Pins
Function
Pin Name
Input/ Output
Dual
Function Pin
P00
Input
INT4
P01
Input/output
SCK
F
P02
Input/output
SO
E
P03
Input
SI
B
P10
Input
INT0
P11
INT1
P12
INT2
P13
INT3
P20
Input/output
PTO0
P21
PTO1
P22
PCL
4-bit input port (PORT0)
8-Bit I/O
At Reset
I/O Circuit
Type *1
×
Input
B
4-bit input port (PORT1)
4-bit input/output port (PORT2)
×
Input
B
Input
E
Input
E
Input
E
Input
E
Input
E
Input
E
Input
E
Input
E
Input*2
M
P23
P30 to P33
Input/output
Programmable 4-bit input/output port (PORT3)
Bit-wise input/output setting enable
P40 to P43
Input/output
4-bit input/output port (PORT4)
P50 to P53
Input/output
4-bit input/output port (PORT5)
P60 to P63
Input/output
Programmable 4-bit input/output port (PORT6)
Bit-wise input/output setting enable
P70 to P73
Input/output
4-bit input/output port (PORT7)
P80 to P83
Input/output
4-bit input/output port (PORT8)
P90 to P93
Input/output
4-bit input/output port (PORT9)
P120 to P123
Input/output
N-ch open drain 4-bit input/ output port (PORT12)
Bit-wise pull-up resistor incorporation enable
(mask option)
2 V withstand for open drain
P130 to P133
Input/output
N-ch open drain 4-bit input/ output port (PORT13)
Bit-wise pull-up resistor incorporation enable
(mask option)
12 V withstand for open drain
Input*2
M
P140 to P143
Input/output
N-ch open drain 4-bit input/output port (PORT14)
Bit-wise pull-up resistor incorporation enable
(mask option)
12 V withstand for open drain
Input*2
M
●
●
●
●
* 1: Circles indicate Schmitt trigger inputs.
2: High impedance for open drain
High level for on-chip pull-up resistors
7
µPD75112(A), 75116(A)
3.2 Non-Port Pins
Input/Output
Dual
Function
Pin
Function
At Reset
I/O
Circuit
Type*1
PTH00 to PTH03
Input
Threshold voltage ariable 4-bit analogy input port.
N
TI0
Input
External event pulse input for the timer/event counter or edge
detect vector interrupt input. 1-bit input enable.
B
TI1
PTO0
Input/output
P20
Timer/event counter output.
Input
E
P21
PTO1
SCK
Input/output
P01
Serial clock input/output.
Input
F
SO
Input/output
P02
Serial data output.
Input
E
SI
Input
P03
Serial data input.
Input
B
INT4
Input
P00
Edge detect vector interrupt input (for detecting both rising and
falling edges).
Input
B
INT0
Input
P10
Edge detect vector interrupt input (detected edge selectable).
Input
B
Edge detect testable input (for rising edge detection).
Input
B
Clock output.
Input
E
P11
INT1
INT2
Input
INT3
PCL
P13
Input/output
P22
Crystal/ceramic connect pin (system clock oscillation).
In case with the external clock, input a signal to X1 and the
antiphase to X2.
X1, X2
RESET
P12
Input
System reset input (low level active).
NC*2
No Connection
VDD
Positive power supply.
VSS
GND potential.
* 1: Circles indicate Schmitt trigger inputs.
2: When the PWB is shared with the µPD75P116, connect the NC pin to VDD directly.
8
B
µPD75112(A), 75116(A)
3.3 Pin Input/Output Circuits
µPD75116(A) pin input/output crcuit are shown in schematic form.
Figure 3-1 Pin Input/Output Circuits
Type A
Type F
VDD
data
IN/OUT
Type D
P-ch
output
disable
IN
Type B
N-ch
Input/output circuit consisting of a Type D push-pull output
and a Type B Schmitt-triggered input.
CMOS specified input buffer
Type B
Type M
IN
VDD
Pull-Up Register (Mask Option)
Schmitt triggered-input with hysteresis characteristics
IN/OUT
Type D
data
N-ch (+6 V
Withstand)
data
VDD
output
disable
P-ch
OUT
output
disable
N-ch
Middle-High Voltage Input Buffer (+6 V Withstand)
Push-pull output which can be set at output high impedance
(with both P-ch an N-ch set to OFF)
Type N
Comparator
Type E
IN
data
+
IN/OUT
Type D
–
output
disable
Type A
VREF (Threshold Voltage)
Input/output circuit consisting of a Type D push-pull output
and a Type A input buffer
9
µPD75112(A), 75116(A)
3.4 Recommended Connection of Unused Pins
Pin
PTH00 to PTH03
Recommended Connecting Method
Connect to VSS or VDD
3.5 Caution Relating to Use of P00/INT4 Pin and RESET Pin
In addition to the functions described in sections 3.1
and 3.2, the P00/INT4 pin and the RESET pin have the
function to set the IC test mode for testing the
µPD75116(A) internal operations.
TI0
TI1
P00
Connect to VSS
P01 to P03
Connect to VSS or VDD
P10 to P13
Connect to VSS
P20 to P23
Input state : Connect to VSS or VDD
Output state : Leave open
P30 to P33
When a voltage larger than VDD is applied to one of
these two pins, the test mode is set. Thus, if noise
exceeding VDD is applied even during normal operations, the test mode is set and normal operations may
be discontinued.
For example, if a cable from the P00/INT4 or RESET pin
is too long, inter-wiring noise may be applied to the pin,
the pin voltage may become larger than VDD, causing
malfunctioning.
P40 to P43
Thus, carry out wiring to minimize inter-wiring noise. If
the noise cannot be suppressed completely, carry out
the following countermeasure against noise using an
externally mounted component.
P50 to P53
P60 to P63
P70 to P73
o Connect a diode with low VF (max 0.3 V)between VDDs
P80 to P83
VDD
P90 to P93
Diode with low VF
P120 to P123
VDD
P130 to P133
P00/INT4, RESET
P140 to P143
RESET
Connect to VDD*1
NC
Leave open or connect to VDD*2
o Connect acapacitor between VDDs
*1: Only when a power-on reset generator is built in by mask
option, connect t VDD.
2: When the PWB is shared with the µPD75P116, connect the
NC pin to VDD directly.
VDD
VDD
P00/INT4, RESET
10
µPD75112(A), 75116(A)
• 0020H to 007FH: Table area to be referred to
by the GETI instruction
• Data Memory
• Data area
512 × 4 bits (000H to 1FFH)
• Peripheral hardware area
128 × 4 bits (F80H to FFFH)
4. Memory Configuration
• Program Memory (ROM)
12160 × 8 bits (0000H to 2F7FH): µPD75112(A)
16256 × 8 bits (0000H to 3F7FH): µPD75116(A)
• 0000H to 0001H: Vector table for writing the
program start address by reset
• 0002H to 000BH: Vector table for writing the
program start address by interrupt
Figure 4-1 Program Memory Map (µPD75112(A))
Address
7
0
6
0000H
MBE RBE Internal Reset Start Address (High-Order 6 Bits)
0002H
MBE RBE INTBT/INT4 Start Address
Internal Reset Start Address (Low-Order 8 Bits)
INTBT/INT4 Start Address
(High-Order 6 Bits)
(Low-Order 8 Bits)
0004H
MBE RBE INT0/INT1 Start Address
0006H
MBE RBE INTSIO Start Address
(High-Order 6 Bits)
INTSIO Start Address
(Low-Order 8 Bits)
INT0/INT1 Start Address
0008H
000AH
(High-Order 6 Bits)
(Low-Order 8 Bits)
MBE RBE INTT0 Start Address
(High-Order 6 Bits)
INTT0 Start Address
(Low-Order 8 Bits)
MBE RBE INTT1 Start Address
(High-Order 6 Bits)
INTT1 Start Address
(Low-Order 8 Bits)
≈
≈
CALL !addr
Instruction
Subroutin
Entry
Address
CALLF
! faddr
Instruction
Entry
Address
BRCB
! caddr
Instruction
Branch
Address
0020H
GETI Instruction Reference Table
007FH
0080H
07FFH
0800H
0FFFH
1000H
1FFFH
2000H
≈
≈
≈
≈
≈
≈
BRCB !caddr Instruction
Branch Address
≈
≈
BRCB !caddr Instruction
Branch Address
BR !addr
Instruction
Branch
Address
BR $addr
Instruction
Relative
Branch Address
(-15 to +16)
Branch Address
Subroutine Entry
Address by GETI
Instruction
2F7FH
Remarks: In all other cases, the program can be
branched by the BR PCDE and BR PCXA
instructions to an address with only the
lower 8 bits of PC changed.
