STMICROELECTRONICS VN920SO

VN920
/ VN920-B5 / VN920SO
®
SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE
VN920
RDS(on)
IOUT
VCC
VN920-B5
16mΩ
30 A
36 V
VN920SO
P2PAK
PENTAWATT
CMOS COMPATIBLE INPUT
■ PROPORTIONAL LOAD CURRENT SENSE
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUTDOWN
■ CURRENT LIMITATION
■ PROTECTION AGAINST LOSS OF GROUND
AND LOSS OF VCC
■
■
■
SO-16L
ORDER CODES
PACKAGE
TUBE
PENTAWATT VN920
P2PAK
SO-16L
VERY LOW STAND-BY POWER DISSIPATION
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN920, VN920-B5, VN920SO is a monolithic
device made by using STMicroelectronics
VIPower M0-3 Technology, intended for driving
any kind of load with one side connected to
VN920-B5
VN920SO
T&R
VN920-B513TR
VN920SO13TR
ground. Active VCC pin voltage clamp protects the
device against low energy spikes (see ISO7637
transient compatibility table). Active current
limitation combined with thermal shutdown and
automatic restart protect the device against
overload. The device integrates an analog current
sense output which delivers a current proportional
to the load current. Device automatically turns off
in case of ground pin disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
VDS LIMITER
IOUT
K
CURRENT
SENSE
OVERTEMPERATURE
DETECTION
(*) See application schematic at page 8
May 2003
1/23
VN920 / VN920-B5 / VN920SO
ABSOLUTE MAXIMUM RATING
Symbol
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
VCSENSE
Value
P2PAK SO-16L
41
- 0.3
- 200
Internally Limited
- 21
+/- 10
-3
Parameter
PENTAWATT
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
Current Sense Maximum Voltage
Unit
V
V
mA
A
A
mA
V
+15
V
- INPUT
4000
V
- CURRENT SENSE
2000
V
- OUTPUT
5000
V
- VCC
Maximum Switching Energy
5000
V
Electrostatic Discharge
(Human Body Model: R=1.5KΩ; C=100pF)
VESD
EMAX
PTOT
Tj
Tc
TSTG
364
(L=0.25mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=45A)
Power Dissipation TC≤25°C
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
96.1
96.1
Internally limited
- 40 to 150
- 55 to 150
CONNECTION DIAGRAM (TOP VIEW)
5
4
OUTPUT
3
VCC
VCC
2
INPUT
GND
N.C.
CSENSE
1
PENTAWATT
1
16
VCC
OUTPUT
GND
OUTPUT
INPUT
OUTPUT
CSENSE
N.C.
OUTPUT
OUTPUT
5
OUTPUT
4
CSENSE
3
VCC
N.C.
2
INPUT
1
GND
VCC
OUTPUT
8
9
VCC
SO-16L
P2PAK
CURRENT AND VOLTAGE CONVENTIONS
IS
VCC
VCC
IOUT
OUTPUT
I IN
VOUT
INPUT
VIN
I SENSE
CURRENT SENSE
VSENSE
GND
IGND
2/23
1
352
mJ
8.3
W
°C
°C
°C
VN920 / VN920-B5 / VN920SO
THERMAL DATA
Symbol
Rthj-case
Rthj-lead
Rthj-amb
Parameter
Thermal Resistance Junction-case
Thermal Resistance Junction-lead
Thermal Resistance Junction-ambient
Max
Max
Max
PENTAWATT
1.3
61.3
Value
P2PAK
1.3
Unit
SO-16L
°C/W
°C/W
°C/W
15
65 (**)
51.3 (*)
(*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick).
(**) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins.
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
POWER
Symbol
VCC
VUSD
VOV
RON
Vclamp
IS
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Overvoltage Shut-down
IOUT=10A; Tj=25°C
16
Unit
V
V
V
mΩ
IOUT=10A
32
mΩ
Clamp Voltage
IOUT=3A; VCC=6V
ICC=20mA (See note 1)
Off State; VCC=13V; VIN=VOUT=0V
48
10
55
55
25
mΩ
V
µA
Supply Current
Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C
10
20
µA
5
50
0
5
3
mA
µA
µA
µA
µA
Max
Unit
µs
µs
On State Resistance
Test Conditions
Min
5.5
3
36
41
Typ
13
4
On State; VCC=13V; VIN=5V; IOUT=0A;
RSENSE=3.9KΩ
Off State Output Current
Off State Output Current
Off State Output Current
Off State Output Current
VIN=VOUT=0V
VIN=0V; VOUT=3.5V
VIN=VOUT=0V; Vcc=13V; Tj=125°C
VIN=VOUT=0V; Vcc=13V; Tj=25°C
0
-75
Test Conditions
RL=1.3Ω (see figure 2)
RL=1.3Ω (see figure 2)
Min
Max
36
5.5
SWITCHING (VCC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on Delay Time
Turn-off Delay Time
dVOUT/dt(on) Turn-on Voltage Slope
RL=1.3Ω (see figure 2)
dVOUT/dt(off) Turn-off Voltage Slope
RL=1.3Ω (see figure 2)
Typ
50
50
See
relative
diagram
See
relative
diagram
V/µs
V/µs
LOGIC INPUT
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Clamp Voltage
Test Conditions
VIN=1.25V
Min
Typ
1
3.25
VIN=3.25V
IIN=1mA
IIN=-1mA
Max
1.25
10
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
Note 1: Vclamp and VOV are correlated. Typical difference is 5V.
