STMICROELECTRONICS VN800PT-E

VN800S-E
VN800PT-E
HIGH SIDE DRIVER
Table 1. General Features
Type
VN800S-E
VN800PT-E
Figure 1. Package
RDS(on)
IOUT
VCC
135 mΩ
0.7 A
36 V
CMOS COMPATIBLE INPUT
THERMAL SHUTDOWN
■ CURRENT LIMITATION
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ PROTECTION AGAINST LOSS OF GROUND
■ VERY LOW STAND-BY CURRENT
■ REVERSE BATTERY PROTECTION (*)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
■
■
SO-8
PPAK
Active current limitation combined with thermal
shutdown and automatic restart protect the device
against overload. Device automatically turns off in
case of ground pin disconnection. This device is
especially suitable for industrial applications in
norms conformity with IEC1131 (Programmable
Controllers International Standard).
DESCRIPTION
The VN800S-E, VN800PT-E are monolithic
devices made by using STMicroelectronics
VIPower M0-3 Technology, intended for driving
any kind of load with one side connected to
ground.
Active VCC pin voltage clamp protects the device
against low energy spikes.
Table 2. Order Codes
Package
Tube
Tape and Reel
SO-8
VN800S-E
VN800STR-E
PPAK
VN800PT-E
VN800PTTR-E
Note: (*) See application schematic at page 10.
Rev. 1
October 2004
1/24
VN800S-E / VN800PT-E
Figure 2. Block Diagram
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
OUTPUT
LOGIC
INPUT
CURRENT LIMITER
STATUS
OVERTEMPERATURE
DETECTION
Table 3. Absolute Maximum Ratings
Symbol
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
VIN
VSTAT
VESD
Ptot
EMAX
EMAX
Tj
Tc
Tstg
Lmax
2/24
Parameter
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
Input Voltage Range
DC Status Voltage
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
Value
SO-8
PPAK
Unit
41
- 0.3
- 200
Internally Limited
-6
+/- 10
-3/+VCC
+ VCC
V
V
mA
A
A
mA
V
V
- INPUT
4000
V
- STATUS
4000
V
- OUTPUT
5000
V
- VCC
Power Dissipation TC=25°C
Maximum Switching Energy
5000
(L=77.5mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=1.5A)
Maximum Switching Energy
(L=125mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=1.5A)
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
Max Inductive Load (VCC=30V; ILOAD=0.5A; Tamb=100°C;
Rthcase>ambient≤25°C/W)
4.2
41.7
121
V
W
mJ
195
mJ
Internally Limited
- 40 to 150
- 55 to 150
°C
°C
°C
2
H
VN800S-E / VN800PT-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
VCC
VCC
5
4
5
4
3
2
1
N.C.
STATUS
OUTPUT
INPUT
OUTPUT
VCC
8
1
GND
SO-8
OUTPUT
STATUS
INPUT
GND
PPAK
Connection / Pin Status
Floating
X
To Ground
N.C.
X
X
Output
X
Input
X
Through 10KΩ resistor
Figure 4. Current and Voltage Conventions
IS
VF
IIN
VCC
INPUT
ISTAT
IOUT
STATUS
VCC
OUTPUT
GND
VIN
VSTAT
VOUT
IGND
Table 4. Thermal Data
Symbol
Rthj-case
Thermal Resistance Junction-case
Rthj-lead
Thermal Resistance Junction-lead
Rthj-amb
Value
Parameter
Thermal Resistance Junction-ambient
Max
Max
Max
Max
SO-8
PPAK
-
3
30
-
1
Unit
°C/W
°C/W
3
93 ( )
78 ( )
°C/W
82 (2)
45 (4)
°C/W
(1) When mounted on FR4 printed circuit board with 0.5 cm 2 of copper area (at least 35µ thick) connected to all VCC pins.
(2) When mounted on FR4 printed circuit board with 2 cm 2 of copper area (at least 35µ thick).
(3) When mounted on FR4 printed circuit board with 0.5 cm 2 of copper area (at least 35µ thick) connected to all VCC pins.
(4) When mounted on FR4 printed circuit board with 6 cm 2 of copper area (at least 35µ thick).
3/24
VN800S-E / VN800PT-E
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
Table 5. Power
Symbol
Parameter
VCC
Operating Supply Voltage
5.5
VUSD
Undervoltage Shut-down
3
4
VOV
Overvoltage Shut-down
36
42
RON
On State Resistance
IS
Supply Current
Test Conditions
Min.
Typ.
Max.
Unit
36
V
5.5
V
V
IOUT =0.5A; Tj=25°C
135
mΩ
IOUT=0.5A
270
mΩ
10
20
µA
1.5
3.5
mA
2.6
mA
1
mA
50
µA
Off State; VCC=24V; Tcase=25°C
On State; VCC=24V
On State; VCC=24V; Tcase=100°C
ILGND
Output Current at turn-off
VCC=VSTAT=VIN=VGND=24V;VOUT=0V
IL(off1)
Off State Output Current
VIN=VOUT=0V
IL(off2)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =125°C
5
µA
IL(off3)
Off State Output Current
VIN=VOUT=0V; VCC=13V; Tj =25°C
3
µA
Max.