11
µPD75112(A), 75116(A)
Figure 4-2 Program Memory Map (µPD75116(A))
Address
7
0000H
0
6
MBE RBE Internal Reset Start Address (High-Order 6 Bits)
0002H
MBE RBE INTBT/INT4 Start Address
0004H
MBE RBE INT0/INT1 Start Address
Internal Reset Start Address (Low-Order 8 Bits)
INTBT/INT4 Start Address
INT0/INT1 Start Address
0006H
0008H
000AH
(High-Order 6 Bits)
(Low-Order 8 Bits)
(High-Order 6 Bits)
(Low-Order 8 Bits)
MBE RBE INTSIO Start Address
(High-Order 6 Bits)
INTSIO Start Address
(Low-Order 8 Bits)
MBE RBE INTT0 Start Address
(High-Order 6 Bits)
INTT0 Start Address
(High-Order 6 Bits)
MBE RBE INTT1 Start Address
(High-Order 6 Bits)
INTT1 Start Address
(Low-Order 8 Bits)
≈
≈
CALL !addr
Instruction
Subroutin
Entry
Address
CALLF
! faddr
Instruction
Entry
Address
0020H
BRCB
! caddr
Instruction
Branch
Address
GETI Instruction Reference Table
007FH
0080H
07FFH
0800H
0FFFH
1000H
1FFFH
2000H
2FFFH
3000H
≈
≈
≈
≈
≈
≈
BRCB !caddr Instrucion
Branch Address
≈
≈
BRCB !caddr Instrucion
Branch Address
≈
≈
BRCB !caddr Instruction
Branch Address
3F7FH
Remarks: In all other cases, the program can be
branched by the BR PCDE and BR PCXA
instructions to an address with only the lower
8 bits of PC changed.
12
BR !addr
Instruction
Branch
Address
BR $addr
Instruction
Relative
Branch Address
(-15 to –1
+2 to +16)
Branch Address
Subroutine Entry
Address by GETI
Instruction
µPD75112(A), 75116(A)
Figure 4-3 Data Memory Map
Data Memory
Memory Bank
000H
General
Regoster Area
(32 × 4)
01FH
Bank 0
Stack Area
256 × 4
Data Area
Static RAM
(512 × 4)
0FFH
100H
256 × 4
Bank 1
1FFH
Not Incorporated
F80H
Peripheral Hardware
Area
128 × 4
Bank 15
FFFH
13
µPD75112(A), 75116(A)
5. Peripheral Hardware Functions
5.1 Digital Input/Output Port
The digital input/output port has the following tree types.
• CMOS input (PORT0, 1)
: 8
• CMOS input/output (PORT 2 to PORT 9)
: 32
• N-ch open-drain input/output (PORT 12 to PORT 14): 12
Total
52
Table 5-1 Functions of Digital Ports
Port (Code)
Functions
Operations and Features
Remarks
Share the pins with SI, SO, SCK and
INT0 to 4.
PORT0
PORT1
4-bit input
Read or test always enable irrespectively of the operating mode
of dual-function pins.
PORT3
PORT6
4-bit input/
output
Can be set bit-wise to the input or output mode.
PORT2
PORT4
PORT5
PORT7
PORT8
PORT9
PORT12
PORT13
PORT14
4-bit input/
output
(N-ch opendrain, 12 V
withstand
voltage)
Can be set in 4-bit units to the input or output mode.
Ports 4 and 5, 6 and 7, 8 and 9 can form pairs and data can be
input/output in 8-bit units.
Port 2 shares the pin with PTO0,
PTO1 and PCL.
Can be set in 4-bit units the input or output mode.
Ports 12 and 13 can form a pair and data can be input/output in 8bit units.
On-chip pull-up registers can be
specified bit-wise by mask option.
5.2 Clock Generator
The clock generator is a circuit which supplies the CPU
and peripheral hardware with various clocks and controls the CPU operating mode.
The instruction execution time can be changed.
• 0.95 µs/1.91 µs/15.3 µs (at 4.19 MHz operation)
14
µPD75112(A), 75116(A)
Figure 5-1 Block Diagram of Clock Generator ★
• Basic Interval Timer (BT)
• Clock Generator

• Timer/Event Counter
• Serial Interface
• Clock Output Circuit

1/8 to 1/4096
System
Clock
Oscillator
fxx or
Frequency Divider
fx
1/2 1/16
Oscillation Stop
Frequency
Divider
Selector
1/4



PCC
Φ
• CPU
• Clock Output Circuit
PCC0
PCC1
Internal
Bus
4
HALT F/F
PCC2
S
HALT*
PCC3
STOP*
R
PCC2,
PCC3
Crear
STOP F/F
Q
Q
Wait Release Signal from BT
S
RES(Internal Reset) Signal
R
Remarks 1:
2:
3:
4:
5:
6:
Standby Release Signal from
the Interrupt Control Circuit
fXX=crystal/ceramic oscillator frequency.
fX=external clock frequency.
Φ=CPU clock
*indicates instruction execution.
PCC (processor clock control register)
1 clock cycle (tCY) of Φ is 1 michine cycle of the instruction. For tCY, see the AC characteristics in the 11."Electrical Specifications".
15
µPD75112(A), 75116(A)
5.3 Clock Output Circuit
The clock output circuit is a circuit to generate clock
pulses from the P22/PCL pin. It is used to supply the
peripheral LSIs with clock pulses.
•Clock output (PCL):Φ, 524 kHz, 262 kHz (at 4.19 MHz
operation)
The clock output cicuit configuration is shown as the
following.
Figure 5-2 Clock Output Circuit Configuration
From the Clock
Generator
Φ
fxx/2
3
fxx/2
4
Output Buffer
Selector
P22/PCL
PORT2.2
CLOM3
0
P22
Output Latch
CLOM1 CLOM0 CLOM
4
Internal Bus
5.4 Basic Interval Timer
The basic interval timer has the following functions;
• Interval timer operation to generate reference
time interrupts
• Watchdog timer application to detect program
overrun
• Wait time selection and count when the standby
mode is released
• Count content read
16
PMGB Bit 2
Port 2 Input/
Output Mode
Specification Bit
µPD75112(A), 75116(A)
Figure 5-3 Basic Interval Timer Configuration
From
the Clock
Generator
Clear
Clear
fxx/2 5
fxx/2 7
fxx/2
9
3
3
*SET1
BT Interrupt
Request Flag
BT
fxx/2 12
BTM3
Set
Basic Interval Timer
(8-Bit Frequency Divider)
MPX
BTM2
BTM1
IRQBT
Vector
Interrupt
Request
Signal
Wait Release Signal
When the Standby Mode
is Released
BTM0
BTM
8
4
Internal Bus
Remark: * indicates instruction execution.
5.5 Timer/Event Counter
The µPD75116(A) has a two-channel on-chip timer/
event counters.
Channels 0 and 1 of the timer/event counter have the
same configuration and functions. They differ only in
the selectable count pulse (CP) and the function of
supplying clocks to the serial interface.
The timer/event counter has the following functions:
• Programmable interval timer operation
• Output of square wave having any selected frequency to PTOn pin
• Event counter operation
• Use of TIn pin as an external interrupt input pin
• Output of TIn pin input divided by N to PTOn pin
(frequency divider operation)
• Serial shift clock supply to the serial interface
circuit (channel 0 only)
• Count status read function
17
*1
SET 1
TMn
8
8
TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0
TMODn
TOEn
TO
Enable
Flag
Modulo Register (8)
TIn
PORT2.n
P2n
Output
Latch
Match TOUT
F/F
Comparator (8)
8
PGMB Bit 2
Port2
Input/
Output
Mode
*3
To Serial Interface
TOFn
8
Input
Buffer
TOn
TO
Selector
Output
Buffer
P2n/PTOn
Tn
TIn
*2 

From

Clock

Generator


Count Register (8)
Edge
Detector
CP
MPX
INTTn
IRQTn
Set Signal
Clear
TMn1
Timer Operation Start
RES
* 1: SET1: Instruction execution
2: Refer to Figure 5-1
3: Only channel 0 of the time/event counter can output a signal to the serial interface
TMn0
IRQTn
Clear Signal
µPD75112(A), 75116(A)
8
Figure 5-4 Block Diagram of Timer/Event Counter (n=0, 1)
18
Internal Bus
µPD75112(A), 75116(A)
5.6 Serial Interface
The µPD75116(A) incorporates the clock synchronous
8-bit serial interface. The serial interface has the following two modes.
