VN920 / VN920-B5 / VN920SO ® SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY TYPE VN920 RDS(on) IOUT VCC VN920-B5 16mΩ 30 A 36 V VN920SO P2PAK PENTAWATT CMOS COMPATIBLE INPUT ■ PROPORTIONAL LOAD CURRENT SENSE ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUTDOWN ■ CURRENT LIMITATION ■ PROTECTION AGAINST LOSS OF GROUND AND LOSS OF VCC ■ ■ ■ SO-16L ORDER CODES PACKAGE TUBE PENTAWATT VN920 P2PAK SO-16L VERY LOW STAND-BY POWER DISSIPATION REVERSE BATTERY PROTECTION (*) DESCRIPTION The VN920, VN920-B5, VN920SO is a monolithic device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to VN920-B5 VN920SO T&R VN920-B513TR VN920SO13TR ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device integrates an analog current sense output which delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection. BLOCK DIAGRAM VCC OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND Power CLAMP DRIVER INPUT OUTPUT LOGIC CURRENT LIMITER VDS LIMITER IOUT K CURRENT SENSE OVERTEMPERATURE DETECTION (*) See application schematic at page 8 May 2003 1/23 VN920 / VN920-B5 / VN920SO ABSOLUTE MAXIMUM RATING Symbol VCC - VCC - IGND IOUT - IOUT IIN VCSENSE Value P2PAK SO-16L 41 - 0.3 - 200 Internally Limited - 21 +/- 10 -3 Parameter PENTAWATT DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Current Sense Maximum Voltage Unit V V mA A A mA V +15 V - INPUT 4000 V - CURRENT SENSE 2000 V - OUTPUT 5000 V - VCC Maximum Switching Energy 5000 V Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) VESD EMAX PTOT Tj Tc TSTG 364 (L=0.25mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=45A) Power Dissipation TC≤25°C Junction Operating Temperature Case Operating Temperature Storage Temperature 96.1 96.1 Internally limited - 40 to 150 - 55 to 150 CONNECTION DIAGRAM (TOP VIEW) 5 4 OUTPUT 3 VCC VCC 2 INPUT GND N.C. CSENSE 1 PENTAWATT 1 16 VCC OUTPUT GND OUTPUT INPUT OUTPUT CSENSE N.C. OUTPUT OUTPUT 5 OUTPUT 4 CSENSE 3 VCC N.C. 2 INPUT 1 GND VCC OUTPUT 8 9 VCC SO-16L P2PAK CURRENT AND VOLTAGE CONVENTIONS IS VCC VCC IOUT OUTPUT I IN VOUT INPUT VIN I SENSE CURRENT SENSE VSENSE GND IGND 2/23 1 352 mJ 8.3 W °C °C °C VN920 / VN920-B5 / VN920SO THERMAL DATA Symbol Rthj-case Rthj-lead Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-lead Thermal Resistance Junction-ambient Max Max Max PENTAWATT 1.3 61.3 Value P2PAK 1.3 Unit SO-16L °C/W °C/W °C/W 15 65 (**) 51.3 (*) (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick). (**) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) POWER Symbol VCC VUSD VOV RON Vclamp IS IL(off1) IL(off2) IL(off3) IL(off4) Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down IOUT=10A; Tj=25°C 16 Unit V V V mΩ IOUT=10A 32 mΩ Clamp Voltage IOUT=3A; VCC=6V ICC=20mA (See note 1) Off State; VCC=13V; VIN=VOUT=0V 48 10 55 55 25 mΩ V µA Supply Current Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C 10 20 µA 5 50 0 5 3 mA µA µA µA µA Max Unit µs µs On State Resistance Test Conditions Min 5.5 3 36 41 Typ 13 4 On State; VCC=13V; VIN=5V; IOUT=0A; RSENSE=3.9KΩ Off State Output Current Off State Output Current Off State Output Current Off State Output Current VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; Vcc=13V; Tj=125°C VIN=VOUT=0V; Vcc=13V; Tj=25°C 0 -75 Test Conditions RL=1.3Ω (see figure 2) RL=1.3Ω (see figure 2) Min Max 36 5.5 SWITCHING (VCC=13V) Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time dVOUT/dt(on) Turn-on Voltage Slope RL=1.3Ω (see figure 2) dVOUT/dt(off) Turn-off Voltage Slope RL=1.3Ω (see figure 2) Typ 50 50 See relative diagram See relative diagram V/µs V/µs LOGIC INPUT Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V Min Typ 1 3.25 VIN=3.25V IIN=1mA IIN=-1mA Max 1.25 10 0.5 6 6.8 -0.7 8 Unit V µA V µA V V V Note 1: Vclamp and VOV are correlated. Typical difference is 5V. 3/23 1 VN920 / VN920-B5 / VN920SO ELECTRICAL CHARACTERISTICS (continued) CURRENT SENSE (9V≤VCC≤16V) (See Fig. 1) Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 ISENSEO VSENSE VSENSEH RVSENSEH tDSENSE Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Analog Sense Leakage Current Test Conditions IOUT=1A; VSENSE=0.5V; Tj= -40°C...150°C IOUT=1A; VSENSE=0.5V; Tj= -40°C...