NEC UPD75512GF

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75512(A)
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75512(A) is a 4-bit single-chip microcomputer which employs 75X series architecture, and its
performance is comparable to that of an 8-bit microcomputer.
In addition to its high-speed processing capabilities, the µPD75512(A) is also capable of processing data in
units of 1, 4, or in 8-bits. With its internally provided A/D converter and serial interface, the µPD75512(A) provides
the highest performance in its class.
Detailed functions are described in the following user‘s manual. Be sure to read it for designing.
µPD75516 User‘s Maual: IEM-5049
FEATURES
• Higher reliability than µPD75512
• Adequate I/O lines: 64
(can be provided with pull-up/pull-down resistors: 47)
• Built-in 8-bit serial interface: 2-ch
NEC standard serial bus interface (SBI) internally provided
• Built-in 8-bit A/D converter: 8-ch
• Variable instruction execution time function which is convenient for high-speed operation and power saving
· 0.95 µs/1.95 µs/15.3 µs (at 4.19 MHz operation),
· 122 µs (at 32.768 kHz operation)
• Program memory (ROM) size: 12,160 × 8 bits
• Data memory (RAM) size: 512 × 4 bits
• High-performance timer function: 4-ch
· 8-bit timer/event counter
· Watch timer
· 8-bit basic interval timer
· Timer/pulse generator: Capable of outputting 14-bit PWM
• Clock operation for reduced power consumption possible
(5 µA TYP. at 3 V operation)
• PROM version (µPD75P516) available
APPLICATIONS
Switable for automotive and transportation equipments, etc.
The information in this document is subject to change without notice.
Document No. IC-2815A
(O. D. No. IC-8265A)
Date Published January 1994 P
Printed in Japan
The mark ★ shows major revised points.
 NEC Corporation 1991
µPD75512(A)
ORDERING INFORMATION
Part Number
Package
Quality Grade
µPD75512GF(A)-xxx-3B9
80-pin plastic QFP
Special
(14 × 20mm)
Remarks: xxx is ROM code number.
Please refer to “Quality Grade on NEC Semiconductor Devices” (Document number IEI-1209) published by NEC
Corporation to know the specification of quality grade on the devices and its recommended applications.
Difference between µPD75512(A) and µPD75512
Product
Item
Quality Grade
µPD75512(A)
µPD75512
Special
Standard
Absolute Maximum Ratings
Differ in high-level and low-level output current
DC Characteristics
Differ in low-level output voltage
A/D Converter Characteristics
Differ in ambient temperature range and absolute accuracy
Electrical
Specifications
2
µPD75512(A)
µPD75512(A) FUNCTIONS
★
Item
Internal
Memory
Size
Function
ROM
12160 × 8 bits
RAM
512 × 4 bits
Genearl-Purpose Register
(4 bits × 8 or 8 bits × 4) × 4 banks
Instruction Cycle
• 0.95 µs/1.91 µ s/15.3 µ s (Main system clock: at 4.19 MHz)
• 122 µs (Subsystem clock: at 32.768 kHz)
Input/
Output
Ports
Total
64 lines
CMOS Inputs
16 lines (also serve as INT, SIO, PPO, analog input; can be pulled up by software: 7
lines)
CMOS
Input/Outputs
28 lines
• Can be pulled up by software: 16 lines
• Can be pulled down by mask option: 4 lines
N-ch Open-Drain
Input/Outputs
20 lines (10 V withstand voltage; pins that can be pulled up by mask option: 20)
A/D Converter
8-bit resolution × 8 channels (successive approxmation type)
• Operation voltage: VDD = 3.5 to 6.0 V
Timer/Counter
4 channels



•
•
•
•
Serial Interface
2 channels



• NEC standard serial bus interface (SBI)/3-line SIO: 1 channel
• Normal clock synchronized serial interface (3-line SIO): 1 channel
Vector Interrupt
External: 3, Internal: 4
Test Input
External: 1, Internal: 1
Instruction Set
• Bit data set/reset/test/boolean operation instruction
• 4-bit data transfer/operation/increment/decrement /compare instructions
• 8-bit data transfer/operation/increment/decrement /compare instructions
System Clock Generator
• Ceramic/crystal oscillator for main system clock: 4.19 MHz
• Crystal oscillator for subsystem clock: 32.768 kHz
Operation Voltage
VDD = 2.7 V to 6.0 V
Package
80-pin plastic QFP (14 × 20mm)
Timer/event counter
Basic interval timer
Timer/pulse generator (capable of outputting 14-bit PWM)
Watch timer
3
µPD75512(A)
CONTENTS
4
1.
PIN CONFIGURATION .....................................................................................................................
6
2.
INTERNAL BLOCK DIAGRAM .........................................................................................................
7
3.
PIN FUNCTIONS ..............................................................................................................................
8
3.1
PORT PINS .............................................................................................................................................
8
3.2
NON-PORT PINS ...................................................................................................................................
10
3.3
PIN INPUT/OUTPUT CIRCUITS ............................................................................................................
11
3.4
RECOMMENDED CONDITIONS FOR UNUSED PINS ..........................................................................
14
3.5
MASK OPTION SELECTION .................................................................................................................
15
4.
MEMORY CONFIGURATION ..........................................................................................................
16
5.
PERIPHERAL HARDWARE FUNCTIONS ........................................................................................
19
5.1
PORT ......................................................................................................................................................
19
5.2
CLOCK GENERATOR CIRCUIT .............................................................................................................
20
5.3
CLOCK OUTPUT CIRCUIT .....................................................................................................................
21
5.4
BASIC INTERVAL TIMER ......................................................................................................................
22
5.5
WATCH TIMER ......................................................................................................................................
23
5.6
TIMER/EVENT COUNTER .....................................................................................................................
23
5.7
TIMER/PULSE GENERATOR .................................................................................................................
25
5.8
SERIAL INTERFACE ...............................................................................................................................
26
5.9
A/D CONVERTER ...................................................................................................................................
30
5.10
BIT SEQUENTIAL BUFFER ...................................................................................................................
31
6.
INTERRUPT FUNCTIONS ................................................................................................................
31
7.
STANDBY FUNCTIONS ...................................................................................................................
33
8.
RESET FUNCTIONS .........................................................................................................................
34
9.
INSTRUCTION SET ..........................................................................................................................
36
10. ELECTRICAL SPECIFICATIONS .......................................................................................................
44
11. PACKAGE DRAWINGS ....................................................................................................................
57
12. RECOMMENDED SOLDERING CONDITIONS ................................................................................
58
µPD75512(A)
APPENDIX A. FUNCTIONAL DIFFERENCES AMONG µPD755XX(A) SERIES PRODUCTS .............
59
APPENDIX B. DEVELOPMENT TOOLS ................................................................................................
60
APPENDIX C. RELATED DOCUMENTS ................................................................................................
61
5
µPD75512(A)
1
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
64
AV REF
2
63
P141
V DD
3
62
P142
V DD
4
61
P143
P113
5
60
RESET
P112
6
59
X2
P111
7
58
X1
P110
8
57
IC
56
XT2
P103
9
P102
10
P101
11
P100
12
P93
13
P92
14
µ PD75512GF(A) – ×××–3B9
AN0
*
P140
55
XT1
54
V SS
53
P00/INT4
52
P01/SCK0
51
P02/SO0/SB0
50
P03/SI0/SB1
49
P10/INT0
22
43
P22/PCL
KR5/P71
23
42
P23/BUZ
KR4/P70
41
24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
*: Power must be supplied to both VDD pins.
P31
P21
KR6/P72
P32
44
P33
21
P41
P20/PTO0
KR7/P73
P40
45
P42
20
P43
P13/TI0
PPO/P80
V SS
46
P50
19
P51
P12/INT2
SCK1/P81
P52
47
P53
P11/INT1
18
KR0/P60
48
SO1/P82
KR1/P61
SI1/P83
17
KR2/P62
15
16
KR3/P63
P91
P90
IC: Internally Connected (Connect directly to VSS)
6
P133
P132
P131
P130
P123
P122
P120
P121
AV SS
AN7/P153
AN6/P152
AN5/P151
AN4/P150
AN2
AN3
PIN CONFIGURATION
AN1
1.
P30
2.
PORT 0
4
P00-P03
PORT 1
4
P10-P13
PORT 2
4
P20-P23
PORT 3
4
P30-P33
PORT 4
4
P40-P43*
PORT 5
4
P50-P53*
PORT 6
4
P60-P63
PORT 7
4
P70-P73
PORT 8
4
P80-P83
PORT 9
4
P90-P93
PORT10
4
P100-P103
PORT11
4
P110-P113
PORT12
4
P120-P123*
PORT13
4
P130-P133*
PORT14
4
P140-P143*
PORT15
4
P150-P153
INTBT
TI0/P13
PTO0/P20
TIMER/EVENT
COUNTER
#0
PROGRAM
CY
ALU
SP (8)
COUNTER (14)
INTT0
BANK
BUZ/P23
WATCH
TIMER
INTW
GENERAL REG.
INTERNAL BLOCK DIAGRAM
BASIC
INTERVAL
TIMER
ROM
PPO/P80
SI0/SB1/P03
SO0/SB0/P02
SCK0/P01
TIMER/PULSE
GENERATOR
PROGRAM
INTTPG
MEMORY
AND
12160 × 8 BITS
CONTROL
DECODE
RAM
DATA MEMORY
SERIAL
INTERFACE0
512 x 4 BITS
INTCSI
SI1/P83
SO1/P82
SCK1/P81
SERIAL
INTERFACE1
INT0/P10
f X /2 N
INT1/P11
INT2/P12
CLOCK
OUTPUT
CONTROL
PCL/P22
CLOCK
DIVIDER
SUB
XT1
MAIN
XT2 X1
X2
STAND BY
CONTROL
CPU CLOCK
Φ
RESET
BIT SEQ.
BUFFER (16)
V DD
AN0-AN3
AN4/P150-AN7/P15
AV REF
AV SS
A/D
CONVERTER
*: PORTs 4, 5, and 12 to 14 are 10 V middle voltage, N-ch open-drain input/output ports.
V SS
7
µPD75512(A)
INT4/P00
KR0/P60
8
–KR7/P73
INTERRUPT
CONTROL
CLOCK
GENERATOR
µPD75512(A)
3.
PIN FUNCTIONS
3.1
PORT PINS (1/2)
Pin
Name
Input/
Output
P00
Shared
Pin
INT4
P01
SCK0
Input
Function
4-bit input port (PORT0).
For P01 to P03, built-in pull-up
resistors can be specified in 3-bit
units by software.
8-bit
I/O
When Reset
Input/
Output
Circuit
Type*
B
F -A
x
Input
P02
SO0/SB0
F -B
P03
SI0/SB1
M -C
P10
INT0
P11
INT1
Input
P12
INT2
P13
TI0
P20
PTO0
P21
Input/
output
—
P22
PCL
P23
BUZ
P30
—
P31
Input/
output
—
P32
—
P33
—
P40 to
P43
With noise
elimination function
Input/
output
—
4-bit input port (PORT1).