• Operation stop mode
• 3-wire serial I/O mode (MSB/LSB top switching
possible)
Connection with the µPD75116(A) and the 75X series,
78K series and various I/O devices is possible in the 3wire serial I/O mode.
19
8
SIO0
SET1 *
SIO7
SIOM
SIO
P03/SI
SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0
Shift Register (8)
P02/SO
Over Flow
Serial Clock
Counter (3)
INTSIO
 IRQSIO 
 Set Signal
Clear
IRQSIO
Clear Signal
Serial Start
P01/SCK
R
Q
Φ
S
fxx/2
MPX
4
fxx/210
TOF 0
(From Timer Channel 0)
*: SET1: Instruction execution
µPD75112(A), 75116(A)
8
8
Figure 5-5 Block Diagram of Serial Interface
20
Internal Bus
µPD75112(A), 75116(A)
5.7 ProgrammableThreshold Port (Analog Input Port)
The µPD75116(A) is equipped with 4-bit analog input
pins (PTH00 to PTH03) capable of changing the threshold voltage. These pins are configured as shown in
Figure 5-6.
Sixteen threshold voltage (VREF) values (VDD × 0.5
-VDD ×
16
15.5
)
are
available
and
analog
signals
can
be
directly
16
input.
The analog input port can also be used as a digital
7.5
signal input port by selecting VDD × 16 for VREF.
Figure 5-6 Block Diagram of Programmable Threshold Port
Input Buffer
PTH00
+
–
PTH01
Programmable
Threshold
Port
Input
Latch (4)
+
–
PTH02
+
–
PTH03
+
Internal
Bus
–
Operation
Stop
PTH0
VDD
PTHM7
1
R
2
PTHM6
R
PTHM5
R
MPX
VREF
PTHM4
8
PTHM3
PTHM2
1
R
2
4
PTHM1
PTHM0
PTHM
21
µPD75112(A), 75116(A)
5.8 Bit Sequential Buffer ... 16 bit
The bit sequential buffer is a special data memory for
bit control. Since this buffer can easily operate bits by
sequentially changing address and bit specifications, it
can be conveniently be used for bit-wise processing of
data having long bit lengths.
Figure 5-7 Bit Sequential Buffer Format
Address
Bit
FC3H
3
Symbol
L Register
2
1
FC2H
0
3
BSB3
L=F
2
1
FC1H
0
3
BSB2
L=C L=B
2
1
3
BSB1
L=8 L=7
INCS L
Remarks: In pmen. @L addressing, the specified bit moves in
accordance with the L register.
5.9 Power-On Flag (Mask Option)
The power-on flag (PONF) is only set (1) when the
power-on reset circuit is activated and the power-on
reset signal is generated (see Figure 8-1).
PONF is mapped on bit 0 at address FD1H of the data
memory space and is manipulated by a bit manipulation instruction
However, it cannot be set(1) by the SET1 instruction.
2
1
0
BSB0
L=4 L=3
DECS L
22
FC0H
0
L=0
µPD75112(A), 75116(A)
6. Interrupt Functions
There are seven types of interrupt sources for the
µPD75116(A) to allow multi-interruption with priority.
The µPD75116(A) is also provided with two types of
edge detection testable inputs.
The µPD75116 interrupt control circuit has the following functions;
• Hardware controlled vector interrupt function which
enables to control by the interrupt enable flag (IE×××)
and the interrupt master enable flag (IME) whether an
interrupt should be enabled.
• Interrupt start address can be set freely.
• Multiple interrupt function which enables to specify
priority by the interrupt priority select register (IPS).
• Interrupt request flag (IRQ×××) test function (interrupt generation can be checked by the software).
• Standby mode release (the interrupt to be released
can be selected by the interrupt enable flag).
23
2
2
IM1
IM0
INT
BT
INT4
/P00
INT0
/P10
INT1
/P11
INT2
/P12
INT3
/P13
Edge
Detection
Circuit
Edge
Detection
Circuit
Edge
Detection
Circuit
Interrupt Enable Flag (IE × × ×)
IRQBT
(IME)
2
IPS
IST
Decoder
IRQ4
IRQ0
IRQ1
Priority Control Circuit
INTSIO
IRQSIO
INTT0
IRQT0
INTT1
IRQT1
Edge
Detection
Circuit
Edge
Detection
Circuit
4
9
Vector Table
Address
Generator
IRQ2
IRQ3
Interrupt
Request
Flag
Standby Release
Signal
µPD75112(A), 75116(A)
Figure 6-1 Block Diagram of Interrupt Control Circuit
24
Internal Bus
µPD75112(A), 75116(A)
7. Stanby Functions
Two types of standby modes (STOP and HALT modes)
are available for the µPD75116(A) to decrease power
consumption during standby for program.
Table 7-1 Operation Statuses in Standby Mode
STOP Mode
HALT Mode
Set instruction
STOP instruction
HALT instruction
Operation
status
Clock generator
Clock oscillation stop
Only CPU clock Φ stop
Basic interval timer
Operation stop
Operation (IRQBT set at reference time
intervals)
Serial interface
Operation enabled only when external SCK
input and TO0 clock are set for serial clocks
(when timer/event counter 0 is set to external
TI0 input) is selected
Operation enabled when aclock other than
Φ is specified for the serial clock
Timer/event counter
Operation enabled only when TIn pin input is
specified for the count clock
Operation enabled
Clock output circuit
Operation stop
Clock other than CPU clock Φ enabled for
output
CPU
Operation stop
Operation stop
Release signal
Interrupt request signal enabled by interrupt enable flag or RESET input
25
µPD75112(A), 75116(A)
8. Reset Functions
The reset signal (RES) generator is configured as shown
in Figure 8-1.
Figure 8-1 Reset Signal Generator
RESET
Internal Reset Signal (RES)
Mask
Option
Power-On
Reset Circuit
SWB
SWA
Power-On
Flag(PONF)
*:
26
PONF setting (1) by SET1 instruction is not possible.
Bit Control Instruction
Execution *
Internal
Bus
µPD75112(A), 75116(A)
The power-on reset circuit generates the internal reset
signal by rising of supply voltage. This pulse is used in
the three ways according to the specification of mask
option of SWA and SWB shown in Figure 8-1 (refer to
"10. Mask Option Selection").
Reset operations are shown in Figures 8-2 and 8-3.
Figure 8-2 Reset Operation by Power-on Reset
Supply Voltage
Wait *
(Approx. 31.3 ms:4.19 MHz)
0V
Internal Reset
Signal (RES)
HALT Mode
Operating Mode
Internal Reset
Operation
Figure 8-3 Reset Operation by Reset Input
Wait *
(Approx. 31.3 ms:4.19 MHz)
RESET Input
Operation or
Standby Mode
HALT Mode
Operating Mode
Internal Reset
Operation
*:
The wait time does not include a time from the generation
of RES signal to the start of oscillation.
Each hardware status after reset operation is shown in
Table 8-1.
27
µPD75112(A), 75116(A)
Table 8-1 Hardware Statuses after Reset
Hardware
Lower 6 bits of address 0000H of the program memory are set to
PC13 to PC8 and the content of address 0001H is set to PC7 to PC0.
Program counter (PC)
PWS
RESET Input in Standby Mode
RESET Input in Power-On
Reset or Operation
same as left
Hold
Undefined
Skip flag (SK0 to SK2)
0
0
Interrupt status flag (IST0, 1)
0
0
Bank enable flags (MBE, RBE)
Bits 6 and 7 of address 0000H of the program memory are set to
RBE and MBE, respectively.
