STMICROELECTRONICS VN610SP

VN610SP

SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY
TARGET SPECIFICATION
TYPE
VN610SP
■
RDS(on)
10mΩ
IOUT
45A
VCC
36 V
OUTPUT CURRENT: 45 A
CMOS COMPATIBLE INPUT
PROPORTIONAL LOAD CURRENT SENSE
■ UNDERVOLTAGE AND OVERVOLTAGEn
■
■
10
SHUT-DOWN
■ OVERVOLTAGE CLAMP
1
PowerSO-10
THERMAL SHUT DOWN
■ CURRENT LIMITATION
■ VERY LOW STAND-BY POWER DISSIPATION
■ PROTECTION AGAINST:
n LOSS OF GROUND AND LOSS OF VCC
■ REVERSE BATTERY PROTECTION (*)
■
DESCRIPTION
The VN610SP is a monolithic device made using
STMicroelectronics VIPower technology. It is
intended for driving resistive or inductive loads
with one side connected to ground. Active VCC pin
voltage clamp protects the device against low
energy
spikes
(see
ISO7637
transient
compatibility table). This device integrates an
analog current sense which delivers a current
proportional to the load current (according to a
known ratio). Active current limitation combined
with thermal shut-down and automatic restart
protect the device against overload. Device
automatically turns off in case of ground pin
disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
VCC
CLAMP
UNDERVOLTAGE
PwCLAMP
DRIVER
OUTPUT
GND
ILIM
VDSLIM
LOGIC
IOUT
INPUT
K
CURRENT
SENSE
OVERTEMP.
(*) See application schematic at page 8
September 1999
1/10
1
VN610SP
ABSOLUTE MAXIMUM RATING
Symbol
VCC
-VCC
- IGND
IOUT
- IOUT
IIN
VCSENSE
VESD
PTOT
Tj
Tc
TSTG
Parameter
DC supply voltage
Reverse DC supply voltage
DC reverse ground pin current
DC output current
Reverse DC output current
DC input current
Current sense maximum voltage
Electrostatic discharge (R=1.5kΩ; C=100pF)
Power dissipation at T C<25°C
Junction operating temperature
Case operating temperature
Storage temperature
Value
41
-0.3
-200
Internally limited
-50
+/- 10
-3
Unit
V
V
mA
A
A
mA
V
+15
2000
125
Internally limited
-40 to 150
-55 to 150
V
V
W
°C
°C
°C
CONNECTION DIAGRAM (TOP VIEW)
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
5
4
3
6
7
8
9
GROUND
INPUT
C.SENSE
N.C.
N.C.
2
1
10
11
VCC
CURRENT AND VOLTAGE CONVENTIONS
ICC
VCC
VCC
IOUT
OUTPUT
IIN
VOU T
INPUT
VIN
ISENSE
CURRENT SENSE
VSENSE
GND
IGND
2/10
1
VN610SP
THERMAL DATA
Symbol
Rthj-case
Rthj-amb
Parameter
Thermal resistance junction-case
Thermal resistance junction-ambient
Value
1
50
(MAX)
(MAX)
Unit
°C/W
°C/W
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified)
POWER
Symbol
VCC
VUSD
VOV
RON
Vclamp
IS
IL(off)
Parameter
Test Conditions
Operating supply
voltage
Undervoltage shutdown
Overvoltage shutdown (See Note 1)
IOUT =15A; Tj=25oC
On state resistance
Clamp Voltage
IOUT =15A; Tj=150oC
IOUT =9A; VCC =6V
ICC =20 mA
(see note 1)
Off state; INPUT= n.c.; VCC=13V
Supply current
On state; VIN=5V; VCC=13V; IOUT=0A;
RSENSE=3.9K
Off state output current VIN=V OUT=0V
Min
Typ
Max
Unit
5.5
13
36
V
3
36
4
42
5.5
48
10
V
V
mΩ
20
35
mΩ
mΩ
55
V
25
5
µA
mA
50
µA
Max
Unit
µs
µs
V/µs
V/µs
41
48
0
Note 1: V clamp and VOV are correlated. Typical difference is 5V.