Built-in pull-up resistors can be
specified by software in 4-bit units.
4-bit input/output port (PORT2).
Built-in pull-up resistors can be
specified by software in 4-bit units.
Programmable 4-bit input/output
port (PORT3).
Input/output can be specified in
bit units.
Built-in pull-up resistors can be
specified by software in 4-bit unit.
x
Input
B -C
x
Input
E-B
x
Input
E-C
N-ch open-drain 4-bit input/output
port (PORT4).
A pull-up resistor can be provided
in bit units (mask option).
10V withstanding voltage in the
open-drain mode.
High level
(when pull-up
resistor is
provided) or
high impedance
M
High level
(when pull-up
resistor is
provided) or
high impedance
M
O
P50 to
P53
Input/
output
P60
P61
—
KR0
Input/
output
KR1
P62
KR2
P63
KR3
N-ch open-drain 4-bit input/output
port (PORT5).
A pull-up resistor can be provided
in bit units (mask option).
10V withstanding voltage in the
open-drain mode.
Programmable 4-bit input/ output
port (PORT6).
Input/output can be specified in
bit units.
Built-in pull-up resistors can be
specified by software in 4-bit units.
*: The number enclosed with a circle indicates Schmitt trigger input.
8
O
Input
F -C
µPD75512(A)
3.1
PORT PINS (2/2)
Pin
Name
Input/
Output
P70
P71
Shared
Pin
Function
8-bit
I/O
When Reset
O
Input
Input/
Output
Circuit
Type*
KR4
Input/
output
KR5
P72
KR6
P73
KR7
P80
PPO
P81
4-bit input/output port (PORT7).
Built-in pull-up resistor can be
specified in 4-bit units by software.
E
SCK1
Input
F -A
F
4-bit input port (PORT8).
x
Input
P82
SO1
E
P83
SI1
B
4-bit input/output port (PORT9).
Built-in pull-up resistors can be
specified in bit units by mask
option.
P90 to
P93
Input/
output
—
P100 to
P103
Input/
output
—
4-bit input/output port (PORT10).
P110 to
P113
Input/
output
—
4-bit input/output port (PORT11).
x
Low level
(when pulldown resistor
is provided)
or high
impedance
V
Input
E
Input
E
x
P120 to
P123
P130 to
P133
Input/
output
Input/
output
P140 to
P143
Input/
output
P150 to
P153
Input
—
—
—
AN4 to AN7
N-ch open-drain 4-bit input/output
port (PORT12).
A pull-up resistor can be provided
in bit units (mask option).
10V withstanding voltage in the
open-drain mode.
N-ch open-drain 4-bit input/output
port (PORT13).
A pull-up resistor can be provided
in bit units (mask option).
10V withstanding voltage in the
open-drain mode.
N-ch open-drain 4-bit input/output
port (PORT14).
A pull-up resistor can be provided
in bit units (mask option).
10V withstanding voltage in the
open-drain mode.
4-bit input port (PORT15).
High level
(when pull-up
resistor is
provided) or
high impedance
M
x
High level
(when pull-up
resistor is
provided) or
high impedance
M
x
High level
(when pull-up
resistor is
provided) or
high impedance
M
x
x
Input
Y-A
*: The number enclosed with a circle indicates Schmitt trigger input.
9
µPD75512(A)
3.2
NON-PORT PINS
Pin
Name
Input/
Output
Shared
Pin
Function
When Reset
TI0
Input
P13
The external event pulse input for the timer/event
counter.
PTO0
Output
P20
PCL
Output
BUZ
—
B -C
Timer/event counter output
Input
E-B
P22
Clock output
Input
E-B
Output
P23
Fixed frequency output (for buzzer output or
system clock trimming)
Input
E-B
SCK0
Input/
output
P01
Serial clock input/output
Input
F -A
SO0/SB0
Input/
output
P02
Serial data output
Serial bus input/output
Input
F -B
SI0/SB1
Input/
output
P03
Serial data input
Serial bus input/output
Input
M -C
INT4
Input
P00
Edge detection vector interrupt input (both rising
edge and falling edge detection)
—
B
P10
Edge detection vector
interrupt input
(detection edge selectable)
—
B -C
—
B -C
INT0
Input
INT1
P11
Synchronized
with clock
Asynchronous
INT2
Input
P12
KR0-KR3
Input
P60-P63
Parallel falling edge detection testable input
Input
F -C
KR4-KR7
Input
P70-P73
Parallel falling edge detection testable input
Input
F -A
SCK1
Input/
output
P81
Serial clock input/output
Input
F
SO1
Output
P82
Serial data output
Input
E
SI1
Input
P83
Serial data input
Input
B
AN0-AN3
Edge detection testable input
(rising edge detection)
Asynchronous
—
Input
AN4-AN7
Y
A/D converter analog input
—
P150-P153
Y-A
AVREF
Input
—
A/C converter reference voltage input
—
Z
AVSS
—
—
A/D converter reference ground
—
—
—
Pins for connecting the crystal ceramic oscillator
to the main system clock generator. When
inputting the external clock, input the external
clock to pin X1, and the reverse phase of the
external clock to pin X2.
—
—
—
—
—
B
Input
E
X1, X2
Input
XT1
Input
—
XT2
—
—
Pins for connecting the crystal oscillator to the
subsystem clock generator. When the external
clock is used, inputs the external clock to pin
XT1. In this case, pin XT2 must be left open.
RESET
Input
System reset input
PPO
Output
P80
IC
—
—
Internally Connected. Connect directly to VSS.
—
—
VDD
—
—
Positive power supply
—
—
VSS
—
—
GND
—
—
Timer/pulse generator pulse output
*: The number enclosed with a circle indicates Schmidt trigger input.
10
Input/
Output
Circuit
Type*
µPD75512(A)
3.3
PIN INPUT/OUTPUT CIRCUITS
The following shows a simplified input/output circuit diagram for each pin of the µ PD75512(A).
TYPE D
TYPE A
VDD
VDD
data
P–ch
P–ch
OUT
IN
output
disable
N–ch
Input buffer of CMOS standard
N–ch
Push-pull output that can be set in a output
high-impedance state (both P-ch and N-ch are off)
TYPE E
TYPE B
data
IN/OUT
Type D
output
disable
IN
Type A
Schmitt trigger input with hysteresis characteristics
TYPE B–C
This input/output circuit consists of D-type push-pull
outputs and Type A input buffers.
TYPE E–B
VDD
P.U.R.
VDD
P.U.R.
enable
P.U.R.
P–ch
P.U.R.
enable
P–ch
data
IN/OUT
Type D
output
disable
IN
Type A
P.U.R. : Pull-Up Resistor
Schmitt trigger input with hysteresis characteristics
P.U.R. : Pull-Up Resistor
Fig. 3-1 Pin Input/Output Circuits (1/3)
11
µPD75512(A)
Type E-C
Type F-B
VDD
VDD
P.U.R.
P.U.R.
P.U.R.
enable
P–ch
data
P.U.R.
enable
output
disable
(P-ch)
P–ch
VDD
P-ch
IN/OUT
Type D
IN/OUT
data
output
disable
output
disable
(N-ch)
output
disable
Type A
N-ch
Type B
P.U.R. : Pull-Up Resistor
P.U.R. : Pull-Up Resistor
Type F
Type F-C
VDD
P.U.R.
data
IN/OUT
Type D
P.U.R.
enable
output
disable
P–ch
data
IN/OUT
Type D
Type B
output
disable
Type B
This input/output circuit consists of D-type push-pull
outputs and Type B Schmitt trigger inputs.
VDD
Type F-A
P.U.R. : Pull-Up Resistor
Type M
P.U.R.
P.U.R.
enable
VDD
P.U.R.
(Mask Option)
IN/OUT
P–ch
data
IN/OUT
data
N-ch
(can withstand
up to +10 V)
Type D
output
disable
output
disable
Type B
P.U.R. : Pull-Up Resistor
Middle-voltage input buffer
(can withstand up to +10 V)
P.U.R. : Pull-Up Resistor
Fig. 3-1 Pin Input/Output Circuits (2/3)
12
µPD75512(A)
Type M-C
Type Y-A
IN instruction
VDD
P.U.R.
P.U.R.
enable
P–ch
IN/OUT
V DD
IN
P–ch
N–ch
+
V DD
data
N-ch
Sampling
C
output
disable
–
AVSS
Reference voltage
(from a voltage tap of series
resistor string)
AVSS
input
enable
P.U.R. : Pull-Up Resistor
Type Z
Type V
AV REF
data
IN/OUT
Type D
output
disable
Reference voltage
Type A
P.D.R
(Mask Option)
AVSS
P.D.R. : Pull-Down Resistor
Type Y
V DD
IN
P–ch
N–ch
+
V DD
Sampling
C
–
AVSS
Reference voltage
(from a voltage tap of series
resistor string)
AVSS
Input
enable
Fig. 3-1 Pin Input/Output Circuits (3/3)
13
µPD75512(A)
★
3.4
RECOMMENDED CONDITIONS FOR UNUSED PINS
Table 3-1 Recommended Conditions for Unused Pins
Pin
P00/INT4
Recommended Conditions
Connect to VSS
P01/ SCK0
P02/SO0/SB0
Connect to VSS or VDD
P03/SI1/SB1
P10/INT0-P12/INT2
Connect to VSS
P13/TI0
P20/PTO0
P21
P22/PCL
P23/BUZ
Input state: Connect to VSS or VDD
P30-P33
Output state: Open
P40-P43
P50-P53
P60/KR0-P63/KR3
P70/KR4-P73/KR7
P80/PPO
P81/ SCK1
Connect to VSS or VDD
P82/SO1
P83/SI1
P90-P93
P100-P103
P110-P113
Input state: Connect to VSS or VDD
P120-P123
Output state: Open
P130-P133
P140-P143
P150/AN4-P153/AN7
Connect to VSS
AN0-AN3
XT1
Connect to VSS or VDD
XT2
Open
AVREF
Connect to VSS
AVSS
IC
14
Connect directly to VSS
µPD75512(A)
3.5
MASK OPTION SELECTION
The following mask options are provided with the pins.
(1)
Pull-up/pull-down resistor selection
Table 3-2 Pull-up/Pull-down Resistor Selection
Pins
P40-P43
P50-P53
Mask Option
(1) With pull-up resistor
(2) Without pull-up resistor
(Can be specified in bit units)
(Can be specified in bit units)
P120-P123
P130-P133
P140-P143
P90-P93
(1) With pull-down resistor
(2) Without pull-down resistor
(Can be specified in bit units)
(2)
(Can be specified in bit units)
★
Feedback resistor selection for the subsystem clock oscillation
Table 3-3 Feedback Resistor Selection
Pins
XT1, XT2
Note:
Mask Option
(1) With feedback resistor
(When the subsystem clock
is used)
(2) Without feedback resistor
(When the subsystem clock
is not used)
The operation is not affected if the feedback resistor is selected when the subsystem
clock is not used. However, the supply current IDD is increased.