3/23
1
VN920 / VN920-B5 / VN920SO
ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE (9V≤VCC≤16V) (See Fig. 1)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
ISENSEO
VSENSE
VSENSEH
RVSENSEH
tDSENSE
Parameter
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
Analog Sense Leakage
Current
Test Conditions
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...+150°C
IOUT=10A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT=10A; VSENSE=4V;
Tj=-40°C...+150°C
IOUT=30A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT=30A; VSENSE=4V;
Tj=-40°C...+150°C
VCC=6...16V; IOUT=0A;VSENSE=0V;
Tj=-40°C...+150°C
Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10KΩ
Voltage
VCC>8V; IOUT=10A; RSENSE=10KΩ
Sense Voltage in
Overtemperature
VCC=13V; RSENSE=3.9KΩ
conditions
Analog Sense Output
Impedance in
VCC=13V; Tj>TTSD; Output Open
Overtemperature
Condition
Current sense delay
to 90% I SENSE (see note 2)
response
Min
Typ
Max
3300
4400
6000
-10
+10
4200
4900
6000
4400
4900
5750
-8
+8
4200
4900
5500
4400
4900
5250
Unit
%
%
-6
+6
%
0
10
µA
2
V
4
V
5.5
V
400
Ω
500
µs
Typ
175
Max
200
15
45
75
Unit
°C
°C
°C
A
75
A
PROTECTIONS
Symbol
TTSD
TR
Thyst
Ilim
Vdemag
VON
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
DC Short Circuit Current
Turn-off Output Clamp
Voltage
Output Voltage Drop
Limitation
Test Conditions
VCC=13V
Min
150
135
7
30
5V<VCC<36V
IOUT=2A; VIN=0V; L=6mH
IOUT=1A; Tj=-40°C....+150°C
VCC-41 VCC-48 VCC-55
V
50
mV
Note 2: current sense signal delay after positive input slope
Note: sense pin doesn’t have to be left floating.
4/23
1
VN920 / VN920-B5 / VN920SO
Figure 1: IOUT/ISENSE versus IOUT
IOUT/I SENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
min.Tj=-40°C
4000
3500
3000
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
IOUT (A)
Figure 2: Switching Characteristics (Resistive load RL=1.3Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
tr
10%
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
5/23
1
1
VN920 / VN920-B5 / VN920SO
TRUTH TABLE
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage clamp
INPUT
OUTPUT
SENSE
L
L
H
L
H
L
0
Nominal
H
L
L
L
VSENSEH
0
H
L
L
L
0
0
H
L
L
L
0
0
H
L
(Tj<TTSD) 0
H
L
L
H
(Tj>TTSD) VSENSEH
0
H
L
H
L
0
< Nominal
0
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
6/23
1
VN920 / VN920-B5 / VN920SO
Figure 3: Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUT
LOAD CURRENT
SENSE
OVERVOLTAGE
VOV
VCC
VCC > VUSD
VOVhyst
INPUT
LOAD CURRENT
SENSE
SHORT TO GROUND
INPUT
LOAD CURRENT
LOAD VOLTAGE
SENSE
SHORT TO VCC
INPUT
LOAD VOLTAGE
LOAD CURRENT
SENSE
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUT
LOAD CURRENT
SENSE
ISENSE=
VSENSEH
RSENSE
7/23
VN920 / VN920-B5 / VN920SO
APPLICATION SCHEMATIC
+5V
VCC
Rprot
INPUT
Dld
µC
Rprot
OUTPUT
CURRENT SENSE
RSENSE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot )
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
8/23
1
VN920 / VN920-B5 / VN920SO
High Level Input Current
Off State Output Current
IL(off1) (uA)
Iih (uA)
9
5
8
4.5
7
4
Vin=3.25V
3.5
6
3
5
2.5
4
2
3
1.5
2
1
1
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
125
150
175
100
125
150
175
Tc (°C)
Input Clamp Voltage
Input High Level
Vih (V)
Vicl (V)
3.6
8
7.8
3.4
Iin=1mA
7.6
3.2
7.4
3
7.2
2.8
7
6.8
2.6
6.6
2.4
6.4
2.2
6.2
2
6
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (°C)
Input Low Level
Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1.8
1
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
9/23
1
1
VN920 / VN920-B5 / VN920SO
ILIM Vs Tcase
Overvoltage Shutdown
Vov (V)
Ilim (A)
50
100
48
90
46
80
44
70
42
60
40
50
38
40
36
30
34
20
32
10
Vcc=13V
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
Tc (°C)
75
100
125
150
175
100
125
150
175
Tc (°C)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
700
550
500
650
600
Vcc=13V
Rl=1.3Ohm
450
Vcc=13V
Rl=1.3Ohm
400
550
350
500
300
450
250
200
400
150
350
100
300
50
0
250
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (ºC)
On State Resistance Vs Tcase
On State Resistance Vs VCC
Ron (mOhm)
Ron (mOhm)
50
50
45
45
Iout=10A
Vcc=8V; 36V
40
40
35
35
30
30
25
25
20
20
15
15
10
10
5
5
Tc= 150ºC
Tc= 25ºC
Tc= - 40ºC
0
0
-50
-25
0
25
50
75
Tc (ºC)
10/23
1
100
125
150
175
5
10
15
20
25
Vcc (V)
30
35
40
VN920 / VN920-B5 / VN920SO
SO-16L Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.01
0.1
1
L(mH)
10
100
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
11/23
VN920 / VN920-B5 / VN920SO
P2PAK Maximum turn off current versus load inductance
ILM AX (A)
100
A
B
C
10
1
0.01
0.1
1
10
100
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/23
VN920 / VN920-B5 / VN920SO
P2PAK THERMAL DATA
P2PAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.97cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
13/23
VN920 / VN920-B5 / VN920SO
SO-16L THERMAL DATA
SO-16L PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2).
