VN610SP SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY TARGET SPECIFICATION TYPE VN610SP ■ RDS(on) 10mΩ IOUT 45A VCC 36 V OUTPUT CURRENT: 45 A CMOS COMPATIBLE INPUT PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE AND OVERVOLTAGEn ■ ■ 10 SHUT-DOWN ■ OVERVOLTAGE CLAMP 1 PowerSO-10 THERMAL SHUT DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: n LOSS OF GROUND AND LOSS OF VCC ■ REVERSE BATTERY PROTECTION (*) ■ DESCRIPTION The VN610SP is a monolithic device made using STMicroelectronics VIPower technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). This device integrates an analog current sense which delivers a current proportional to the load current (according to a known ratio). Active current limitation combined with thermal shut-down and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. BLOCK DIAGRAM VCC OVERVOLTAGE VCC CLAMP UNDERVOLTAGE PwCLAMP DRIVER OUTPUT GND ILIM VDSLIM LOGIC IOUT INPUT K CURRENT SENSE OVERTEMP. (*) See application schematic at page 8 September 1999 1/10 1 VN610SP ABSOLUTE MAXIMUM RATING Symbol VCC -VCC - IGND IOUT - IOUT IIN VCSENSE VESD PTOT Tj Tc TSTG Parameter DC supply voltage Reverse DC supply voltage DC reverse ground pin current DC output current Reverse DC output current DC input current Current sense maximum voltage Electrostatic discharge (R=1.5kΩ; C=100pF) Power dissipation at T C<25°C Junction operating temperature Case operating temperature Storage temperature Value 41 -0.3 -200 Internally limited -50 +/- 10 -3 Unit V V mA A A mA V +15 2000 125 Internally limited -40 to 150 -55 to 150 V V W °C °C °C CONNECTION DIAGRAM (TOP VIEW) OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT 5 4 3 6 7 8 9 GROUND INPUT C.SENSE N.C. N.C. 2 1 10 11 VCC CURRENT AND VOLTAGE CONVENTIONS ICC VCC VCC IOUT OUTPUT IIN VOU T INPUT VIN ISENSE CURRENT SENSE VSENSE GND IGND 2/10 1 VN610SP THERMAL DATA Symbol Rthj-case Rthj-amb Parameter Thermal resistance junction-case Thermal resistance junction-ambient Value 1 50 (MAX) (MAX) Unit °C/W °C/W ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified) POWER Symbol VCC VUSD VOV RON Vclamp IS IL(off) Parameter Test Conditions Operating supply voltage Undervoltage shutdown Overvoltage shutdown (See Note 1) IOUT =15A; Tj=25oC On state resistance Clamp Voltage IOUT =15A; Tj=150oC IOUT =9A; VCC =6V ICC =20 mA (see note 1) Off state; INPUT= n.c.; VCC=13V Supply current On state; VIN=5V; VCC=13V; IOUT=0A; RSENSE=3.9K Off state output current VIN=V OUT=0V Min Typ Max Unit 5.5 13 36 V 3 36 4 42 5.5 48 10 V V mΩ 20 35 mΩ mΩ 55 V 25 5 µA mA 50 µA Max Unit µs µs V/µs V/µs 41 48 0 Note 1: V clamp and VOV are correlated. Typical difference is 5V. SWITCHING (VCC=13V) Symbol td(on) td(off) (dVOUT/dt)on (dVOUT/dt)off WON WOFF Parameter Turn-on delay time Turn-on delay time Turn-on voltage slope Turn-off voltage slope Switching losses energy at turn-on Switching losses energy at turn-off R1=0.87Ω R1=0.87Ω R1=0.87Ω R1=0.87Ω Test Conditions Min Typ 50 50 0.3 0.3 R1=2.6Ω 1.0 mJ R1=2.6Ω 0.5 mJ PROTECTIONS Symbol Ilim T TSD TR THYST VDEMAG VON Parameter DC Short circuit current Test Conditions VCC=13V Typ 75 5.5V<VCC <36V Thermal shutdown temperature Thermal reset temperature Thermal hysteresis Turn-off output voltage clamp Min 45 150 175 Max 120 Unit A 120 A 200 °C °C 135 15 °C Vcc-41 Vcc-48 Vcc-55 V 50 mV 7 IOUT=2A; VIN=0; L=6mH Output voltage drop IOUT=1.5A limitation Tj= -40°C...