15
µPD75512(A)
★
4.
MEMORY CONFIGURATION
• Program memory (ROM) ... 12160 × 8 bits (0000H-2F7FH)
• 0000H, 0001H :
Vector table to which address from which program is started is written after reset
• 0002H-000DH :
Vector table to which address from which program is started is written after
interrupt
• 0020H-007FH : Table area referenced by GETI instruction
• Data memory
• Data area .... 512 × 4 bits (000H–1FFH)
• Peripheral hardware area .... 128 × 4 bits (F80H–FFFH)
16
µPD75512(A)
Address
7
0000H
6
MBE RBE
0
Internal reset start address (upper 6 bits)
Internal reset start address (lower 8 bits)
0002H
MBE RBE
INTBT/INT4 start address (upper 6 bits)
INTBT/INT4 start address (lower 8 bits)
0004H
MBE RBE
INT0 start address (upper 6 bits)
CALL !addr
instruction
subroutine
entry address
INT0 start address (lower 8 bits)
0006H
MBE RBE
INT1 start address (upper 6 bits)
INT1 start address (lower 8 bits)
0008H
MBE RBE
INTCSIO0 start address (upper 6 bits)
INTCSIO0 start address (lower 8 bits)
000AH
MBE RBE
CALLF
!faddr
instruction
entry
address
INTT0 start address (upper 6 bits)
INTT0 start address (lower 8 bits)
000CH
MBE RBE
INTTPG start address (upper 6 bits)
BRCB
!caddr
instruction
branch
address
BR !addr
instruction
branch address
BR $addr
instruction
relational
branch address
(–15 to –1,
+2 to +16)
INTTPG start address (lower 8 bits)
0020H
GETI instruction reference table
007FH
0080H
Branch destination
address and
subroutine entry
address for
GETI instruction
007FH
0800H
0FFFH
1000H
BRCB
!caddr
instruction
branch
address
1FFFH
2000H
BRCB
!caddr
instruction
branch
address
2F7FH
Remarks:
In addition to the above, branching to an address, for which only the lower 8 bits of the PC are
modified, is possible by the BR PCDE and BR PCXA instructions.
Fig. 4-1 Program Memory Map
17
µPD75512(A)
Data memory
General 000H
purpose
register
01FH
area
008H
Stack
area
Memory bank
(32 × 4)
256× 4
0
256× 4
1
Data area
Static RAM
(512 × 4)
0FFH
100H
1FFH
Unmapped
F80H
Peripheral hardware area
128× 4
FFFH
Fig. 4-2 Data Memory Map
18
15
µPD75512(A)
5.
PERIPHERAL HARDWARE FUNCTIONS
5.1
★
PORT
I/O ports are classified into following kinds:
•
CMOS input (PORTS 0, 1, 8, 15)
: 16
•
CMOS input/output (PORTS 2, 3, 6, 7, 9, 10, 11)
: 28
•
N-ch open-drain input/output (PORTS 4, 5, 12, 13, 14)
: 20
Total
: 64
Table 5-1 Port Functions
Port
(Pin Name)
Function
PORT0
4-bit input
Operation/Feature
Can be read or tested regardless of the operation
mode of the shared pin.
Can be specified for I/O in 4-bit units
4-bit I/O
Can be specified for I/O in 1/4-bit units.
PORT3
PORT4
PORT5
Also serves as the INT4, SCK0 ,
SO0/SB0, and SI0/SB1 pins
Also serves as INT0 to 2, and
TIO pins
PORT1
PORT2
Remarks
4-bit I/O
(N-ch
open-drain,
can sustain
with 10V)
Can be specifiedfor
I/O in 4-bit units
Can be specified
for I/O in 1/4-bit units
PORT6
4-bit I/O
Can be specified
I/O in 4-bit
units
PORT7
Ports 4 and 5 can
be paired to I/O
data in 8-bit units
Ports 6 and 7 can
be paired to I/O
data in 8-bit units
Also serves as PTO0, PCL and
BUZ pins.
—
Whether or not the internal
pull-up resistor is provided
can be specified for each bit
by mask option
Also serves as KR0-3.
Also serves as KR4-7.
PORT8
4-bit
input
Can be read or tested regardless of the operation
mode of the shared pin.
Also serves as PPO, SCK1 ,
SO1, and SI1 pins.
PORT9
4-bit I/O
Can be specified for I/O in 4-bit units.
Whether or not the internal
pull-up resistor is provided
can be specified for each bit
by mask option.
4-bit I/O
Can be specified for I/O in 4-bit units.
PORT10
—
PORT11
PORT12
PORT13
PORT14
PORT15
4-bit I/O
(N-ch
open-drain,
can sustain
with 10V)
Can be specified for I/O in 4-bit units.
4-bit
Input
Can be read or tested regardless of the operation
mode of the shared pins
Whether or not the internal
pull-up resistor is provided
can be specified for each
bit by mask option.
Also serves as AN4-7 pins.
19
µPD75512(A)
6.2
CLOCK GENERATOR CIRCUIT
The operation of the clock generator circuit is determined by the processor clock control regiser (PPC) and
system clock control register (SCC).
This circuit can generate two types of clocks: main system clock and subsystem clock.
In addition, it can also change the instruction execution time.
• 0.95 µ s, 1.91 µ s, 15.3 µ s (main system clock: 4.19 MHz)
• 122 µs (subsystem clock: 32.768 kHz)
· Basic interval timer (BT)
· Timer/event counter
· Serial interface
· Watch timer
· Clock output circuit
· A/D converter
· INT0 noise rejecter circuit
XT1
V DD
XT2
Subsystem
clock
oscillator
f XT
Watch timer
Timer/pulse
generator
X1
Main system f X
clock
oscillator
WM.3
SCC
Oscillator
disable
signal
SCC3
1/8 to 1/4096
Frequency divider
1/2 1/16
SCC0
Internal bus
Frequency
divider
Selector
X2
Selector
V DD
1/4
PCC
PCC0
Φ
· CPU
· Clock output
circuit
· INT0 noise
rejecter circuit
PCC1
4
HALT F/F
PCC2
S
HALT*
STOP*
PCC3
R
PCC2, PCC3
clear signal
STOP F/F
Q
S
Q
Wait release
signal from BT
RESET signal
R
Standby release
signal from interrupt
control circuit
*: instruction execution.
Remarks 1: f X = Main system clock frequency
2: f XT = Subsystem clock frequency
3: Φ = CPU clock
4: PCC: Processor clock control register
5: SCC: System clock control register
6: One clock cycle (t CY) of Φ is one machine cycle of an instruction. For tCY, refer to AC
characteristics in 10. ELECTRICAL SPECIFICATIONS.
Fig. 5-1 Clock Generator Block Diagram
20
µPD75512(A)
5.3
CLOCK OUTPUT CIRCUIT
The clock output circuit outputs clock pulse from the P22/PCL pin. This clock pulse is used for the remote control
output, peripheral LSIs, etc.
• Clock output (PCL): Φ, 524 kHz, 262 kHz, 65.5 kHz (operating at 4.19 MHz)
From the
clock
generator
Φ
Output
buffer
fX/23
Selector
fX/24
PCL/P22
fX/26
PORT2.2
CLOM3 CLOM2 CLOM1 CLOM0 CLOM
P22 output
latch
Bit 2 of PMGB
Port 2 input/
output mode
specification
bit
4
Internal bus
Fig. 5-2 Clock Output Circuit Configuration
Remarks:
A measures to prevent outputting narrow width pulse when selecting clock output enable/
disable is taken.
21
µPD75512(A)
5.4
BASIC INTERVAL TIMER
The basic interval timer has these functions:
• Interval timer operation which generates a reference time interrupt
• Watchdog timer application which detects a program runaway
• Selects the wait time for releasing the standby mode and counts the wait time
• Reads out the count value
From the
clock generator
Clear
Clear
fX/25
fX/27
Set
signal
Basic interval timer
(8-bit frequency divider circuit)
MPX
fX/29
BT
fX/212
3
BTM3
SET1*
BTM2
BTM1
Wait release signal
for standby release
BTM0
BTM
4
8
Internal bus
*: Instruction execution
Fig. 5-3 Basic Interval Timer Configuration
22
BT
interrupt
request flag
Vector
interrupt
request
IRQBT signal
µPD75512(A)
5.5
WATCH TIMER
The µPD75512(A) has a built-in 1-ch watch timer. The watch timer has these functions.
• Sets the test flag (IRQW) with 0.5 sec interval.
The standby mode can be released by IRQW.
• 0.5 second interval can be generated either from the main system clock or subsystem clock.
• Time interval can be advanced to 128 times faster (3.91 ms) by setting the fast mode. This is convenient
for program debugging, test, etc.
• Fixed frequency (2.048 kHz) can be output to the P23/BUZ pin. This can be used for beep and system clock
frequency trimming.
• The frequency divider circuit can be cleared so that zero second watch start is possible.
fW
(256 Hz: 3.91 ms)
27
fX
From the 128
(32.768 kHz)
clock
generator f XT
(32.768 kHz)
Selector
fW
Frequency divider
(32.768
kHz)
f W (2.048
16 kHz)
fW
2 14
INTW
(IRQW
set signal)
Selector
(2 Hz
0.5 sec)
Clear
Output buffer
P23/BUZ
WM
WM7
PORT2.3
0
0
0
0
8
WM2 WM1 WM0
P23
output
latch
Bit 2 of PMGB
Port 2
input/output
mode
Bit test
instruction
Internal bus
Remarks: ( ) is for fX = 4.194304 MHz, fXT = 32.768 kHz.
Fig. 5-4 Watch Timer Block Diagram
5.6
TIMER/EVENT COUNTER
The µPD75512(A) has a built-in 1-ch timer/event counter.
The timer/event counter has these functions:
• Programmable interval timer operation
• Outputs square-wave signal of an arbitrary frequency to the PTO0 pin.
• Event counter operation
• Divides the TI0 pin input in N and outputs to the PTO0 pin (frequency divider operation).
• Supplies serial shift clock to the serial interface circuit.