Rthj-amb Vs PCB copper area in open box free air condition
70
RTH j-amb (°C/W)
65
60
55
50
45
40
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)
14/23
1
VN920 / VN920-B5 / VN920SO
SO-16L Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
0.5 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Thermal fitting model of a single channel HSD
in SO-16L
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.02
0.1
2.2
12
15
35
0.0015
7.00E-03
1.50E-02
0.14
1
5
6
20
8
15/23
VN920 / VN920-B5 / VN920SO
P2PAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.97 cm2
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
Time (s)
Thermal fitting model of a single channel HSD
in P2PAK
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
16/23
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.97
0.02
0.1
0.22
4
9
37
0.0015
0.007
0.015
0.4
2
3
6
22
5
VN920 / VN920-B5 / VN920SO
SO-16L MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
2.65
0.1
0.2
b
0.35
b1
0.23
a2
0.104
0.004
0.008
0.49
0.014
0.019
0.32
0.009
0.012
2.45
C
MAX.
0.096
0.5
0.020
c1
45° (typ.)
D
10.1
10.5
0.397
0.413
E
10.0
10.65
0.393
0.419
e
1.27
e3
8.89
F
7.4
L
0.5
M
S
0.050
0.350
7.6
0.291
1.27
0.020
0.75
0.300
0.050
0.029
8° (max.)
17/23
VN920 / VN920-B5 / VN920SO
PENTAWATT (VERTICAL) MECHANICAL DATA
DIM.
mm.
MIN.
TYP
MIN.
TYP.
MAX.
A
4.8
0.189
C
1.37
0.054
D
2.4
2.8
0.094
0.110
D1
1.2
1.35
0.047
0.053
E
0.35
0.55
0.014
0.022
F
0.8
1.05
0.031
0.041
F1
1
1.4
0.039
0.055
G
3.2
3.4
3.6
0.126
0.134
0.142
G1
6.6
6.8
7
0.260
0.268
0.276
H2
H3
10.4
10.05
10.4
0.409
0.396
0.409
L
17.85
L1
15.75
0.620
L2
21.4
0.843
L3
0.703
22.5
0.886
L5
2.6
3
0.102
0.118
L6
15.1
15.8
0.594
0.622
L7
6
6.6
0.236
M
4.5
M1
Diam.
18/23
inch
MAX.
4
3.65
0.260
0.177
0.157
3.85
0.144
0.152
VN920 / VN920-B5 / VN920SO
P2PAK MECHANICAL DATA
DIM.
mm.
MIN.
TYP
MAX.
A
4.30
4.80
A1
2.40
2.80
A2
0.03
0.23
b
0.80
1.05
c
0.45
0.60
c2
1.17
1.37
D
8.95
D2
E
10.00
E1
e
9.35
8.00
10.40
8.50
3.20
3.60
e1
6.60
7.00
L
13.70
14.50
L2
1.25
1.40
L3
0.90
1.70
L5
1.55
2.40
0.40
R
V2
Package Weight
0º
8º
1.40 Gr (typ)
P010R
19/23
VN920 / VN920-B5 / VN920SO
SO-16L TUBE SHIPMENT (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
50
1000
532
3.5
13.8
0.6
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
16.4
60
22.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
12
1.5
1.5
7.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
20/23
1
VN920 / VN920-B5 / VN920SO
PENTAWATT TUBE SHIPMENT (no suffix)
B
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
50
1000
532
18
33.1
1
All dimensions are in mm.
A
21/23
VN920 / VN920-B5 / VN920SO
P2PAK TUBE SHIPMENT (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
C
50
1000
532
18
33.1
1
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
16
1.5
1.5
11.5
6.5
2
End
Start
Top
cover
tape
No components
Components
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
22/23
No components
500mm min
VN920 / VN920-B5 / VN920SO
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
23/23