Carry flag (CY)
same as left
Undefined
Undefined
Hold *1
Undefined
General registers (X, A, H, L, D, E, B, C)
Hold
Undefined
Bank select registers (MBS, RBS)
0, 0
0, 0
Undefined
Undefined
0
0
0
0
FFH
FFH
0
0
0, 0
0, 0
Hold
Undefined
Mode register (SIOM)
0
0
Clock
generator,
clock
output
circuit
Processor clock control
register (PCC)
0
0
Clock output mode
register (CLOM)
0
0
Interrupt
Interrupt request flag (IRQ×××)
Reset (0)
Reset (0)
Interrupt enable flag (IE×××)
0
0
Priority select resister (IPS)
0
0
INT0, 1 mode resisters (IM0, IM1)
0, 0
0, 0
Output buffer
Off
Off
Output latch
Clear (0)
Clear (0)
0
0
Undefined
Undefined
0
0
Hold
1 or undefined *2
0
0
Stack pointer (SP)
Data memory (RAM)
Basic interval timer
Counter (BT)
Mode register (BTM)
Timer/ event
counter
(n = 0, 1)
Counter (Tn)
Modulo register (TMODn)
Mode register (TMn)
TOEn, TOFn
Serial
interface
Digital
port
Shift register (SIO)
Input/output mode registers
(PMGA, PMGB, PMGC)
Analog
port
PTH00 to PTH03 input latches
Mode register (PTHM)
Power-on flag (PONF)
Bit sequential buffers (BSB0 to BSB3)
* 1: Power-on reset ................... 1
RESET input in operation ... Undefined
2: Data at addresses 0F8H to 0FDH of the data memory becomes undefined due to RESET input.
28
µPD75112(A), 75116(A)
9. Instruction Set
Description Method
Identifier
(1) Operand identifier and description method
reg
reg1
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
In the operand column of each instruction, describe the
corresponding operand in accordance with the description method for the operand identifier of the instruction (refer to the "RA75X Assembler Package User's
Manual Language Volume" (EEU-730) for details). If
more than one description method is available, select
one of them. Capital alphabetic letters, plus and minus
signs are key words. Describe them as they are.
rp
rp1
rp2
rp’
rp’1
XA, BC, DE, HL
BC, DE, HL
BC, DE
XA, BC, DE, HL, XA’, BC’, DE’, HL’
BC, DE, HL, XA’, BC’, DE’, HL’
rpa
rpa1
HL, HL+, HL-, DE, DL
DE, DL
n4
n8
4-bit immediate data or label
8-bit immediate data or label
mem
bit
8-bit immediate data or label*
2-bit immediate data or label
fmem
FB0H to FBFH and FF0H to FFFH immediate data
or labels
FC0H to FFFH immediate data or labels
In the case of immediate data, describe appropriate
numeric values or labels.
Symbols of various registers and flags can be described as labels instead of mem, fmem, pmem, bit, etc.
(Refer to the "µPD751×× Series User’s Manual (IEM922)" for details). Labels which can be described are
limited for fmem and pmem.
pmem
addr
µPD75112(A) 0000H to 2F7FH immediate data or
labels
µPD75116(A) 0000H to 3F7FH immediate data or
labels
caddr
12-bit immediate data or label
faddr
11-bit immediate data or label
taddr
20H to 7FH immediate data (bit = 0) or labels
PORTn
IE×××
RBn
MBn
PORT0 to PORT9, PORT12 to PORT14
IEBT, IESIO, IET0, IET1, IE0 to IE4
RB0 to RB3
MB0, MB1, MB15
*: In the case of 8-bit data processing, only even address
can be described for “mem”.
29
µPD75112(A), 75116(A)
(2) Legend in the description of operations
A
B
C
D
E
H
L
X
XA
BC
DE
HL
XA’
BC’
DE’
HL’
PC
SP
CY
PSW
MBE
RBE
PORTn
IME
IPS
IE×××
RBS
MBS
PCC
.
(×× )
××H
30
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
A register; 4-bit accumulator
B register
C register
D register
E register
H register
L register
X register
Register pair (XA); 8-bit accumulator
Register pair (BC)
Register pair (DE)
Register pair (HL)
Extended register pair (XA’)
Extended register pair (BC’)
Extended register pair (DE’)
Extended register pair (HL’)
Program counter
Stack pointer
Carry flag; bit accumulator
Program status word
Memory bank enable flag
Register bank enable flag
Port n (n = 0 to 9, 12 to 14)
Interrupt mask enable flag
Interrupt priority select register
Interrupt enable flag
Register bank select register
Memory bank select register
Processor clock control register
Address and bit division
Content addressed by ××
Hexadecimal data
µPD75112(A), 75116(A)
(3) Description of symbols in the addressing area column
*1
MB=MBE•MBS
(MBS=0, 1, 15)
*2
MB=0
*3
MBE=0 : MB=0 (00H-7FH)
MB=15 (80H-FFH)
MBE=1 : MB=MBS (MBS=0, 1, 15)
*4
MB=15, fmem=FB0H-FBFH,
FF0H=FFFH
*5
MB=15, pmem=FC0H-FFFH
*6
addr=0000H-2F7FH (µPD75112(A))
=0000H-3F7FH (µPD75116(A))
*7
addr=(Current PC) -15 to
(Current PC) +16
*8
caddr=0000H-0FFFH (PC13, PC12=00B
=1000H-1FFFH (PC13, PC12=01B
=2000H-2F7FH (PC13, PC12=10B
=2000H-2FFFH (PC13, PC12=10B
=3000H-3F7FH (PC13, PC12=11B
*9
faddr=0000H-07FFH
*10
taddr=0020H-007FH
Data Memory
Addressing
:
:
:
:
:
µPD75112(A), 116(A)) or
µPD75112(A), 116(A)) or
µPD75112(A)) or
µPD75116(A)) or
µPD75116(A))
Remarks 1: MB indicates an accessible memory bank.
2: In *2, MB = 0 irrespectively of MBE and MBS.
3: In *4 and *5, MB = 15 irrespectively of MBE and
MBS.
4: *6 to *10 indicate addressable areas.
Program Memory
Addressing
One machine cycle is equal to one cycle (=tCY)of CPU
clock. Three values are available for the one machine
cycle by PCC setting.
(4) Description of machine cycle column
S indicates the number of machine cycles required for
the instruction having skip function to execute skip
operation. The value of S varies as follows:
• When no skip ............................................. S = 0
• When 1-byte or 2-byte instruction is skipped
................................................. S = 1
• When 3-byte instruction (BR !addr, CALL !addr
instructions) is skipped ............................. S = 2
Note:
GETI instruction is skipped in one-machine cycle.