• Count condition read out function
23
24
Internal bus
8
SET1*
TM0
8
8
TMOD0
TOE0
TO
enable
flag
Modulo register (8)
TM07 TM06 TM05 TM04 TM03 TM02 TM01 TM00
Coincidence
Comparator (8)
Input
buffer
P20
output
latch
Bit 2 of PGMB
Port 2
input/
output
mode
To serial interface
8
PORT1.3
PORT2.0
8
TOUT
F/F
Reset
P20/PTO0
Output
buffer
T0
P13/TI0
From the
clock
generator
Count register (8)
MPX
CP
Clear
(
INTT0
IRQT0
set signal
)
Timer operation start signal
RESET
IRQT0
clear signal
*:Instruction execution
Fig. 5-5 Timer/Event Counter Block Diagram
µPD75512(A)
µPD75512(A)
5.7
TIMER/PULSE GENERATOR
The µPD75512(A) contains a timer/pulse generator, that can be used as the timer or the pulse generator. Timer/
pulse generator has the following functions.
(a)
Function, when used in the timer mode
• 8-bit interval timer operation (IRQTPG generation), for which the clock source can be changed in 5
steps.
• Square waveform output to the PPO pin
(b)
Function, when used in the PWM pulse generation mode
• 14-bit accuracy PWM pulse output to PPO pin (can be used as a D/A converter for electronics tuning).
15
• Fixed time interval interrupt generation (2 /fX = 7.81ms: fX = 4.19 MHz)
When no pulse output is required, the PPO pin can be used as 1-bit output port.
Note:
When setting the STOP mode, if the timer pulse generator is in operating mode, erroneous operation
may occur. Therefore, the timer/pulse generator must be set in no-operation state by the mode
register, before setting the STOP mode.
Internal bus
8
8
MODH
MODL
Modulo register L (8)
Modulo register H (8)
TPGM3
(Set to 1 )
INTTPG
(IRQTPG
set signal)
Modulo latch H (8)
8
Coincidence
Comparator (8)
Output buffer
Selector
T F/F
PPO
Frequency
divider
fx
1/2
CP
Prescaler select latch (5)
Set
8
Count register (8)
TPGM4 TPGM5 TPGM7
TPGM1
Clear
Clear
Fig. 5-6 Timer/Pulse Generator Block Diagram (Timer Mode)
25
µPD75512(A)
Internal bus
MODH
MODL
Modulo register H (8)
Modulo register L (8)
TPGM3
MODH(8)
MODL7-2 (6)
Modulo latch (14)
Output buffer
TPGM1
fx
PWM pulse generator
PPO
Selector
1/2
Frequency divider
INTTPG
IRQTPG set signal
TPGM5
TPGM7
15
(2
= 7.8 ms: f x at 4.19MHz)
fx
Fig. 5-7 Timer/Pulse Generator Block Diagram (PWM Pulse Generation Mode)
5.8
SERIAL INTERFACE
The µPD75512(A) is provided with two serial interface channels. Table 5-2 indicates differences between channel
0 and channel 1.
Table 5-2 Differences Between Channel 0 and Channel 1
Serial Transfer Mode, Funciton
3-Line
Serial I/O
Channel 0
4
3
Channel 1
4
3
Clock Selection
fX/2 , fX/2 , TOUT F/F, external clock
fX/2 , fX/2 external clock
Transfer Method
MSB first/LSB first selectable
MSB first
Transfer Completion
Flag
Serial transfer completion interrupt
request flag (IRQCSI0)
Serial transfer completion flag (EOT)
Usable
Unprovided
2-Line Serial I/O
Serial Bus Interface (SBI)
(1)
Serial interface function (Channel 0)
The µPD75512(A) is equipped with the following four modes:
• Operation stop mode
• Three-line serial I/O mode
• Two-line serial I/O mode
• SBI mode (serial bus interface mode)
26
Internal bus
8/4
CSIM0
8
Bit
test
8
8
Slave address register
(SVA)
(8)
SBIC
Coincidence
signal
Address comparator
RELT
CMDT
(8)
P03/SI/SB1
SET CLR
Shift register (SIO0)
(8)
D
SO0 latch
Q
ACKT
ACKE
BSYE
Selector
Bit test
Bit manipulation
Selector
P02/SO/SB0
Busy/
acknowledge
output
circuit
Bus release/
command/
acknowledge
detector
circuit
P01/SCK0
Serial clock
counter
P01
output
latch
Serial clock
control
circuit
RELD
CMDD
ACKD
INTCSI0
control
circuit
(
MPX
INTCSI0
IRQCSI0
set signal
fX/23
fX/24
fX/26
TOUT F/F
(from timer/
event counter)
27
µPD75512(A)
External SCK0
Fig. 5-8 Serial Interface (Channel 0) Block Diagram
)
µPD75512(A)
(2)
Serial interface (Channel 1) configuration
µPD75512(A) serial interface (channel 1) has following two modes.
• Operation stop mode
• 3-line serial I/O mode
28
Internal bus
8
Bit
manipulation
SIO1 write signal (serial start signal)
bit 0
P83/SI1
7
bit 7
SIO1
Shift register 1 (8)
Bit
manipulation
8
0
Serial operation mode (8)
register 1 (8)
CSIM1
P82/SO1
Clear
Serial clock
counter (3)
Overflow
Set
Serial transfer
completion flag
(EOT)
Clear
P81/SCK1
R
Q
S
fx /23
MPX
Fig. 5-9 Serial Interface (Channel 1) Block Diagram
29
µPD75512(A)
fx /24
µPD75512(A)
5.9
A/D CONVERTER
The µ PD75512(A) is provided with an 8-bit resolution analog-to-digital (A/D) converter with eight channels
of analog inputs (AN0-AN7).
This A/D converter is of a successive approximation type.
Internal bus
8
0
ADM6 ADM5 ADM4
SOC
EOC
ADM1
0
ADM
8
AN0
Control circuit
AN1
Sample hold circuit
AN3
AN4
Multiplexer
AN2
SA register (8)
+
–
Comparator
AN5
AN6
8
AN7
Tap decoder
AVREF
R/2
R
R
R
R/2
AVSS
Fig. 5-10 Block Diagram of A/D Converter
30
µPD75512(A)
5.10
BIT SEQUENTIAL BUFFER ..... 16 BITS
The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer,
addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this
buffer is very useful for processing long data in bit units.
FC3H
Address bit
3
Symbol
L register
2
FC2H
1
0
3
BSB3
L=F
2
FC1H
1
0
3
BSB2
L=C L=B
2
FC0H
1
0
3
BSB1
L=8 L=7
2
1
0
BSB0
L=4 L=3
L=0
DECS L
INCS L
Remarks:
For the pmem.@L addressing, the specification bit is shifted according to the L register.
Fig. 5-11 Bit Sequential Buffer Format
6.
INTERRUPT FUNCTIONS
The µPD75512(A) has 7 different interrupt sources and multiplexed interrupt with priority order.
In addition to that, the µ PD75512 is also provided with two types of test sources, of which INT2 has two types
of edge detection testable inputs.
The interrupt control circuit of the µPD75512(A) has these functions:
• Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by
using the interrupt flag (IExxx) and interrupt master enable flag (IME).
• The interrupt start address can be arbitrarily set.
• Interrupt request flag (IRQxxx) test function (an interrupt generation can be confirmed by means of
software).
• Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).
31
32
Internal bus
2
2
2
IM2
IM1
IM0
Interrupt enable flag (IExxx)
INT
BT
INT4
/P00
INT0
/P10
INT1
/P11
KR7/P73
IRQ1
Priority control
circuit
Vector table
address
generator
IRQW
Selector
INTW
Falling edge
detection
circuit
IRQ0
IRQTPG
INTTPG
KR0/P60
IST
IRQT0
INTT0
Rising edge
detection
circuit
IPS
VRQn
IRQ4
IRQCSI0
INTCSI0
2
Decoder
IRQBT
Both edge
detection
circuit
Edge
Noise
detection
elimination
circuit
circuit
Edge
detection
circuit
INT2
/P12
(IME)
4
Standby
release signal
IRQ2
Fig. 6-1 Interrupt Control Block Diagram
µPD75512(A)
IM2
µPD75512(A)
7.
STANDBY FUNCTIONS
In order to fully exploit the µPD75512(A) low power dissipation, CPU operation can be stopped by setting the unit
to the standby mode, thus, further reducing power dissipation. The µPD75512(A) features two standby modes, a
STOP mode and a HALT mode.
Table 7-1 Status in Standby Mode
Mode
Item
STOP Mode
HALT Mode
Instruction for Setting
STOP instrtuction
HALT instruction
System Clock at the Time of
Setting
Can be set only when operating on
the main system clock
Can be set when operating either on
the main system clock or the subsystem clock
Clock Oscillator
Only the main system clock can stop
its operation.
Only the CPU clock Φ stops its
operation. (oscillation continues)
Basic Interval
Timer
Does not operate
Operates (Sets IRQBT with the
reference time interval)
Serial Interface
(Channel 0)
Can operate only when the external
SCK0 input is selected as the serial
clock
Operates when the timer system
clock is operating or external SCK0 is
selected
Serial Interface
(Channel 1)
Can operate only when the external
SCK1 input is selected as the serial
clock
Operates only when the main system
clock is operating
Timer/Event
Counter
Can only operate when the TI0 pin
input is selected as system clock
Operates only when the main system
clock is operating
Clock Timer
Operates when f XT is selected as the
count clock
Can operate
A/D Converter
Does not operate
Operates only when the main system
clock is operating
Timer/Pulse
Generator
Does not operate
Operates only when the main system
clock is operating
Operation
Status
Timer/Pulse
Generator
CPU
Release Signal
INT1, INT2, and INT4 can operate, but INT0 cannot operate
Does not operate
An interrupt request signal from a piece of hardware, whose operation is
enabled by the interrupt enable flag, or the RESET signal input
33
µPD75512(A)
8.
RESET FUNCTIONS
When the RESET signal is input, the µPD75512(A) is reset and each hardware is initialized as indicated in
Table 8-1. Fig. 8-1 shows the reset operation timing.
Wait
(31.3ms/4.19MHz)
RESET input
Operation mode
or standby mode
HALT mode
Operation mode
Internal reset operation
Fig. 8-1 Reset Operation by RESET Input
Table 8-1 Status of Each Hardware after Reset (1/2)
Hardware
RESET Input in Standby Mode
RESET Input during Operation
The contents of the lower 6 bits
of address 0000H of the program
memory are set to PC13-8, and
the contents of address 0001H
are set to PC7-0.
Same as left
Retained
Undefined
0
0
Interrupt Status Flag (IST0, 1)
0
0
Bank Enable Flag (MBE, RBE)
The contents of bit 6 of address
0000H of the program memory
are set to RBE and those of bit 7
are set to MBE.
Same as left
Stack Pointer (SP)
Undefined
Undefined
Data Memory (RAM)
Retained *
Undefined
Retained
Undefined
Bank Selection Register (MBS, RBS)
0, 0
0, 0
Basic Interval Counter (BT)
Timer
Mode Register (BTM)
Undefined
Undefined
0
0
Program Counter (PC)
PSW
Carry Flag (CY)
Skip Flag (SK0-2)
General-Purpose Register
(X, A, H, L, D, E, B, C)
Timer/Event
Counter
Counter (T0)
Modulo Register
(TMOD0)
Mode Register (TM0)
Timer/Pulse
Generator
Watch Timer
0
0
FFH
FFH
0
0
TOE0, TOUT F/F
0, 0
0, 0
Modulo Register
Retained
Retained
Mode Register
0
0
Mode Register (WM)
0
0
*: Data of address 0F8H to 0FDH of the data memory becomes undefined when a RESET signal is input.