SWITCHING (VCC=13V)
Symbol
td(on)
td(off)
(dVOUT/dt)on
(dVOUT/dt)off
WON
WOFF
Parameter
Turn-on delay time
Turn-on delay time
Turn-on voltage slope
Turn-off voltage slope
Switching losses
energy at turn-on
Switching losses
energy at turn-off
R1=0.87Ω
R1=0.87Ω
R1=0.87Ω
R1=0.87Ω
Test Conditions
Min
Typ
50
50
0.3
0.3
R1=2.6Ω
1.0
mJ
R1=2.6Ω
0.5
mJ
PROTECTIONS
Symbol
Ilim
T TSD
TR
THYST
VDEMAG
VON
Parameter
DC Short circuit current
Test Conditions
VCC=13V
Typ
75
5.5V<VCC <36V
Thermal shutdown
temperature
Thermal reset
temperature
Thermal hysteresis
Turn-off output voltage
clamp
Min
45
150
175
Max
120
Unit
A
120
A
200
°C
°C
135
15
°C
Vcc-41 Vcc-48 Vcc-55
V
50
mV
7
IOUT=2A; VIN=0; L=6mH
Output voltage drop
IOUT=1.5A
limitation
Tj= -40°C...+150°C
3/10
1
VN610SP
ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE (9V≤VCC≤16V) (See Fig.1)
Symbol
Parameter
Min
Typ
Max
3300
4400
6000
4200
4900
6000
4400
4200
4900
4900
5750
5500
4400
2
4900
5250
Max analog sense
Tj=25°C...150°C
IOUT=45A; VSENSE=4V; Tj =-40°C
Tj=25°C...150°C
VCC=5V; IOUT =7.5A; RSENSE =10KΩ
output voltage
VCC >8V; IOUT=15A; RSENSE=10KΩ
4
K1
IOUT/I SENSE
K2
IOUT/I SENSE
K3
IOUT/I SENSE
VSENSE
VSENSEH
Test Conditions
IOUT=1.5A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT=15A; VSENSE=4V; Tj =-40°C
Analog sense output
voltage in overtemperature VCC=13V; RSENSE=3.9KΩ
condition
Unit
V
V
5.5
V
LOGIC INPUT
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input low level voltage
Low level input current
Input high level voltage
High level input current
Input hysteresis voltage
Input clamp voltage
Test Conditions
Min
VIN=1.25V
1
3.25
Typ
VIN=3.25V
Max
1.25
10
0.5
6.5
IIN=1mA
IIN=-1mA
7.4
-0.7
8.5
TRUTH TABLE
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage
clamp
4/10
2
INPUT
OUTPUT
SENSE
L
H
L
H
L
L
H
L
L
L
0
Nominal
0
VSENSEH
0
H
L
H
L
H
L
L
L
L
L
L
H
0
0
0
0
0
0
H
H
< Nominal
L
L
0
Unit
V
µA
V
µA
V
V
V
VN610SP
ELECTRICAL TRANSIENT REQUIREMENTS
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
CLASS
C
E
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
I
C
C
C
C
C
C
1
2
3a
3b
4
5
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
SWITCHING CHARACTERISTICS
VOUT
90%
70%
dVOUT/dt(off)
dVOUT/dt(on)
tr
10%
tf
t
INPUT
td(on)
td(off)
t
5/10
1
VN610SP
Fig 1: IOUT /ISENSE versus IOUT
IOUT /ISENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
min.Tj=25...150°C
typical value
4500
4000
min.Tj=-40°C
3500
3000
0
5
10
15
20
25
IOUT (A)
6/10
1
30
35
40
45
50
VN610SP
Figure1: Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE
UNDERVOLTAGE
VCC
VUSDhyst
VU SD
INPUT
LOAD CURRENT
SENSE
OVERVOLTAGE
VOV
VCC
V CC > VUSD
VOVhyst
INPUT
LOAD CURRENT
SENSE
SHORT TO GROUND
INPUT
LOAD CURRENT
LOAD VOLTAGE
SENSE
SHORT TO VCC
INPUT
LOAD VOLTAGE
LOAD CURRENT
SENSE
<Nominal
<Nominal
OVERTEMPERATURE
Tj
T TSD
TR
INPUT
LOAD CURRENT
SENSE
ISENSE=
V SENSEH
RSENSE
7/10
1
1
VN610SP
APPLICATION SCHEMATIC
+5V
+5V
VCC
Rprot
INPUT
Dld
µC
Rprot
OUTPUT
CURRENT SENSE
RSENSE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (I S(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j 600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Transil or MOV) if the load dump peak
voltage exceeds VCC max DC rating. The same applies if
the device will be subject to transients on the VCC line that
are greater than the ones shown in the ISO T/R 7637/1
table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak /Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 10kΩ.
Recommended Rprot value is 65kΩ.
8/10
1
1
1
VN610SP
PowerSO-10 MECHANICAL DATA
mm.
DIM.
MIN.
inch
TYP
MAX.
MIN.
TYP.
MAX.
A
3.35
3.65
0.132
0.144
A1
0.00
0.10
0.000
0.004
B
0.40
0.60
0.016
0.024
c
0.35
0.55
0.013
0.022
D
9.40
9.60
0.370
0.378
D1
7.40
7.60
0.291
0.300
E
9.30
9.50
0.366
0.374
E1
7.20
7.40
0.283
0.291
E2
7.20
7.60
0.283
300
E3
6.10
6.35
0.240
0.250
E4
5.90
6.10
0.232
e
1.27
F
1.25
H
13.80
h
1.35
0.049
14.40
0.543
0.50
Q
0.053
0.567
0.002
1.70
α
0.240
0.050
0.067
0º
8º
B
0.10 A B
10
=
E4
=
=
=
E1
=
E3
=
E2
=
E
=
=
=
H
6
=
=
1
5
e
0.25
B
SEATING
PLANE
DETAIL”A”
A
C
M
Q
h
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL”A”
α
9/10
2
VN610SP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1999 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands- Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com
10/10
1