+150°C IOUT=10A; VSENSE=4V; Tj=-40°C Tj=25°C...150°C IOUT=10A; VSENSE=4V; Tj=-40°C...+150°C IOUT=30A; VSENSE=4V; Tj=-40°C Tj=25°C...150°C IOUT=30A; VSENSE=4V; Tj=-40°C...+150°C VCC=6...16V; IOUT=0A;VSENSE=0V; Tj=-40°C...+150°C Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10KΩ Voltage VCC>8V; IOUT=10A; RSENSE=10KΩ Sense Voltage in Overtemperature VCC=13V; RSENSE=3.9KΩ conditions Analog Sense Output Impedance in VCC=13V; Tj>TTSD; Output Open Overtemperature Condition Current sense delay to 90% I SENSE (see note 2) response Min Typ Max 3300 4400 6000 -10 +10 4200 4900 6000 4400 4900 5750 -8 +8 4200 4900 5500 4400 4900 5250 Unit % % -6 +6 % 0 10 µA 2 V 4 V 5.5 V 400 Ω 500 µs Typ 175 Max 200 15 45 75 Unit °C °C °C A 75 A PROTECTIONS Symbol TTSD TR Thyst Ilim Vdemag VON Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis DC Short Circuit Current Turn-off Output Clamp Voltage Output Voltage Drop Limitation Test Conditions VCC=13V Min 150 135 7 30 5V<VCC<36V IOUT=2A; VIN=0V; L=6mH IOUT=1A; Tj=-40°C....+150°C VCC-41 VCC-48 VCC-55 V 50 mV Note 2: current sense signal delay after positive input slope Note: sense pin doesn’t have to be left floating. 4/23 1 VN920 / VN920-B5 / VN920SO Figure 1: IOUT/ISENSE versus IOUT IOUT/I SENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value min.Tj=25...150°C 4500 min.Tj=-40°C 4000 3500 3000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 IOUT (A) Figure 2: Switching Characteristics (Resistive load RL=1.3Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 5/23 1 1 VN920 / VN920-B5 / VN920SO TRUTH TABLE CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp INPUT OUTPUT SENSE L L H L H L 0 Nominal H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H L H L 0 < Nominal 0 ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I II TEST LEVELS III IV -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. 6/23 1 VN920 / VN920-B5 / VN920SO Figure 3: Waveforms NORMAL OPERATION INPUT LOAD CURRENT SENSE UNDERVOLTAGE VCC VUSDhyst VUSD INPUT LOAD CURRENT SENSE OVERVOLTAGE VOV VCC VCC > VUSD VOVhyst INPUT LOAD CURRENT SENSE SHORT TO GROUND INPUT LOAD CURRENT LOAD VOLTAGE SENSE SHORT TO VCC INPUT LOAD VOLTAGE LOAD CURRENT SENSE <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUT LOAD CURRENT SENSE ISENSE= VSENSEH RSENSE 7/23 VN920 / VN920-B5 / VN920SO APPLICATION SCHEMATIC +5V VCC Rprot INPUT Dld µC Rprot OUTPUT CURRENT SENSE RSENSE GND VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. RGND DGND This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot ) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 8/23 1 VN920 / VN920-B5 / VN920SO High Level Input Current Off State Output Current IL(off1) (uA) Iih (uA) 9 5 8 4.5 7 4 Vin=3.25V 3.5 6 3 5 2.5 4 2 3 1.5 2 1 1 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (°C) Input Clamp Voltage Input High Level Vih (V) Vicl (V) 3.6 8 7.8 3.4 Iin=1mA 7.6 3.2 7.4 3 7.2 2.8 7 6.8 2.6 6.6 2.4 6.4 2.2 6.2 2 6 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (°C) Tc (°C) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 1.3 2.2 1.2 2 1.1 1.8 1 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) 9/23 1 1 VN920 / VN920-B5 / VN920SO ILIM Vs Tcase Overvoltage Shutdown Vov (V) Ilim (A) 50 100 48 90 46 80 44 70 42 60 40 50 38 40 36 30 34 20 32 10 Vcc=13V 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) 75 100 125 150 175 100 125 150 175 Tc (°C) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 700 550 500 650 600 Vcc=13V Rl=1.3Ohm 450 Vcc=13V Rl=1.3Ohm 400 550 350 500 300 450 250 200 400 150 350 100 300 50 0 250 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (°C) Tc (ºC) On State Resistance Vs Tcase On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 50 50 45 45 Iout=10A Vcc=8V; 36V 