34
µPD75512(A)
Table 8-1 Status of Each Hardware after Reset (2/2)
Hardware
Serial
Interface
(Channel 0)
Shift Register (SIO0)
Retained
Undefined
0
0
SBI Control Register
(SBIC)
0
0
Retained
Undefined
1
1
04H (EOC = 1)
04H (EOC = 1)
P01/SCK0 Output
Latch
A/D Converter Mode Regiseter (ADM),
EOC
SA Register
Serial
Interface
(Channel 1)
Interrupt
Function
Digital Port
RESET Input during Operation
Operation Mode
Register (CSIM0)
Slave Address Register
(SVA)
Clock
Generator,
Clock Output
Circuit
RESET Input in Standby Mode
7FH
7FH
Processor Clock Control
Register (PCC)
0
0
System Clock Control
Register (SCC)
0
0
Clock Output Mode
Register (CLOM)
0
0
Retained
Undefined
Operation Mode
Register 1 (CSIM1)
0
0
Serial Transfer End
Flag (EOT)
0
0
Reset (0)
Reset (0)
Interrupt Enable Flag
(IExxx)
0
0
Interrupt Master Enable
Flag (IME)
0
0
INT0, INT1, INT2 Mode
Registers (IM0, 1, 2)
0, 0, 0
0, 0, 0
Output Buffer
Off
Off
Output Latch
Shift Register
(SIO1)
Interrupt Request Flag
(IRQxxx)
Clear (0)
Clear (0)
Input/Output Mode
Register (PMGA, B, C)
0
0
Pull-Up Resistor
Specification Register
(POGA)
0
0
Retained
Undefined
Bit Sequential Buffer (BSB0-3)
35
µPD75512(A)
9.
INSTRUCTION SET
(1)
Operand representation and description
Describe one or more operands in the operand field of each instruction according to the operand
representation and description methods of the instruction (for details, refer to RA75X Assembler Package
User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from
several operands. The uppercase characters, +, and – are keywords and must be described as is.
Describe an appropriate numeric value or label as immediate data.
Representation
Description
reg
reg1
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
rp
rp1
rp2
rp'
rp'1
XA, BC, DE, HL
BC, DE, HL
BC, DE
XA, BC, DE, HL, XA', BC', DE', HL'
BC, DE, HL, XA', BC', DE', HL'
rpa
rpa1
HL, HL+, HL–, DE, DL
DE, DL
n4
n8
4-bit immediate data or label
8-bit immediate data or label
mem
bit
8-bit immediate data or label*
2-bit immediate data or label
fmem
pmem
FB0H to FBFH,FF0H to FFFH immediate data or label
FC0H to FFFH immediate data or label
addr
caddr
faddr
0000H to 2F7FH immediate data or label
12-bit immediate data or label
11-bit immediate data or label
taddr
20H to 7FH immediate data (where bit0 = 0) or label
PORTn
IExxx
RBn
MBn
PORT0 to PORT15
IEBT, IECSI0, IET0, IE0, IE1, IE2, IE4, IEW, IETPG
RB0-RB3
MB0, MB1, MB15
*: Only even addresses can be described in mem when processing
8-bit data.
36
µPD75512(A)
(2)
Legend of operation field
A
: A register; 4-bit accumulator
B
: B register; 4-bit accumulator
C
: C register; 4-bit accumulator
D
: D register; 4-bit accumulator
E
: E register; 4-bit accumulator
H
: H register; 4-bit accumulator
L
: L register; 4-bit accumulator
X
: X register; 4-bit accumulator
XA
: Register pair (XA); 8-bit accumulator
BC
: Register pair (BC); 8-bit accumulator
DE
: Register pair (DE); 8-bit accumulator
HL
: Register pair (HL); 8-bit accumulator
XA'
: Expanded register pair (XA')
BC'
: Expanded register pair (BC')
DE'
: Expanded register pair (DE')
HL'
: Expanded register pair (HL')
PC
: Program counter
SP
: Stack pointer
CY
: Carry flag; or bit accumulator
PSW
: Program status word
MBE
: Memory bank enable flag
RBE
: Register bank enable flag
PORTn : Port n (n = 0 to 15)
IME
: Interrupt mask enable flag
IPS
: Interrupt priority selector register
IExxx
: Interrupt enable flag
RBS
: Memory bank selector register
MBS
: Memory bank selector register
PCC
: Processor clock control register
.
: Delimiter of address and bit
(xx)
: Contents addressed by xx
xxH
: Hexadecimal data
37
µPD75512(A)
(3)
Symbols in addressing area field
*1
MB = MBE . MBS
(MBS = 0, 1, 15)
*2
MB = 0
*3
MBE = 0 : MB = 0 (00H-7FH)
MB = 15 (80H-FFH)
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
*4
MB = 15, fmem = FB0H-FBFH,
FF0H-FFFH
*5
MB = 15, pmem = FC0H-FFFH
*6
addr = 0000H-2F7FH
*7
addr = (Current PC) – 15 to (Current PC) – 1
(Current PC) + 2 to (Current PC) + 16
*8
caddr = 0000H-0FFFH (PC13, 12 = 00B) or
1000H-1F7FH (PC13, 12 = 01B) or
2000H-2F7FH (PC13, 12 = 10B)
*9
faddr = 0000H-07FFH
*10
taddr = 0020H-007FH
Remarks 1:
(4)
Data memory
addressing
Program
memory
addressing
MB indicates memory bank that can be accessed.
2:
In *2, MB = 0 regardless of MBE and MBS.
3:
In *4 and *5, MB = 15 regardless of MBE and MBS.
4:
*6 to *10 indicate areas that can be addressed.
Machine cycle field
In this field, S indicates the number of machine cycles required when an instruction having a skip
function skips. The value of S varies as follows:
• When no instruction is skipped ····························································· S = 0
• When 1-byte or 2-byte instruction is skipped ······································ S = 1
• When 3-byte instruction (BR ! addr or CALL ! addr) is skipped ······· S = 2
Note : The GETI instruction is skipped in one machine cycle.
One machine cycle equals to one cycle of the CPU clock Φ, (=tCY), and can be changed in three steps
depending on the setting of the processor clock control register (PCC).
38
µPD75512(A)
Instructions
Mnemonics
Transfer MOV
XCH
Table
Reference
MOVT
Operand
A, #n4
Machine
Bytes
Cycles
1
1
Operation
Addressing
Area
A ← n4
Skip
Conditions
String effect A
reg1, #n4
2
2
reg1 ← n4
XA, #n8
2
2
XA ← n8
String effect A
HL, #n8
2
2
HL ← n8
String effect B
rp2, #n8
2
2
rp2 ← n8
A, @HL
1
1
A ← (HL)
*1
A, @HL+
1
2+S
A ← (HL), then L ← L+1
*1
L=0
A, @HL–
1
2+S
A ← (HL), then L ← L–1
*1
L = FH
A, @rpa1
1
1
A ← (rpa1)
*2
XA, @HL
2
2
XA ← (HL)
*1
@HL, A
1
1
(HL) ← A
*1
@HL, XA
2
2
(HL) ← XA
*1
A,mem
2
2
A ← (mem)
*3
XA, mem
2
2
XA ← (mem)
*3
mem, A
2
2
(mem) ← A
*3
*3
mem, XA
2
2
(mem) ← XA
A, reg
2
2
A ← reg
XA, rp'
2
2
XA ← rp'
reg1, A
2
2
reg1 ← A
rp'1, XA
2
2
rp'1 ← XA
A, @HL
1
1
A ↔ (HL)
*1
A, @HL+
1
2+S
A ← (HL), then L ← L+1
*1
L=0
A, @HL–
1
2+S
A ← (HL), then L ← L–1
*1
L = FH
A, @rpa1
1
1
A ↔ (rpa1)
*2
XA, @HL
2
2
XA ↔ (HL)
*1
A, mem
2
2
A ↔ (mem)
*3
XA, mem
2
2
XA ↔ (mem)
*3
A, reg1
1
1
A ↔ reg1
XA, rp'
2
2
XA ↔ rp'
XA, @PCDE
1
3
XA ← (PC13-8+DE)ROM
XA, @PCXA
1
3
XA ← (PC13-8+XA)ROM
39
µPD75512(A)
Addressing
Area
Mnemonics
Operand
Bit
MOV1
CY, fmem.bit
2
2
CY ← (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← (pmem7-2+L3-2.bit(L1-0))
*5
CY, @H+mem.