31
µPD75112(A), 75116(A)
Instructions
Transfer
Mnemonic
MOV
XCH
Table
Reference
Bit Transfer
32
MOVT
MOV1
No. of Bytes
Machine Cycle
A, #n4
1
1
A←n4
reg1, #n4
2
2
reg1←n4
XA, #n8
2
2
XA←n8
Stack A
HL, #n8
2
2
HL←n8
Stack B
rp2, #n8
2
2
rp2←n8
A, @HL
1
1
A←(HL)
*1
A, @HL+
1
2+S
A←(HL), then L←L+1
*1
L=0
A, @HL-
1
2+S
A←(HL), then L←L-1
*1
L=FH
A, @rpa1
1
1
A←(rpa1)
*2
XA, @HL
2
2
XA←(HL)
*1
@HL, A
1
1
(HL)←A
*1
@HL, XA
2
2
(HL)←XA
*1
A, mem
2
2
A←(mem)
*3
XA, mem
2
2
XA←(mem)
*3
mem, A
2
2
(mem)←A
*3
mem, XA
2
2
(mem)←XA
*3
A, reg
2
2
A←reg
XA, rp'
2
2
XA←rp'
reg1, A
2
2
reg1←A
rp'1 XA
2
2
rp'1←XA
A, @HL
1
1
A↔(HL)
*1
A, @HL+
1
2+S
A↔(HL), then L←L+1
*1
L=0
A, @HL-
1
2+S
A↔(HL), then L←L-1
*1
L=FH
A, @rpa1
1
1
A↔(rpa1)
*2
XA, @HL
2
2
XA↔(HL)
*1
A, mem
2
2
A↔(mem)
*3
XA, mem
2
2
XA↔(mem)
*3
A, reg1
1
1
A↔reg1
XA, rp'
2
2
XA↔rp'
XA, @PCDE
1
3
XA←(PC13-8+DE)ROM
XA, @PCXA
1
3
XA←(PC13-8+XA)ROM
CY, fmem. bit
2
2
CY←(fmem.bit)
*4
CY, pmem. @L
2
2
CY←(pmem7-2+L3-2.bit(L1-0))
*5
CY, @H+mem. bit
2
2
CY←(H+mem3-0.bit)
*1
fmem. bit, CY
2
2
(fmem.bit)←CY
*4
pmem. @L, CY
2
2
(pmem7-2+L3-2.bit(L1-0))←CY
*5
@H+mem. bit, CY
2
2
(H+mem3-0.bit)←CY
*1
Operand
Operation
Addressing Area
Skip Condition
Stack A
µPD75112(A), 75116(A)
Instructions
Mnemonic
Arithmetic
ADDS
A, #n4
1
1+S
A←A+n4
Carry
XA, #n8
2
2+S
XA←XA+n8
Carry
A, @HL
1
1+S
A←A+(HL)
XA, rp'
2
2+S
XA←XA+rp'
Carry
rp'1, XA
2
2+S
rp'1←rp'1+XA
Carry
A, @HL
1
1
A, CY←A+(HL)+CY
XA, rp'
2
2
XA, CY←XA+rp'+CY
rp'1, XA
2
2
rp'1, CY←rp'1+XA+CY
A, @HL
1
1+S
A←A−(HL)
XA, rp'
2
2+S
XA←XA-rp'
borrow
rp'1, XA
2
2+S
rp'1←rp'1-XA
borrow
A, @HL
1
1
A, CY←A-(HL)-CY
XA, rp'
2
2
XA, CY←XA-rp'-CY
rp'1, XA
2
2
rp'1, CY←rp'1-XA-CY
A, #n4
2
2
A←A∧n4
A, @HL
1
1
A←A∧(HL)
XA, rp'
2
2
XA←XA∧rp'
rp'1, XA
2
2
rp'1←rp'1∧XA
A, #n4
2
2
A←A∨n4
A, @HL
1
1
A←A∨(HL)
XA, rp'
2
2
XA←XA∨rp'
rp'1, XA
2
2
rp'1←rp'1∨XA
A, #n4
2
2
A←A∀n4
A, @HL
1
1
A←A∀(HL)
XA, rp'
2
2
XA←XA∀rp'
rp'1, XA
2
2
rp'1←rp'1∀XA
RORC
A
1
1
CY←A 0, A3←CY, An-1←An
NOT
A
2
2
A←A
INCS
reg
1
1+S
reg←reg+1
reg=0
rp1
1
1+S
rp1←rp1+1
rp1=00H
@HL
2
2+S
(HL)←(HL)+1
*1
(HL)=0
mem
2
2+S
(mem)←(mem)+1
*3
(mem)=0
reg
1
1+S
reg←reg-1
reg=FH
rp'
2
2+S
rp'←rp'-1
rp'=FFH
reg, #n4
2
2+S
Skip if reg=n4
reg=n4
@HL, #n4
2
2+S
Skip if (HL)=n4
*1
(HL)=n4
A, @HL
1
1+S
Skip if A=(HL)
*1
A=(HL)
SUBC
AND
OR
XOR
DECS
Compare
Addressing Area
Machine Cycle
SUBS
Increase/
Decrease
Operation
No. of Bytes
ADDC
Accumulator
Operation
Operand
SKE
*1
Skip Condition
Carry
*1
*1
borrow
*1
*1
*1
*1
33
µPD75112(A), 75116(A)
Instructions
Compare
Carry Flag
Operation
34
No. of Bytes
Machine Cycle
XA, @HL
2
2+S
Skip if XA=(HL)
A, reg
2
2+S
Skip if A=reg
A=reg
XA, rp'
2
2+S
Skip if XA=rp'
XA=rp'
SET1
CY
1
1
CY←1
CLR1
CY
1
1
CY←0
SKT
CY
1
1+S
NOT1
CY
1
1
Mnemonic
SKE
Operand
Operation
Skip if CY=1
CY←CY
Addressing Area
*1
Skip Condition
XA=(HL)
CY=1
µPD75112(A), 75116(A)
Instructions
Memory Bit
Manipulation
Mnemonic
SET1
CLR1
SKT
SKF
SKTCLR
AND1
OR1
XOR1
Branch
BR
Operand
No. of Bytes
Operation
Machine Cycle
Addressing Area
Skip Condition
mem. bit
2
2
(mem.bit)←1
*3
fmem. bit
2
2
(fmem.bit)←1
*4
pmem. @L
2
2
(pmem7-2+L3-2.bit(L1-0))←1
*5
@H+mem. bit
2
2
(H+mem3-0.bit)←1
*1
mem. bit
2
2
(mem.bit)←0
*3
fmem. bit
2
2
(fmem.bit)←0
*4
pmem. @L
2
2
(pmem7-2+L3-2.bit(L1-0))←0
*5
@H+mem. bit
2
2
(H+mem3-0.bit)←0
*1
mem. bit
2
2+S
Skip if (mem.bit)=1
*3
(mem.bit)=1
fmem. bit
2
2+S
Skip if (fmem.bit)=1
*4
(fmem.bit)=1
pmem. @L
2
2+S
Skip if (pmem7-2+L3-2.bit(L1-0))=1
*5
(pmem.@L)=1
@H+mem. bit
2
2+S
Skip if (H+mem3-0.bit)=1
*1
(@H+mem.bit)=1
mem. bit
2
2+S
Skip if (mem.bit)=0
*3
(mem.bit)=0
fmem. bit
2
2+S
Skip if (fmem.bit)=0
*4
(fmem.bit)=0
pmem. @L
2
2+S
Skip if (pmem7-2+L3-2.bit(L1-0))=0
*5
(pmem.@L)=0
@H+mem. bit
2
2+S
Skip if (H+mem3-0.bit)=0
*1
(@H+mem.bit)=0
fmem. bit
2
2+S
Skip if (fmem.bit)=1 and clear
*4
(fmem.bit)=1
pmem. @L
2
2+S
Skip if (pmem7-2+L3-2.bit(L1-0))
=1 and clear
*5
(pmem.@L)=1
@H+mem. bit
2
2+S
Skip if (H+mem3-0.bit)=1 and clear
*1
(@H+mem.bit)=1
CY, fmem. bit
2
2
CY ←CY∧(fmem.bit)
*4
CY, pmem. @L
2
2
CY ←CY∧(pmem7-2+L3-2.bit(L1-0))
*5
CY, @H+mem. bit
2
2
CY ←CY∧(H+mem3-0.bit)
*1
CY, fmem. bit
2
2
CY ←CY∨(fmem.bit)
*4
CY, pmem. @L
2
2
CY ←CY∨(pmem7-2+L3-2.bit(L1-0))
*5
CY, @H+mem. bit
2
2
CY ←CY∨(H+mem3-0.bit)
*1
CY, fmem. bit
2
2
CY ←CY∀(fmem.bit)
*4
CY, pmem. @L
2
2
CY ←CY∀(pmem7-2+L3-2.bit(L1-0 ))
*5
CY, @H+mem. bit
2
2
CY ←CY∀(H+mem3-0.bit)
*1
PC13-0 ←addr
(Most appropriate instruction is
selected by assembler from among
BR !addr, BRCB !caddr and BR
$addr)
*6
addr
!addr
3
3
PC13-0 ←addr
*6
$addr
1
2
PC13-0 ←addr
*7
BRCB
!caddr
2
2
PC13-0←PC13, 12+caddr11-0
*8
BR
PCDE
2
3
PC13-0 ←PC13-8+DE
PCXA
2
3
PC13-0 ←PC13-8+XA
35
µPD75112(A), 75116(A)
Instructions
Subroutine
Stack Control
Mnemonic
Addressing Area
3
(SP-4)(SP-1)(SP-2)←PC11-0
(SP-3)←MBE, RBE, PC13, 12
PC13-0←addr, SP←SP-4
*6
CALLF
!faddr
2
2
(SP-4)(SP-1)(SP-2)←PC11-0
(SP-3)←MBE, RBE, PC13, 12
PC13-0←00, faddr, SP←SP-4
*9
RET
1
3
MBE, RBE, PC13, 12←(SP+1)
PC11-0←(SP)(SP+3)(SP+2)
SP←SP+4
RETS
1
3+S
RETI
1
3
PC13, 12←(SP+1)
PC11-0←(SP)(SP+3)(SP+2)
PSW←(SP+4)(SP+5), SP←SP+6
rp
1
1
(SP-1)(SP-2)←rp, SP←SP-2
BS
2
2
(SP-1)←MBS, (SP-2)←RBS, SP←SP-2
rp
1
1
rp←(SP-1)(SP), SP←SP-2
BS
2
2
MBS←(SP+1), RBS←(SP), SP←SP+2
2
2
IME (IPS.3)←1
2
2
IE×××←1
2
2
IME (IPS.3)←0
IE×××
2
2
IE×××←0
A, PORTn
2
2
A←PORTn
XA, PORTn
2
2
XA←PORTn+1, PORTn (n=4, 6, 8, 12)
PORTn, A
2
2
PORTn←4
PORTn, XA
2
2
PORTn+1, PORTn←XA (n=4, 6, 8, 12)
HALT
2
2
Set HALT Mode (PCC.2←1)
STOP
2
2
Set STOP Mode (PCC.3←1)
NOP
1
1
No Operation
RBn
2
2
RBS←n(n=0-3)
MBn
2
2
MBS←n
taddr
1
3
• TBR Instruction
PC13-0←(taddr)4-0+(taddr+1)
EI
DI
IN*1
OUT*1
Special
Operation
3
IE×××
CPU Control
Machine Cycle
!addr
POP
Input/Output
No. of Bytes
CALL
PUSH
Interrupt
Control
Operand
SEL
GETI*2
MBE, RBE, PC13, 12←(SP+1)
PC11-0←(SP)(SP+3)(SP+2)
SP←SP+4, then skip unconditionally
Skip Condition
Unconditional
(n=0-9, 12-14)
(n=2-9, 12-14)
(n=0, 1, 15)
*10
• TCALL Instruction
(SP-4)(SP-1)(SP-2)←PC11-0
(SP-3)←MBE, RBE, PC13, 12
PC13-0←(taddr)5-0+(taddr+1)
SP←SP-4
• When not TBR and TCALL
instructions, (taddr) and (taddr+1)
instructions are executed.