+150°C 3/10 1 VN610SP ELECTRICAL CHARACTERISTICS (continued) CURRENT SENSE (9V≤VCC≤16V) (See Fig.1) Symbol Parameter Min Typ Max 3300 4400 6000 4200 4900 6000 4400 4200 4900 4900 5750 5500 4400 2 4900 5250 Max analog sense Tj=25°C...150°C IOUT=45A; VSENSE=4V; Tj =-40°C Tj=25°C...150°C VCC=5V; IOUT =7.5A; RSENSE =10KΩ output voltage VCC >8V; IOUT=15A; RSENSE=10KΩ 4 K1 IOUT/I SENSE K2 IOUT/I SENSE K3 IOUT/I SENSE VSENSE VSENSEH Test Conditions IOUT=1.5A; VSENSE=0.5V; Tj= -40°C...150°C IOUT=15A; VSENSE=4V; Tj =-40°C Analog sense output voltage in overtemperature VCC=13V; RSENSE=3.9KΩ condition Unit V V 5.5 V LOGIC INPUT Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input low level voltage Low level input current Input high level voltage High level input current Input hysteresis voltage Input clamp voltage Test Conditions Min VIN=1.25V 1 3.25 Typ VIN=3.25V Max 1.25 10 0.5 6.5 IIN=1mA IIN=-1mA 7.4 -0.7 8.5 TRUTH TABLE CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp 4/10 2 INPUT OUTPUT SENSE L H L H L L H L L L 0 Nominal 0 VSENSEH 0 H L H L H L L L L L L H 0 0 0 0 0 0 H H < Nominal L L 0 Unit V µA V µA V V V VN610SP ELECTRICAL TRANSIENT REQUIREMENTS I II TEST LEVELS III IV -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse CLASS C E TEST LEVELS RESULTS II III C C C C C C C C C C E E I C C C C C C 1 2 3a 3b 4 5 Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. SWITCHING CHARACTERISTICS VOUT 90% 70% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t INPUT td(on) td(off) t 5/10 1 VN610SP Fig 1: IOUT /ISENSE versus IOUT IOUT /ISENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 min.Tj=25...150°C typical value 4500 4000 min.Tj=-40°C 3500 3000 0 5 10 15 20 25 IOUT (A) 6/10 1 30 35 40 45 50 VN610SP Figure1: Waveforms NORMAL OPERATION INPUT LOAD CURRENT SENSE UNDERVOLTAGE VCC VUSDhyst VU SD INPUT LOAD CURRENT SENSE OVERVOLTAGE VOV VCC V CC > VUSD VOVhyst INPUT LOAD CURRENT SENSE SHORT TO GROUND INPUT LOAD CURRENT LOAD VOLTAGE SENSE SHORT TO VCC INPUT LOAD VOLTAGE LOAD CURRENT SENSE <Nominal <Nominal OVERTEMPERATURE Tj T TSD TR INPUT LOAD CURRENT SENSE ISENSE= V SENSEH RSENSE 7/10 1 1 VN610SP APPLICATION SCHEMATIC +5V +5V VCC Rprot INPUT Dld µC Rprot OUTPUT CURRENT SENSE RSENSE GND VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (I S(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. RGND DGND This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j 600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Transil or MOV) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak /Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 10kΩ. Recommended Rprot value is 65kΩ. 8/10 1 1 1 VN610SP PowerSO-10 MECHANICAL DATA mm. DIM. MIN. inch TYP MAX. MIN. TYP. MAX. A 3.35 3.65 0.132 0.144 A1 0.00 0.10 0.000 0.004 B 0.40 0.60 0.016 0.024 c 0.35 0.55 0.013 0.022 D 9.40 9.60 0.370 0.378 D1 7.40 7.60 0.291 0.300 E 9.30 9.50 0.366 0.374 E1 7.20 7.40 0.283 0.291 E2 7.20 7.60 0.283 300 E3 6.10 6.35 0.240 0.250 E4 5.90 6.10 0.232 e 1.27 F 1.25 H 13.80 h 1.35 0.049 14.40 0.543 0.50 Q 0.053 0.567 0.002 1.70 α 0.240 0.050 0.067 0º 8º B 0.10 A B 10 = E4 = = = E1 = E3 = E2 = E = = = H 6 = = 1 5 e 0.25 B SEATING PLANE DETAIL”A” A C M Q h D = D1 = = = SEATING PLANE A F A1 A1 L DETAIL”A” α 9/10 2 VN610SP Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 1999 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands- Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com 10/10 1