bit
2
2
CY ← (H+mem3-0.bit)
*1
fmem.bit, CY
2
2
(fmem.bit) ← CY
*4
pmem.@L, CY
2
2
(pmem7-2+L 3-2.bit(L 1-0)) ← CY
*5
@H+mem.bit,
CY
2
2
(H+mem3-0.bit) ← CY
*1
Arithme- ADDS
tic
A,#n4
1
1+S
A ← A+n4
carry
XA,#n8
2
2+S
XA ← XA+n8
carry
Operation
A,@HL
1
1+S
A ← A+(HL)
XA,rp’
2
2+S
XA ← XA+rp’
carry
rp’1,XA
2
2+S
rp’1 ← rp’1+XA
carry
A,@HL
1
1
A,CY ← A+(HL)+CY
XA,rp’
2
2
XA,CY ← XA+rp’+CY
rp’1,XA
2
2
rp’1,CY ← rp’1+XA+CY
A,@HL
1
1+S
Transfer
ADDC
SUBS
SUBC
AND
OR
XOR
40
Machine
Bytes
Cycles
Instructions
Operation
A ← A-(HL)
XA,rp’
2
2+S
XA ← XA-rp’
rp’1,XA
2
2+S
rp’1 ← rp’1-XA
A,@HL
1
1
A,CY ← A-(HL)-CY
XA,rp’
2
2
XA,CY ← XA-rp’-CY
rp’1,XA
2
2
rp’1,CY ← rp’1-XA-CY
A,#n4
2
2
A←A
A,@HL
1
1
A←A
∧ n4
∧ (HL)
XA,rp’
2
2
XA ← XA-rp’
rp’1,XA
2
2
rp’1 ← rp’1
A,#n4
2
2
A←A
A,@HL
1
1
XA,rp’
2
2
rp’1,XA
2
2
A,#n4
2
2
A,@HL
1
1
XA,rp’
2
2
rp’1,XA
2
2
∧ XA
∨ n4
A ← A ∨ (HL)
XA ← XA ∨ rp’
rp’1 ← rp’1 ∨ XA
A ← A ∨ n4
A ← A ∨ (HL)
XA ← XA ∨ rp’
rp’1 ← rp’1 ∨ XA
*1
Skip
Conditions
carry
*1
*1
borrow
borrow
borrow
*1
*1
*1
*1
µPD75512(A)
Instructions
Mnemonics
Operand
Bytes
Machine
Cycles
Operation
Addressing
Area
Skip
Conditions
Accumu- RORC
lator
A
1
1
CY ← A0, A3 ← CY, An-1 ← An
Manipu-
NOT
A
2
2
A← A
INCS
reg
1
1+S
reg ← reg+1
ment/
rp1
1
1+S
rp1 ← rp1+1
Decre-
@HL
2
2+S
(HL) ← (HL)+1
*1
(HL) = 0
*3
(mem) = 0
lation
Incre-
ment
DECS
mem
2
2+S
(mem) ← (mem)+1
reg
1
1+S
reg ← reg-1
reg = 0
rp1 = 00H
reg = FH
rp’
2
2+S
rp’ ← rp’-1
rp’ = FFH
Compari- SKE
reg,#n4
2
2+S
Skip if reg = n4
reg = n4
son
@HL,#n4
2
2+S
Skip if (HL) = n4
*1
(HL) = n4
A,@HL
1
1+S
Skip if A = (HL)
*1
A = (HL)
XA,@HL
2
2+S
Skip if XA = (HL)
*1
XA = (HL)
A,reg
2
2+S
Skip if A = reg
A = reg
XA,rp’
2
2+S
Skip if XA = rp’
XA = rp’
Carry
SET1
CY
1
1
Flag
CLR1
CY
1
1
Manipu- SKT
lation
NOT1
CY
1
1+S
CY
1
1
CY ← 1
CY ← 0
Skip if CY = 1
CY = 1
CY ← CY
41
µPD75512(A)
Instructions
Mnemonics
Operand
Operation
Addressing
Area
Memory/ SET1
mem.bit
2
2
(mem.bit) ← 1
*3
Bit
fmem.bit
2
2
(fmem.bit) ← 1
*4
Manipu-
pmem.@L
2
2
(pmem7-2 + L 3-2.bit(L1-0)) ← 1
*5
lation
@H+mem.bit
2
2
(H + mem 3-0.bit) ← 1
*1
mem.bit
2
2
(mem.bit) ← 0
*3
CLR1
SKT
SKF
fmem.bit
2
2
(fmem.bit) ← 0
*4
pmem.@L
2
2
(pmem 7-2 + L 3-2.bit(L1-0)) ← 0
*5
AND1
OR1
XOR1
Branch
BR
Skip
Conditions
@H+mem.bit
2
2
(H+mem3-0.bit) ← 0
*1
mem.bit
2
2+S
Skip if (mem.bit) = 1
*3
fmem.bit
2
2+S
Skip if (fmem.bit) = 1
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem 7-2+L 3-2.bit (L1-0 )) = 1
*5
(pmem.@L) = 1
(mem.bit) = 1
@H+mem.bit
2
2+S
Skip if (H + mem 3-0.bit) = 1
*1
(@H+mem.bit) = 1
mem.bit
2
2+S
Skip if (mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 0
*4
(fmem.bit) = 0
pmem.@L
2
2+S
Skip if (pmem7-2 +L3-2.bit (L1-0)) = 0
*5
(pmem.@L) = 0
@H+mem.bit
2
2+S
Skip if (H + mem 3-0.bit) = 0
*1
(@H+mem.bit) = 0
SKTCLR fmem.bit
42
Machine
Bytes Cycles
2
2+S
Skip if (fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem 7-2+L 3-2.bit
(L 1-0)) = 1 and clear
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H+mem 3-0.bit) = 1 and clear
*1
(@H+mem.bit) = 1
∧ (fmem.bit)
CY,fmem.bit
2
2
CY ← CY
CY,pmem.@L
2
2
CY ← CY ∧ (pmem 7-2+L3-2.bit(L1-0))
CY,@H+mem.bit
2
2
CY ← CY
*4
*5
∧ (H+mem3-0.bit)
← CY ∨ (fmem.bit)
*4
*5
CY,fmem.bit
2
2
CY
CY,pmem.@L
2
2
CY ← CY ∨ (pmem7-2+L 3-2.bit (L1-0))
CY,@H+mem.bit
2
2
CY ← CY
CY,fmem.bit
2
2
CY ← CY
∨ (H+mem3-0.bit)
∨ (fmem.bit)
*1
*1
*4
CY,pmem.@L
2
2
CY ← CY ∨ (pmem7-2+L 3-2.bit (L1-0))
CY,@H+mem.bit
2
2
CY ← CY
addr
—
—
PC 13-0 ← addr
(The most suitable instruction
is selectable from among BR
!addr, BRCB !caddr, and BR
$addr depending on the
assembler.)
*6
∨ (H+mem3-0.bit)
*5
*1
!addr
3
3
PC 13-0 ← addr
*6
$addr
1
2
PC 13-0 ← addr
*7
BRCB
!caddr
2
2
PC 13-0 ← PC13,12+caddr11-0
*8
BR
PCDE
2
3
PC 13-0 ← PC13-8+DE
PCXA
2
3
PC 13-0 ← PC13-8+XA
µPD75512(A)
Machine
Bytes Cycles
Addressing
Area
Instructions
Mnemonics
Subroutine/
Stack
Control
CALL
!addr
3
3
(SP-4)(SP-1)(SP-2) ← PC11-0
(SP-3) ← MBE, RBE, PC13,12
PC13-0 ← addr, SP ← SP-4
*6
CALLF
!faddr
2
2
(SP-4)(SP-1)(SP-2) ← PC11-0
(SP-3) ← MBE, RBE, PC13,12
PC13-0 ← 00, faddr, SP ← SP-4
*9
RET
1
3
MBE, RBE, PC13,12 ← (SP+1)
PC11-0 ← (SP)(SP+3)(SP+2)
SP ← SP+4
RETS
1
3+S
MBE, RBE, PC13,12 ← (SP+1)
PC11-0 ← (SP)(SP+3)(SP+2)
SP ← SP+4, then skip unconditionally
RETI
1
3
PC13,12 ← (SP+1)
PC11-0 ← (SP)(SP+3)(SP+2)
PSW ← (SP+4)(SP+5), SP ← SP+6
rp
1
1
(SP-1)(SP-2) ← rp, SP ← SP-2
BS
2
2
(SP-1) ← MBS, (SP-2) ← RBS, SP ← SP-2
rp
1
1
rp ← (SP+1)(SP), SP ← SP+2
BS
2
2
MBS ← (SP+1), RBS ← (SP), SP ← SP+2
2
2
IME (IPS.3) ← 1
2
2
IExxx ← 1
2
2
IME (IPS.3) ← 0
2
2
IExxx ← 0
PUSH
POP
Inter-
EI
rupt
Control
Operand
IExxx
DI
IExxx
I/O
IN
*
1
OUT * 1
Operation
A,PORTn
2
2
A ← PORTn
XA,PORTn
2
2
XA ← PORTn+1,PORTn
PORTn,A
2
2
PORTn ← A
PORTn,XA
(n = 4, 6)
(n = 2-7, 9-14)
2
2
PORTn+1,PORT n ← XA
HALT
2
2
Set HALT Mode (PCC.2 ← 1)
Control
STOP
2
2
Set STOP Mode (PCC.3 ← 1)
NOP
1
1
No Operation
RBn
2
2
RBS ← n
MBn
2
2
1
3
SEL
GETI * 2 taddr
Undefined
(n = 0-15)
CPU
Special
Skip
Conditions
(n = 4, 6)
(n = 0-3)
MBS ← n
(n = 0, 1, 15)
. Where TBR instruction,
PC13-0 ← (taddr)4-0+(taddr+1)
.........................................................
. Where TCALL instruction,
(SP-4)(SP-1)(SP-2) ← PC11-0
(SP-3) ← MBE, RBE, PC13,12
PC13-0 ← (taddr)5-0+(taddr+1)
SP ← SP-4
.........................................................
. Except for TBR and TCALL
instructions,
Instruction execution of
(taddr)(taddr+1)
*10
.............................
.............................
Depends on
referenced
instruction
*1: When executing the IN/OUT instruction, MBE = 0, or MBE = 1, and MBS = 15.
*2: The TBR, and TCALL instructions are the assembler pseudo-instructions for the table definition of
GETI instruction.
43
µPD75512(A)
10.
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Parameter
Symbol
Supply Voltage
Conditions
Ratings
VDD
VI1
Other than ports 4, 5, 12-14
Input Voltage
VI2
Ports 4, 5, 12-14
Output Voltage
VO
w/pull-up
resistor
V
-0.3 to V DD+0.3
V
-0.3 to VDD+0.3
Open drain
High-Level Output
Current
Low-Level Output
IOH*
IOL*
Unit
-0.3 to +7.0
V
-0.3 to +11
V
-0.3 to V DD+0.3
V
1 pin
Peak
rms
-10
-5
mA
mA
All pins
Peak
rms
Peak
-30
-15
10
mA
mA
mA
rms
5
mA
Peak
rms
100
60
mA
mA
Peak
100
mA
rms
60
mA
1 pin
Current
Total of ports 0, 2, 3, 4
Total of ports 5-11
Total of ports 12-14
Peak
40
mA
rms
mA
°C
°C
Operating Temperature
Topt
25
-40 to +85
Storage Temperature
Tstg
-65 to +150
*: rms = Peak value x √Duty
OPERATING SUPPLY VOLTAGE
Parameter
A/D Converter
Symbol
Supply voltage
Ambient temperature
Timer/Pulse
Supply voltage
Generator
Ambient temperatuare
Other Circuits
Supply voltage
Ambient temperatuare
MIN.
MAX.
Unit
VDD
Conditions
3.5
6.0
V
°C
Ta
-40
+85
VDD
4.5
6.0
V
Ta
-40
+85
°C
VDD
2.7
6.0
V
Ta
-40
+85
°C
TYP.
MAX.
Unit
15
pF
15
pF
15
pF
CAPACITANCE (T a = 25°C, VDD = 0 V)
Parameter
44
Symbol
Input Capacitance
CI
Output Capacitance
CO
Input/Output
Capacitance
CIO
Conditions
f = 1 MHz
Pins other than thosemeasured are at 0 V
MIN.
µPD75512(A)
MAIN SYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
(Ta = -40 to +85°C, V DD = 2.7 to 6.0 V)
Oscillator
Recommended
Constants
Ceramic
Item
Oscillation
frequency(fX)*1
X1
X2
C1
C2
Crystal
Conditions
VDD = osccillation
voltage range
1.0
1.0
X1 input frequency
(f X)*1
X1
X2
4.19
µ PD74HCU04
1.0
X1 input high-,
low-level widths
(t XH, t XL)
*3
4
C2
External Clock
MAX.