* 1: MBE=0 or 1 and MBS=15 must be set for execution of IN/OUT instruction.
,
2: TBR and TCALL instructions are assembler pseudo-instructions for GETI instruction table definition.
36
Depends on the
instruction
referred to.
µPD75112(A), 75116(A)
10. Mask Option Selection
The following mask options are available for the ★
µPD75116(A).
Whether or not they should be incorporated can be
selected.
(1)
Pins
Mask Option
Pin
P120 to P123
Bit-wise pull-up resistor incorporation enable
P130 to P133
P140 to P143
(2)
Power-on reset circuit and power-on flag (PONF)
One of the following three settings can be selected.
Mask Option Specification
Switch Selection
(See Figure 8-1)
Internal Reset Signal
(RES)
Power-on
Reset Circuit
Power-on Flag
(PONF)
SWA
SWB
Incorporated
Incorporated
ON
ON
Generated automatically
Not incorporated
Incorporated
ON
OFF
Not generated automatically
Not incorporated
Not incorporated
OFF
OFF
37
µPD75112(A), 75116(A)
11. Electrical Specifications
Absolute Maximum Ratings
(Ta = 25 °C)
Parameter
Symbol
Power supply voltage
VDD
Input voltage
VI1
VI2 *1
Test Conditions
Except for ports 12 to 14
Ports 12 to 14
On-chip pull-up resistor
Open drain
Output voltage
VO
Output current high
IOH
1 pin
All pins
Output current low
IOL *2
1 pin
Total current of ports 0, 2 to 4, 12 to 14
Ratings
Unit
–0.3 to +7.0
V
–0.3 to VDD +0.3
V
–0.3 to VDD +0.3
V
–0.3 to +13
V
–0.3 to VDD +0.3
V
Peak value
–10
mA
Effective value
–5
mA
Peak value
–30
mA
Effective value
–15
mA
Peak value
10
mA
Effective value
5
mA
Peak value
50
mA
Effective value
25
mA
Peak value
50
mA
Effective value
25
mA
Operation temperature
Topt
–40 to +85
°C
Storage temperature
Tstg
–65 to +150
°C
* 1: When applying a voltage larger than 10 V to ports 12, 13
and 14 each, set the power impedance (pull-up resistor) to
50 kΩ or more.
2: Calculate each effective value using the following expression:
[Effective value]=[Peak value] × √duty
Note: Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at
which the product is on the verge of suffering
physical damage, and therefore the product
must be used under conditions which ensure
that the absolute maximum ratings are not
exceeded.
38
µPD75112(A), 75116(A)
Operating Voltage ★
(Ta = –40 to +85 °C)
Parameter
MIN.
MAX.
Unit
CPU*1
*2
6.0
V
Programmable threshold port
(comparator input)
4.5
6.0
V
Power-on reset circuit*3
4.5
6.0
V
Other hardware*1
2.7
6.0
V
Test Conditions
* 1: Except system clock oscillator, programmable threshold
port and power-on reset circuit
2: Operating voltage range depends on the cycle time.
See the AC Characteristics.
3: Whether or not it should be incorporated can be selected
by mask options.
See the Power-On Reset Circuit Characteristics (Mask
Option).
39
µPD75112(A), 75116(A)
Oscillate Characteristics
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
Oscillator
Recommended Constant
Ceramic
oscillation
X1
Parameter
Oscillator frequency
(fXX)*1
VDD = oscillation
voltage range
Oscillation stabilizing
time*2
Oscillation voltage
range MIN.
C2
Crystal
oscillator
C2
External
clock
Unit
5.0*3
MHz
ms
4
4.19
5.0*3
MHz
Oscillation stabilizing
time*2
VDD = 4.5 to 6.0 V
10
ms
30
ms
X1 input frequency
(fX)*1
2.0
5.0*3
MHz
X1 input high and low
level widths (tXH, tXL)
100
250
ns
X2
µPD74HCU04
* 1: Oscillator frequency and X1 input frequency indicate only
characteristics of the oscillator. Refer to AC characteristics
for the instruction execution time.
2: The oscillation stabilizing time is necessary for oscillation
to stabilize after VDD reaches oscillation voltage range MIN.
or the STOP mode is released.
3: When the oscillator frequency is 4.19 MHz < fXX ≤ 5.0 MHz,
PCC=0011 should not be selected as instruction execution
time. If PCC=0011 is selected, 1 machine cycle becomes
less than 0.95 µs, with the result that the specified MIN.
value of 0.95 µs cannot be observed.
40
MAX.
X2
C1
X1
TYP.
2.0
2.0
Oscillator frequency
(fXX)*1
X1
MIN.
X2
C1
★
Test Condition
Note: When using the main system clock oscillator,
wiring in the area enclosed with the dotted line
should be carried out as follows to avoid an
adverse effect from wiring capacitance.
• Wiring should be as short as possible.
• Wiring should not cross other signal lines.
• Wiring should not be placed close to a varying high current.
• The potential of the oscillator capacitor
ground should be the same as VSS.
Do not ground wiring to a ground pattern in
which a high current flows.
• Do not fetch a signal from the oscillator.
★
µPD75112(A), 75116(A)
DC Characteristics
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
Parameter
Input voltage high
Input vltage low
Output voltage high
Symbol
Test Conditions
MIN.