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 Tc= 150ºC Tc= 25ºC Tc= - 40ºC 0 0 -50 -25 0 25 50 75 Tc (ºC) 10/23 1 100 125 150 175 5 10 15 20 25 Vcc (V) 30 35 40 VN920 / VN920-B5 / VN920SO SO-16L Maximum turn off current versus load inductance ILMAX (A) 100 A B C 10 1 0.01 0.1 1 L(mH) 10 100 A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 11/23 VN920 / VN920-B5 / VN920SO P2PAK Maximum turn off current versus load inductance ILM AX (A) 100 A B C 10 1 0.01 0.1 1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 12/23 VN920 / VN920-B5 / VN920SO P2PAK THERMAL DATA P2PAK PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.97cm2, 8cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (°C/W) 55 Tj-Tamb=50°C 50 45 40 35 30 0 2 4 6 8 10 PCB Cu heatsink area (cm^2) 13/23 VN920 / VN920-B5 / VN920SO SO-16L THERMAL DATA SO-16L PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2). Rthj-amb Vs PCB copper area in open box free air condition 70 RTH j-amb (°C/W) 65 60 55 50 45 40 0 1 2 3 4 5 6 7 PCB Cu heatsink area (cm^2) 14/23 1 VN920 / VN920-B5 / VN920SO SO-16L Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 100 0.5 cm2 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 10 100 1000 Time (s) Thermal fitting model of a single channel HSD in SO-16L Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb Area/island (cm2) R1 (°C/W) R2 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.5 0.02 0.1 2.2 12 15 35 0.0015 7.00E-03 1.50E-02 0.14 1 5 6 20 8 15/23 VN920 / VN920-B5 / VN920SO P2PAK Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 0.97 cm2 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 Time (s) Thermal fitting model of a single channel HSD in P2PAK 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb 16/23 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.97 0.02 0.1 0.22 4 9 37 0.0015 0.007 0.015 0.4 2 3 6 22 5 VN920 / VN920-B5 / VN920SO SO-16L MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 2.65 0.1 0.2 b 0.35 b1 0.23 a2 0.104 0.004 0.008 0.49 0.014 0.019 0.32 0.009 0.012 2.45 C MAX. 0.096 0.5 0.020 c1 45° (typ.) D 10.1 10.5 0.397 0.413 E 10.0 10.65 0.393 0.419 e 1.27 e3 8.89 F 7.4 L 0.5 M S 0.050 0.350 7.6 0.291 1.27 0.020 0.75 0.300 0.050 0.029 8° (max.) 17/23 VN920 / VN920-B5 / VN920SO PENTAWATT (VERTICAL) MECHANICAL DATA DIM. mm. MIN. TYP MIN. TYP. MAX. A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110 D1 1.2 1.35 0.047 0.053 E 0.35 0.55 0.014 0.022 F 0.8 1.05 0.031 0.041 F1 1 1.4 0.039 0.055 G 3.2 3.4 3.6 0.126 0.134 0.142 G1 6.6 6.8 7 0.260 0.268 0.276 H2 H3 10.4 10.05 10.4 0.409 0.396 0.409 L 17.85 L1 15.75 0.620 L2 21.4 0.843 L3 0.703 22.5 0.886 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 M 4.5 M1 Diam. 18/23 inch MAX. 4 3.65 0.260 0.177 0.157 3.85 0.144 0.152 VN920 / VN920-B5 / VN920SO P2PAK MECHANICAL DATA DIM. mm. MIN. TYP MAX. A 4.30 4.80 A1 2.40 2.80 A2 0.03 0.23 b 0.80 1.05 c 0.45 0.60 c2 1.17 1.37 D 8.95 D2 E 10.00 E1 e 9.35 8.00 10.40 8.50 3.20 3.60 e1 6.60 7.00 L 13.70 14.50 L2 1.25 1.40 L3 0.90 1.70 L5 1.55 2.40 0.40 R V2 Package Weight 0º 8º 1.40 Gr (typ) P010R 19/23 VN920 / VN920-B5 / VN920SO SO-16L TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 50 1000 532 3.5 13.8 0.6 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 20/23 1 VN920 / VN920-B5 / VN920SO PENTAWATT TUBE SHIPMENT (no suffix) B C Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) 50 1000 532 18 33.1 1 All dimensions are in mm. A 21/23 VN920 / VN920-B5 / VN920SO P2PAK TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) B C 50 1000 532 18 33.1 1 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 24.4 60 30.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 24 4 16 1.5 1.5 11.5 6.5 2 End Start Top cover tape No components Components 500mm min Empty components pockets saled with cover tape. User direction of feed 22/23 No components 500mm min VN920 / VN920-B5 / VN920SO Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 23/23