5.0
Oscillation stabiliza- VDD = 4.5 to 6.0 V
tion time*2
X2
C1
TYP.
Oscillation stabiliza- After VDD came to
MIN. value of
tion time*2
oscillation voltage
range
Oscillation
frequency (fX)*1
X1
MIN.
5.0
MHz
ms
MHz
10
ms
30
ms
5.0
100
*3
Unit
*3
500
MHz
ns
SUBSYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
(Ta = -40 to +85°C, V DD = 2.7 to 6.0 V)
Oscillator
Recommended
Constants
Item
Conditions
Oscillation*1
Crystal
XT1
frequency (fXT)
XT2
R
C3
MIN.
TYP.
MAX.
Unit
32
32.768
35
kHz
1.0
2
s
10
s
Oscillation stabiliza- VDD = 4.5 to 6.0 V
tion time*2
C4
External Clock
XT1
XT2
Open
XT1 input frequency
(f XT)*1
32
100
kHz
XT1 input high-,
low-level widths
(tXTH, t XTL )
5
15
µs
*1: Only to express the characteristics of the oscillator circuit. For instruction execution time, refer to AC
Characteristics.
2: Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage
range or the STOP mode has been released.
3: When the oscillation frequency is 4.19 MHz < fx ≤ 5.0 MHz, do not select PCC = 0011 as the instruction
★
execution time: otherwise, one machine cycle is set to less than 0.95 µs, falling short of the rated
minimum value of 0.95 µ s.
45
µPD75512(A)
★
Note: When using the oscillation circuit of the main system clock and subsystem clock, wire the portion
enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:
• Keep the wiring length as short as possible.
• Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines
through which a high alternating current flows.
• Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VSS.
Do not connect the ground pattern through which a high current flows.
• Do not extract signals from the oscillation circuit.
The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce the
current dissipation and therefore, the subsystem clock oscillation circuit is influenced by noise more
easily than the main system clock oscillation circuit. When using the subsystem clock, therefore,
exercise utmost care in wiring the circuit.
46
µPD75512(A)
DC CHARACTERISTICS (T a = -40 to +85°C, VDD = 2.7 to 6.0 V)
Parameter
High-Level Input
Voltage
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
VIH1
Ports 2, 3, 9-11, P80, P82
0.7VDD
VDD
V
VIH2
Ports 0, 1, 6, 7, 15, P81, P83, RESET
0.8VDD
VDD
V
VIH3
Ports 4, 5, 12-14
w/pull-up resistor
0.7VDD
VDD
V
Open-drain
0.7VDD
10
V
VIH4
X1, X2, XT1
VDD -0.5
VDD
V
Low-level Input
VIL1
Ports 2-5, 9-14, P80, P82
0
0.3VDD
V
Voltage
VIL2
Ports 0, 1, 6, 7, 15, P81, P83, RESET
0
0.2VDD
V
VIL3
X1, X2, XT1
0
0.4
V
High-Level Output
VOH
Voltage
Low-Level Output
Voltage
High-Level Input
Leakage Current
Low-Level Input
Leakage Current
High-Level Output
Leakage Current
Low-Level Output
Leakage Current
VOL
ILIH1
VDD -1.0
VDD -0.5
Ports 3, 4, and 5
VDD = 4.5 to 6.0 V,
IOL = 5 mA
V
V
1.0
V
VDD = 4.5 to 6.0 V, IOL = 1.6 mA
0.4
V
IOL = 400 µA
0.2
0.5
V
0.2VDD
V
SB0, 1
Open-drain Pull-up
resistor ≥ 1 kΩ
VI = VDD
Other than below
3
µA
X1, X2, XT1
20
µA
ILIH3
VI = 9 V
Ports 4, 5, 12-14
(open-drain)
20
µA
ILIL1
VI = 0 V
Other than below
ILIH2
ILIL2
X1, X2, XT1
ILOH1
VO = VDD
Other than below
ILOH2
VO = 9 V
Ports 4, 5, 12-14
(open-drain)
ILOL
VO = 0 V
Internal Pull-Up Resistor RU1
Internal Pull-Down
Resistor
VDD = 4.5 to 6.0 V, IOH = -1 mA
IOH = -100 µA
Ports 0, 1, 2, 3, 6, 7
(except P00) V I = 0V
VDD = 5.0 V±10%
15
VDD = 3.0 V±10%
30
RU2
Ports 4, 5, 12-14
VO = V DD-2.0 V
VDD = 5.0 V±10%
15
RD
VO = 2 V
VDD = 3.0 V±10%
10
Port 9
20
40
-3
µA
-20
µA
3
µA
20
µA
-3
µA
80
kΩ
300
kΩ
40
70
kΩ
60
kΩ
70
140
kΩ
47
µPD75512(A)
Parameter
Supply Current
Symbol
*1
IDD1
IDD2
IDD3
Conditions
MHz*2
4.19
crystal
oscillator
C1 = C2 = 22pF
IDD5
MAX.
Unit
VDD = 5
3
9
mA
VDD = 3 V±10%* 4
0.55
1.5
mA
HALT mode
VDD = 5 V±10%
600
1800
µA
VDD = 3 V±10%
200
600
µA
40
120
µA
VDD = 3 V±10%
5
15
µA
VDD = 5 V±10%
0.5
20
µA
VDD = 3 V±10%
0.3
10
µA
5
µA
HALT mode
XT1 = 0 V
STOP mode
TYP.
Ooperation
mode
32.768 kHz*5 crystal Operation
oscillator
mode
IDD4
MIN.
V±10%* 3
VDD = 3 V±10%
Ta = 25°C
*1: Currents for the built-in pull-up resistor are not included.
2: Including when the subsystem clock is operated.
3: When operand in the high-speed mode with the processor clock control register (PCC) set to 0011.
4: When operated in the low-speed mode with the PCC set to 0000.
5: When operated with the subsystem clock by setting the system clock control register (SCC) to 1001 to
stop the main system clock operation.
48
µPD75512(A)
AC CHARACTERISTICS (Ta = -40 to +85°C, V DD = 2.7 to 6.0 V)
(1)
Basic Operation
Parameter
Symbol
Conditions
w/main system clock
MIN.
VDD = 4.5 to 6.0 V
TYP.
MAX.
Unit
0.95
64
µs
3.8
64
µs
125
µs
CPU Clock Cycle Time*1
(Minimum Instruction
Execution Time
= 1 Machine Cycle)
tCY
TI0 Input Frequency
fTI
VDD = 4.5 to 6.0 V
0
1
MHz
0
275
kHz
TI0 Input High-,
Low-Level Widths
tTIH,
tTIL
VDD = 4.5 to 6.0 V
0.48
µs
1.8
µs
Interrupt Input High-,
Low-Level Widths
tINTH,
tINTL
INT0
*2
µs
INT1, 2, 4
10
µs
10
µs
RESET Low-Level Width
tRSL
10
µs
w/sub-system clock
114
KR0-7
122
*1: The CPU clock (Φ) cycle time is
determined by the oscillation frequency
tCY vs VDD
of the connected oscillator, system clock
control register (SCC), and processor
(with main system clock)
70
clock control register (PCC). The figure
64
60
on the right is cycle time tCY vs. supply
voltage V DD characteristics at the main
6
system clock.
5
2: 2tCY or 128/fX depending on the setting
Guaranteed operating range
4
Cycle time tCY [µs]
of the interrupt mode register (IM0).
3
2
1
0.5
0
1
2
3
4
5
6
Supply voltage VDD [V]
49
µPD75512(A)
(2)
Serial Transfer Operation
(a)
Two-Line and Three-Line Serial I/O Modes (SCK: internal clock output)
Parameter
SCK Cycle Time
SCK High-, Low-Level
Widths
Symbol
tKCY1
tKL1
Conditions
MIN.
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
tKH1
1600
ns
3800
ns
ns
ns
150
ns
400
RL = 1 kΩ,
CL = 100 pF*
Unit
(tKCY1/2)-50
SI Hold Time (vs. SCK ↑ ) tKSI1
tKSO1
MAX.
(t KCY1/2)-150
SI Set-Up Time (vs. SCK ↑) tSIK1
SCK ↓→ SO Output
Delay Time
TYP.
ns
V DD = 4.5 to 6.0 V
250
ns
1000
ns
MAX.
Unit
*: RL and CL are load resistance and load capacitance of the SO output line.
(b)
Two-Line and Three-Line Serial I/O Modes (SCK: external clock input)
Parameter
SCK Cycle Time
SCK High-, Low-Level
Widths
Symbol
tKCY2
tKL2
Conditions
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
MIN.
800
ns
3200
ns
400
ns
tKH2
1600
ns
SI Set-Up Time (vs. SCK ↑) tSIK2
100
ns
SI Hold Time (vs. SCK ↑)
tKSI2
400
ns
SCK ↓→ SO Output
Delay Time
tKSO2
RL = 1 kΩ, CL = 100 pF* VDD = 4.5 to 6.0 V
*: RL and CL are load resistance and load capacitance of the SO output line.
50
TYP.
300
ns
1000
ns
µPD75512(A)
(c)
SBI Mode (SCK: internal clock output (master))
Parameter
SCK Cycle Time
Symbol
tKCY3
Conditions
VDD = 4.5 to 6.0 V
TYP.
MAX.
Unit
1600
ns
3800
ns
SCK High-, Low-Level
Widths
tKL3
tKH3
SB0, 1 Set-Up Time
(vs. SCK ↑ )
tSIK3
SB0, 1 Hold Time
(vs. SCK ↑ )
tKSI3
SCK ↓→ SB0, 1 Output
Delay Time
tKSO3
SCK ↑→ SB0, 1 ↓
tKSB
tKCY3
ns
SB0,1 ↓→ SCK
tSBK
tKCY3
ns
SB0, 1 Low-Level Width
tSBL
tKCY3
ns
SB0, 1 High-Level Width
tSBH
tKCY3
ns
(d)
VDD = 4.5 to 6.0 V
MIN.
VDD = 4.5 to 6.0 V
tKCY3/2-50
ns
tKCY3/2-150
ns
150
ns
tKCY3/2
ns
0
250
0
1000
ns
ns
SBI Mode (SCK: external clock input (slave))
Parameter
SCK Cycle Time
Symbol
tKCY4
Conditions
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
MIN.
TYP.
MAX.
Unit
800
ns
3200
ns
400
ns
1600
ns
100
ns
tKCY4/2
ns
SCK High-, Low-Level
Widths
tKL4
tKH4
SB0, 1 Set-Up Time
(vs. SCK ↑ )
tSIK4
SB0, 1 Hold Time
(vs. SCK ↑ )
tKSI4
SCK ↓→ SB0, 1 Output
Delay Time
tKSO4
SCK ↑→ SB0, 1 ↓
tKSB
tKCY4
ns
SB0,1 ↓→ SCK ↓
tSBK
tKCY4
ns
SB0, 1 Low-Level Width
tSBL
tKCY4
ns
SB0, 1 High-Level Width
tSBH
tKCY4
ns
RL = 1 kΩ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
0
300
0
1000
ns
ns
*: RL and C L are load resistance and load capacitance of the SO output line.