0.7VDD
VDD
V
VIH2
Ports 0, 1, TI0, 1, RESET
0.8VDD
VDD
V
VIH3
Ports 12 to 14
On-chip pull-upresistor
0.7VDD
VDD
V
Open drain
0.7VDD
12
V
VDD–0.5
VDD
V
VIH4
X1, X2
VIL1
Except for ports listed below
0
0.3VDD
V
VIL2
Ports 0, 1, TI0, 1, RESET
0
0.2VDD
V
VIL3
X1, X2
0
0.4
V
VOH
VDD = 4.5 to 6.0 V, IOH = –1 mA
VOL
VDD = 4.5 to 6.0 V
VDD–1.0
V
VDD–0.5
V
Ports 0, 2 to 9, IOL = 5 mA
0.25
1.0
V
Ports 12 to 14, IOL = 5 mA
0.40
1.0
V
0.4
V
0.5
V
Except for ports listed below
3
µA
X1, X2
20
µA
IOL = 400µA
ILIH1
VIN = VDD
ILIH2
Input leakage current low
ILIH3
VIN = 12 V
Ports 12 to 14 (for open drain)
20
µA
ILIL1
VIN = 0 V
Except for X1, X2
–3
µA
X1, X2
–20
µA
ILIL2
Output leakage current high
Output leakage current low
On-chip pull-up resistor
ILOH1
VOUT = VDD
Except for ports listed below
3
µA
ILOH2
VOUT = 12 V
Ports 12 to 14 (for open drain)
20
µA
ILOL
VOUT = 0 V
–3
µA
70
kΩ
80
kΩ
RL
Ports 12 to 14
VDD=5 V ±10%
15
40
10
Supply current*1
Unit
Except for ports listed below
VDD = 4.5 to 6.0V, IOL = 1.6 mA
Input leakage current high
MAX.
VIH1
IOH = –100µA
Output voltage low
TYP.
IDD1
4.19 MHz
crystal oscillation
C1 = C2 = 22 pF
3
9
mA
VDD=3 V ±10%*3
0.55
1.5
mA
VDD=5 V ±10%
600
1800
µA
VDD=3 V ±10%
200
600
µA
0.1
10
µA
HALT mode
IDD2
IDD3
VDD=5 V ±10%*2
STOP mode, VDD = 3 V ±10%
* 1: Current for the on-chip pull-up resistor, power-on reset circuit
(mask option) and comparator circuit is not included.
2: When operated in the hgh-speed mode with the processor clock
control resistor (PCC) set tp 0011.
3: When operated in the low-speed mode with the PCC set to 0000.
41
µPD75112(A), 75116(A)
Capacitance
(Ta = 25 °C, VDD = 0 V)
Parameter
Symbol
Input capacitance
Output capacitance
Input/output capacitance
Test Conditions
CIN
TYP.
MIN.
f = 1 MHz
0 V for pins except
the measured pins
COUT
CIO
MAX.
Unit
15
pF
15
pF
15
pF
TYP.
MAX.
Unit
±100
mV
Comparator Characteristics
(Ta = –40 to +85 °C, VDD = 4.5 to 6.0 V)
Parameter
Symbol
Comparison accuracy
VACOMP
Test Conditions
MIN.
Threshold voltage
VTH
0
V DD
V
PTH input voltage
VIPTH
0
VDD
V
Comparator circuit consumption
Set PTHM7 to "1".
1
mA
Power-On Reset Circuit Characteristics (Mask Option)
(Ta = –40 to +85 °C)
Parameter
Symbol
Power-on reset operating voltage high
VDDH
Power-on reset operating voltage low
Test Conditions
MIN.
TYP.
MAX.
Unit
4.5
6.0
V
VDDL
0
0.2
V
Supply voltage rise time
tr
10
*1
µs
Supply voltage off time
toff
1
Power-on reset circuit
current consumption*2
IDDPR
VDD = 5 V ±10%
10
100
µA
VDD = 2.5 V
2
20
µA
*1: 217/fXX (31.3 ms when fXX = 4.19MHz)
2: Current flow upon power-on reset or with an on-chip power-on flag
VDDH
VDD
VDDL
toff
Note: Start the power supply smoothly.
42
s
tr
µPD75112(A), 75116(A)
AC Characteristics
(Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
Parameter
Symbol
CPU clock cycle time*
(min. instruction execution time
= 1 machine cycle)
tCY
TI0, TI1 input frquency
fTI
TI0, TI1 input high
and low-level widths
SCK cycle time
SCK high and low-level widths
tTIH,
tTIL
tKCY
tKH,
tKL
Test Conditions
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
TYP.
MAX.
Unit
0.95
32
µs
3.8
32
µs
0
1
MHz
0
275
kHz
0.48
µs
1.8
µs
Input
0.8
µs
Output
0.95
µs
Input
3.2
µs
Output
3.8
µs
Input
0.4
µs
tKCY/2-50
ns
1.6
µs
tKCY/2-50
ns
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
MIN.
Output
Input
Output
SI setup time (to SCK↑)
tSIK
100
ns
SI hold time (from SCK↑)
tKSI
400
ns
S0 output delay time from SCK↓
tKSO
INT0 to INT4
High and low-level widths
RESET low-level sidth
VDD = 4.5 to 6.0 V
300
ns
1000
ns
tINTH,
tINTL
5
µs
tRSL
5
µs
43
µPD75112(A), 75116(A)
*: The cycle time of the CPU clock (Φ ) is determined by the
input frequency of the ceramic crystal oscillator and the
setting of the processor clock control register (PCC). The
cycle time (tCY) for VDD is shown below.
tCY vs. VDD [V]
40
32
7
6
5
Cycle Time tCY [ µ s]
4
Operation Guaranteed
Range
3
2
1
0.5
0
1
2
3
4
Supply Voltage VDD [V]
AC Timing Test Point (Except for Ports 0, 1, TI0, TI1, X1, X2 and RESET)
0.7 VDD
0.3 VDD
Test Points
0.7 VDD
0.3 VDD
Clock Timing
1/fX
tXL
X1 Input
44
tXH
VDD – 0.5
0.4
5
6
µPD75112(A), 75116(A)
TI0 and TI1 Input Timing
1/fTI
tTIL
tTIH
0.8 VDD
TI0, TI1
0.2 VDD
Serial Transfer Timing
tKCY
tKL
tKH
0.8 VDD
SCK
0.2 VDD
tSIK
tKSI
0.8 VDD
SI
Input Data
0.2 VDD
tKSO
SO
Output Data
Interrupt Input Timing
tINTL
INT0-INT4
tINTH
0.8 VDD
0.2 VDD
45
µPD75112(A), 75116(A)
RESET Input Timing
tRSL
RESET
0.2 VDD
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
(Ta = –40 to +85 °C)
Parameter
Test Conditions
Symbol
Data retention supply voltage
VDDDR
Data retention supply current*1
VDDDR
Release signal set time
tSREL
tWAIT
Oscillation stabilization
wait time*2
MIN.
2.0
VDDDR = 2.0 V
0.1
Release by RESET
Release by interrupt request
46
Wait Time
(fXX=4.19 MHz Valu´s in Parentheses)
BTM2
BTM1
BTM0
0
0
0
220/fXX (approx. 250 ms)
0
1
1
217/fXX (approx. 31.3 ms)
1
0
1
215/fXX (approx. 7.82 ms)
1
1
1
213/fXX (approx. 1.95 ms)
MAX.
Unit
6.0
V
10
µA
µs
0
* 1: Current for the on-chip pull-up resistor, power-on circuit
(mask option) and comparator circuit is not included.
2: The oscillation stabilizing time is intended to stop the CPU
to prevent any unstable operation at the start of oscillation.
3: Depends on the following setting of the basic interval timer
mode register (BTM).
BTM3
TYP.
217/fX
ms
*3
ms
µPD75112(A), 75116(A)
Data Retention Timing (STOP Mode Release by RESET)
Internal Reset Operation
HALT Mode
STOP Mode
Operating
Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
RESET
tWAIT
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)
HALT Mode
STOP Mode
Operating
Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
Standby Release Signal
(Interrupt Request)
tWAIT
47
µPD75112(A), 75116(A)
12. Packing Information
64 PIN PLASTIC SHRINK DIP (750 mil)
64
33
1
32
A
K
H
G
J
I
L
F
D
N
M
NOTE
B
C
M
ITEM MILLIMETERS
R
INCHES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
A
58.68 MAX.
2.311 MAX.
B
1.78 MAX.
0.070 MAX.
2) Item "K" to center of leads when formed parallel.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
0.9 MIN.
0.035 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
19.05 (T.P.)
0.750 (T.P.)