51
µPD75512(A)
(3)
A/D Converter (Ta = -40 to +85°C, VDD = 3.5 to 6.0 V, AVSS = VSS = 0 V)
Parameter
Symbol
Conditions
Resolution
MIN.
TYP.
8
8
2.5 V ≤ AVREF ≤ VDD* 2
Absolute Accuracy*1
MAX.
Unit
8
bit
±2.0
LSB
Conversion Time*3
tCONV
168/fX
µs
Sampling Time*4
tSAMP
44/fX
µs
Analog Input Voltage
VIAN
AVREF
V
AVSS
Analog Input Impedance
RAN
1000
AVREF Current
AIREF
1.0
*1: Absolute accuracy excluding quantization error (±
MΩ
2.0
mA
1
–2 LSB)
2: Set ADM1 as follows, in respect to the reference voltage of the AD converter (AVREF).
2.5 V
0.6 V DD
0.65 V DD
V DD (3.5 to 6.0 V)
AV REF
ADM1=0
ADM1=1
ADM1 can be set to either 0 or 1 when 0.6VDD ≤ AVREF ≤ 0.65VDD
3: Time since execution of conversion start instruction until EOC = 1 (40.1 µ s: fX = 4.19 MHz)
4: Time since execution of conversion start instruction until end of sampling (10.5 µs: fX = 4.19 MHz)
52
µPD75512(A)
AC TIMING TEST POINT (excluding X1 and XT1 inputs)
0.8 VDD
0.8 VDD
Test points
0.2 VDD
0.2 VDD
CLOCK TIMING
1/fX
tXL
tXH
X1 input
VDD –0.5V
0.4 V
1/fXT
tXTL
tXTH
XT1 input
VDD –0.5V
0.4 V
TI0 TIMING
1/fTI
tTIL
tTIH
TI0
53
µPD75512(A)
SERIAL TRANSFER TIMING
THREE-LINE SERIAL I/O MODE:
tKCY1
tKL1
tKH1
SCK
tSIK1
SI
tKSI1
Input data
tKSO1
Output data
SO
TWO-LINE SERIAL I/O MODE:
tKCY2
tKH2
tKL2
SCK
tKSO2
SB0,1
54
tSIK2
tKSI2
µPD75512(A)
SERIAL TRANSFER TIMING
BUS RELEASE SIGNAL TRANSFER:
t KCY3,4
tKL3,4
tKH3,4
SCK
tKSB
tSBL
tSBH
tSIK3,4
tSBK
tKSI3,4
SB0,1
tKSO3,4
COMMAND SIGNAL TRANSFER:
tKCY3,4
tKL3,4
tKH3,4
SCK
tKSB
tSIK3,4
tSBK
tKSI3,4
SB0,1
tKSO3,4
INTERRUPT INPUT TIMING
tINTL
tINTH
INT0, 1, 2, 4
KR0-7
RESET INPUT TIMING:
tRSL
RESET
55
µPD75512(A)
LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE
(Ta = –40 to +85°C)
Parameter
Symbol
Data Retention Supply
Voltage
VDDDR
Data Retention Supply
Current*1
IDDDR
Release Signal Set Time
tSREL
Oscillation Stabilization
tWAIT
Wait Time*2
Conditions
MIN.
TYP.
MAX.
Unit
6.0
V
10
µA
2.0
VDDDR = 2.0 V
0.1
µs
0
Released by RESET
Released by interrupt
217/fX
ms
*3
ms
*1: Does not include current flowing through internal pull-up resistor
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent
unstable operation when oscillation is started.
3: Depends on the setting of the basic interval timer mode register (BTM) as follows:
BTM3
BTM2
BTM1
BTM0
–
0
0
0
2 20/fX (approx. 250 ms)
WAIT time ( ): f X = 4.19 MHz
–
0
1
1
2 17/fX (approx. 31.3 ms)
–
1
0
1
2 15/fX (approx. 7.82 ms)
–
1
1
1
2 13/fX (approx. 1.95 ms)
DATA RETENTION TIMING (releasing STOP mode by RESET)
Internal reset operation
HALT mode
STOP mode
Operation
mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction
execution
RESET
tWAIT
DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)
HALT mode
STOP mode
Operation
mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction execution
Standby release signal
(interrupt request)
tWAIT
56
µPD75512(A)
PACKAGE DRAWINGS
80 PIN PLASTIC QFP (14×20)
A
B
41
40
64
65
F
Q
5°±5°
S
C
D
detail of lead end
25
24
80
1
G
H
I M
J
K
M
P
11.
N
L
P80GF-80-3B9-2
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.
ITEM
MILLIMETERS
INCHES
A
23.6 ± 0.4
0.929 ± 0.016
B
20.0 ± 0.2
0.795 +0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
1.0
0.039
G
0.8
0.031
H
0.35 ± 0.10
0.014 +0.004
–0.005
I
0.15
0.006
J
0.8 (T.P.)
0.031 (T.P.)
K
1.8 ± 0.2
0.071 –0.009
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.15
0.006
P
2.7
Q
0.1 ± 0.1
S
3.0 MAX.
+0.008
0.106
0.004 ± 0.004
0.119 MAX.
57
µPD75512(A)
12. RECOMMENDED SOLDERING CONDITIONS
It is recommended that µPD75512(A) be soldered under the following conditions.
For details on the recommended soldering conditions, refer to Information Document "Semiconductor
Devices Mounting Manual" (IEI-616).
For other soldering methods and conditions, consult NEC.
Table 12-1 Soldering Conditions of Surface Mount Type
µPD75512GF(A)-xxx-3B9: 80-pin plastic QFP (14 × 20 mm)
Soldering Method
Soldering Conditions
Symbol for Recommended
Condition
Infrared Reflow
Package peak temperature: 230°C,
time: 30 seconds max. (210°C min.),
number of times: 1
IR30-00-1
VPS
Package peak temperature: 215°C,
time: 40 seconds max. (200°C min.),
number of times: 1
VP15-00-1
Wave Soldering
Soldering bath temperature: 260°C max.,
time: 10 seconds max., number of times: 1,
pre-heating temperature: 120°C max. (package surface
temperature)
WS60-00-1
Pin Partial Heating
Pin temperature: 300°C max.,
time: 3 seconds max. (per side)
—
Caution: Do not use two or more soldering methods in combination (except the pin partial heating
method).
Notice
A model that can be soldered under the more stringent conditions (infrared reflow peak
temperature: 235°C, number of times: 2, and an extended number of days) is also available.
For details, consult NEC.
58
µPD75512(A)
APPENDIX A.
FUNCTIONAL DIFFERENCES AMONG µPD755XX(A) SERIES PRODUCTS
Product
Item
µPD75512(A)
ROM Configuration
ROM (Bit)
µPD75516(A)
Mask ROM
12160 x 8
µPD75P516
EPROM/One-time PROM
16256 x 8
RAM (Bit)
16256 x 8
512 x 4
Mask Option
• Ports 4, 5, 12, 14 are provided with internal pull-up
resistors.
Not provided
• Port 9 is provided with an internal pull-down resistor.
VPP, PROM, Pins for programming
LED Direct Drive
Electrical
Supply Voltage Range
Specifi-
Absolute Maximum
cations
Not provided
Provided
Not offered
Offered
2.7 to 6.0 V
4.75 to 5.5 V
Differ in high-level / low-level output current
Ratings
DC Characteristics
Differ in low-level output voltage
A/D Converter
Differ in ambient temperature range and absolute accuracy
Characteristics
Quality Grade
Package
Special
80-pin plastic QFP (14 x 20 mm)
Standard
• 80-pin plastic QFP
(14 x 20 mm)
• 80-pin ceramic WQFN
59
µPD75512(A)
APPENDIX B.
DEVELOPMENT TOOLS
The following development support tools are readily available to support development of systems using
µPD75512(A):
Hardware
IE-75000-R *1
IE-75001-R
IE-75000-R-EM *2
Emulation board for IE-75000-R and IE-75001-R
EP-75516GF-R
Emulation prove for µPD75512(A), provided with 80-pin conversion socket
EV-9200G-80.
EV-9200G-80
Software
In-circuit emulator for 75X series
PG-1500
PROM programmer
PA-75P516GF
PROM programmer adapter solely used for µPD75P516GF. It is connected
to PG-1500.
IE Control Program
Host machine
PC-9800 series (MS-DOSTM Ver.3.30 to Ver.5.00A*3 )
PG-1500 Controller
IBM PC/AT TM (PC DOS TM Ver.3.1)
RA75X Relocatable
Assembler
* 1: Maintenance product
2: Not provided with IE-75001-R.
3: Ver.5.00/5.00A has a task swap function, but this function cannot be used with this software.
Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).
60
µPD75512(A)
APPENDIX C.
★
RELATED DOCUMENTS
61
µPD75512(A)
[MEMO]
62
µPD75512(A)
GENERAL NOTES ON CMOS DEVICES
➀
STATIC ELECTRICITY (ALL MOS DEVICES)
Exercise care so that MOS devices are not adversely influenced by static electricity while being
handled.
The insulation of the gates of the MOS device may be destroyed by a strong static charge.
Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case,
or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use
grounding when assembling the MOS device system. Do not leave the MOS device on a plastic
plate and do not touch the pins of the device.
Handle boards on which MOS devices are mounted similarly .
➁
PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)
Fix the input level of CMOS devices.
Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its
input pin, intermediate level input may be generated due to noise, and an inrush current may flow
through the device, causing the device to malfunction. Therefore, fix the input level of the device
by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an
output pin (whose timing is not specified), each pin should be connected to VDD or GND through
a resistor.
Refer to “Processing of Unused Pins” in the documents of each devices.
➂
STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)
The initial status of MOS devices is undefined upon power application.
Since the characteristics of an MOS device are determined by the quantity of injection at the
molecular level, the initial status of the device is not controlled during the production process. The
output status of pins, I/O setting, and register contents upon power application are not guaranteed.
However, the items defined for reset operation and mode setting are subject to guarantee after
the respective operations have been executed.
When using a device with a reset function, be sure to reset the device after power application.
63
µPD75512(A)
[MEMO]
No p art of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which
may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties b y or arising from use of a device described herein or any
other liability arising from use of such device. No license, either express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables,
nuclear reactor control systems and life support systems. If customers intend to use NEC devices for
above applications or they intend to use "Standard" quality grade NEC devices for the applications not
intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special:
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime system, etc.
M4 92.6
MS-DOS is a trademark of Microsoft Corporation.
PC DOS and PC/AT are trademarks of IBM Corporation.
64