L
17.0
0.669
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
P64C-70-750A,C-1
48
µPD75112(A), 75116(A)
64 PINPlastic
PLASTIC
64-Pin
QFP QFP
(14 × (14×20)
20) (Unit: mm) ★
A
B
33
32
64
1
20
19
detail of lead end
F
Q
5°±5°
D
C
S
51
52
G
H
I M
J
M
P
K
N
L
P64GF-100-3B8,3BE,3BR-1
NOTE
Each lead centerline is located within 0.20
mm (0.008 inch) of its true position (T.P.) at
maximum material condition.
ITEM
MILLIMETERS
INCHES
A
23.6 ± 0.4
0.929 ± 0.016
B
20.0 ± 0.2
0.795+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
1.0
0.039
G
1.0
0.039
H
0.40 ± 0.10
0.016 +0.004
–0.005
I
0.20
0.008
J
1.0 (T.P.)
0.039 (T.P.)
K
1.8 ± 0.2
0.071–0.009
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.12
0.005
P
2.7
0.106
Q
0.1 ± 0.1
0.004 ± 0.004
S
3.0 MAX.
0.119 MAX.
+0.008
49
µPD75112(A), 75116(A)
13. Recommended Soldering Conditions
★
The µPD75112(A) and 75116(A) should be soldered and
mounted under the conditions recommended in the
table below.
For detail of recommended soldering conditions, refer
to the information document “Surface Mount Technology Manual” (IEI-1207).
For soldering methods and conditions other than those
recommended below, contact our sales personnel.
Table 13-1 Surface Mounting Type Soldering Conditions
µPD75112GF(A)-×××-3BE : 64-pin plastic QFP (14 × 20mm)
µPD75116GF(A)-×××-3BE : 64-pin plastic QFP (14 × 20mm)
Soldering Method
Recommended Condition Symbol
Soldering Conditions
Infrared reflow
Package peak temperature: 230 °C Duration: 30 sec. max. (at 210°C above)
Number of times: Once
IR30-00-1
VPS
Package peak temperature: 215 °C Duration: 40 sec. max. (at 200°C above)
Number of times: Once
VP15-00-1
Wave soldering
Solder bath temperature: 260 °C max. Duration: 10 sec. max.
Number of times: Once
Preliminary heat temperature: 120 °C max. (Package surface temperature)
WS60-00-1
Pin part heating
Pin part temperature: 300 °C max. Duration: 3 sec. max. (per device side)
Note: Use more than one soldering method should
be avoided (except in the case of pin part).
Table 13-2 Insertion Type Soldering Conditions
µPD75112CW(A)-×××: 64-pin plastic shrink DIP (750 mil)
µPD75116CW(A)-×××: 64-pin plastic shrink DIP (750 mil)
Soldering Method
Soldering Conditions
Wave soldering (lead part only)
Solder bath temperature: 260 °C max. Duration: 10 sec. max.
Pin part heating
Pin part temperature: 260 °C max. Duration: 10 sec. max.
Note: Wave soldering is only for the lead part in order
that jet solder can not contact with the chip.
Notice
A version of this product with improved recommended
soldering conditions is available.
For details (improvements such as infrared reflow
peak temperature extension (235 °C, number of times:
twice, relaxation of time limit), contact NEC sales
51
µPD75112(A), 75116(A)
★
APPENDIX A. Differences between µPD751××(A) Series Products and Related PROM Products
Product Name
µPD75104(A)
Item
µPD75106(A)
ROM Configuration
ROM (bit)
0000H to
177FH
6016 × 8
0000H to
1F7FH
8064 × 8
320 × 4
Bank 0: 256 × 4
Bank 1: 64 × 4
Instruction set
µPD75P108B
µPD75P116
PROM
0000H to
2F7FH
12160 × 8
0000H to
3F7FH
16256 × 8
512 × 4
Bank 0: 256 × 4
Bank 1: 256 × 4
High end (Only µPD75104(A) does not incorporate BR !addr instruction).
0000H to
1F7FH
8064 × 8
0000H to
3F7FH
16256 × 8
512 × 4
Bank 0: 256 × 4
Bank 1: 256 × 4
High end
58
Total
Input/
output
• CMOS input/output: 32
• +12 V withstand N-ch voltage open-drain input/output: 12
(Pull-up resistor can be on-chip by mask option.)
Input
• CMOS input/output: 10
• Comparator: 4
Power-on reset circuit
µPD75116(A)
Mask ROM
0000H to
0FFFH
4096 × 8
RAM (bit)
I/O line
µPD75108(A) µPD75112(A)
• CMOS input/output: 32
• +12 V withstand N-ch
open-drain input/
output: 12
Each pin can directly drive
LED: 44
Can be on-chip by mask option
None
Power-on flag
Supply voltage range
2.7 to 6.0 V
2.7 to 6.0 V
5 V±10%
Pin connection
Differs depending on package
Differs depending on package
(with VPP pin)
Quality grade
Special
Standard
Package
52
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 20 mm)
• 64-pin plastic • 64-pin plastic
shrink DIP
shrink DIP
(750 mil)
(750 mil)
• 64-pin ceramic • 64-pin plastic
QFP
shrink DIP
(with window) (14 × 20 mm)
• 64-pin plastic
QFP
(14 × 20 mm)
µPD75112(A), 75116(A)
APPENDIX B. Development Tools
The following tools are available for the development of systems for which the µPD75116(A) is used.
Hardware
IE-75000-R*1
IE-75001-R
75X series in-circuit emulator
IE-75000-R-EM*2
Emulation board for IE-75000R and IE-75001-R.
EP-75108CW-R
Emulation probe for µPD75112CW(A) and 75116CW(A).
EP-75108GF-R
Emulation probe for µPD75112GF(A) and 75116GF(A).
64-pin conversion socket EV-9200G64 added.
EV-9200G64
Software
PG-1500
PROM programmer
PA-75P108CW
µPD75P116CW PROM programmer adapter connected to PG-1500
PA-75P116GF
µPD75P116GF PROM programmer adapter connected to PG-1500
IE control program
Host machine
• PC-9800 series (MS-DOSTM Ver. 3.30 to 5.00A*3)
• IBM PC/ATTM (PC DOSTM Ver. 3.1)
PG-1500 controller
RA75X relocatable assembler
* 1: Maintenance product
2: Not incorporated in the IE-75001-R.
3: The task swap function, which is provided with Ver. 5.00/5.00A,
is not available with this software.
Remarks: For development tools manufactured by a
third party, see the “75X Series Selection
Guide” (IF-151)”.
53
µPD75112(A), 75116(A)
★
APPENDIX C. Related Documentations
List of Device Related Documentations
Document Number
Document Name
IEM-1260
User’s Manual
—
Instruction Application Table
Application Note
(I) Introductory Volume
IEM-1139
(II) Remote Control Reception Volume
IEM-1281
(III) Bar-Code Reader Volume
IEM-1265
(IV) IC Control for MSK Transmission/Reception Volume
IEA-1278
IF-1027
75X Series Selection Guide
List of Development Tools Related Documentations
Document Name
Hardware
Software
Document Number
IE-75000-R/IE-75001-R User’s Manual
EEU-1416
IE-75000-R-EM User’s Manual
EEU-1294
EP-75108CW-R User’s Manual
EEU-1308
EP-75108GF-R User’s Manual
EEU-1318
PG-1500 User’s Manual
EEU-1335
RA75X Assembler Package User’s Manual
Operation Volume
EEU-1346
Language Volume
EEU-1343
EEU-1291
PG-1500 Controller User’s Manual
List of Other Related Documentations
Document Name
Package Manual
IEI-1213
Surface Mount Technology Manual
IEI-1207
Quality Grade on NEC Semiconductor Devices
IEI-1209
NEC Semiconductor Device Reliability & Quality Control
—
Electrostatic Discharge (ESD) Test
—
Semiconductor Devices Quality Guarantee Guide
Microcomputer Related Products Guide Other Manufactures Volume
Note: The contents of the above related documents
are subject to change without notice. The latest documents should be used for design, etc.
54
Document Number
MEI-1202
—
µPD75112(A), 75116(A)
55
µPD75112(A), 75116(A)
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may ppear
in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
propety rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables,
nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above
applications or they intend to use "Standard" quality grade NEC devices for applications not intended by
NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer
products, etc.
Special:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime systems, etc.
M4 92.6
MS-DOS is a trademark of Microsoft Corporation.
PC/AT and PC DOS are trademarks of IBM Corporations.