Unit
0
Table 6. Switching (VCC =24V)
Symbol
Parameter
Test Conditions
Min.
Typ.
td(on)
Turn-on Delay Time
RL=48Ω from VIN rising edge to
VOUT=2.4V
10
µs
td(off)
Turn-off Delay Time
RL=48Ω from VIN falling edge to
VOUT=21.6V
40
µs
dVOUT/
dt(on)
Turn-on Voltage Slope
RL=48Ω from VOUT=2.4V to
VOUT=19.2V
See
relative
diagram
V/µs
dVOUT/
dt(off)
Turn-off Voltage Slope
RL=48Ω from VOUT=21.6V to
VOUT=2.4V
See
relative
diagram
V/µs
Table 7. Input Pin
Symbol
Parameter
VINL
Input Low Level
IINL
Low Level Input Current
VINH
Input High Level
IINH
High Level Input Current
VI(hyst)
Input Hysteresis Voltage
IIN
4/24
Input Current
Test Conditions
VIN=1.25V
Min.
Typ.
Max.
Unit
1.25
V
1
µA
3.25
V
VIN=3.25V
10
0.5
VIN=VCC=36V
µA
V
200
µA
VN800S-E / VN800PT-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. VCC - Output Diode
Symbol
VF
Parameter
Test Conditions
Forward on Voltage
Min.
Typ.
-IOUT=0.6A; Tj=150°C
Max.
Unit
0.6
V
Max
0.5
10
Unit
V
µA
30
pF
Max
200
Unit
°C
°C
°C
20
µs
2
A
VCC-57
V
Table 9. Status Pin
Symbol
VSTAT
ILSTAT
CSTAT
Parameter
Test Conditions
Status Low Output Voltage ISTAT=1.6 mA
Status Leakage Current
Normal Operation; VSTAT=VCC=36 V
Status Pin Input
Normal Operation; VSTAT= 5V
Capacitance
Min
Typ
Table 10. Protections (see note 1)
Symbol
TTSD
TR
Thyst
TSDL
Ilim
Vdemag
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
Status Delay in Overload
Condition
DC Short Circuit Current
Turn-off Output Clamp
Voltage
Test Conditions
Min
150
135
7
Typ
175
15
Tj>Tjsh
VCC=24V; RLOAD=10mΩ
0.7
IOUT=0.5 A; L=6mH
VCC-47
VCC-52
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles.
Figure 5.
OVERTEMP STATUS TIMING
Tj>Tjsh
VIN
VSTAT
tSDL
tSDL
5/24
VN800S-E / VN800PT-E
Table 11. Truth Table
CONDITIONS
INPUT
OUTPUT
STATUS
Normal Operation
L
H
L
H
H
H
Current Limitation
L
H
H
L
X
X
H
(Tj < TTSD) H
(Tj > TTSD) L
Overtemperature
L
H
L
L
H
L
Undervoltage
L
H
L
L
X
X
Overvoltage
L
H
L
L
H
H
Figure 6. Switching time Waveforms
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
tr
10%
tf
t
VIN
td(on)
td(off)
t
6/24
VN800S-E / VN800PT-E
Table 12. Electrical Transient Requirements On VCC Pin
TEST LEVELS
ISO T/R 7637/1
Test Pulse
I
II
III
IV
1
2
3a
3b
4
5
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
I
TEST LEVELS RESULTS
II
III
IV
C
C
C
C
C
C
C
C
C
C
C
E
C
C
C
C
C
E
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
Figure 7. Peak Short Circuit Current Test Circuit
+VCC
10kΩ
STATUS
CONTROL
UNIT
VCC
INPUT
OUTPUT
RIN
GND
RL=10mΩ
GND
7/24
VN800S-E / VN800PT-E
Figure 8. Avalanche Energy Test Circuit
+VCC
10kΩ
STATUS
CONTROL
UNIT
VCC
INPUT
OUTPUT
RIN
GND
LOAD
GND
8/24
VN800S-E / VN800PT-E
Figure 9. Waveforms
NORMAL OPERATION
INPUT
LOAD VOLTAGE
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUT
LOAD VOLTAGE
STATUS
undefined
OVERVOLTAGE
VCC<VOV
VCC>VOV
VCC
INPUT
LOAD VOLTAGE
STATUS
Tj
TTSD
TR
OVERTEMPERATURE
INPUT
LOAD CURRENT
STATUS
9/24
VN800S-E / VN800PT-E
Figure 10. Application Schematic
VCC
24VDC
5V
Volt.
Reg
Control & Diagnostic I/O
VCC
Rprot
STATUSn
OUTPUTn
Rprot INPUTn
BUS
ASIC
LOAD
R
GND
L
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
10/24
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
VN800S-E / VN800PT-E
Figure 11. Off State Output Current
Figure 12. High Level Input Current
Iih (µA)
IL(off1) (µA)
8
2.5
2.25
7
Off state
Vcc=36V
Vin=Vout=0V
2
1.75
Vin=3.25V
6
5
1.5
4
1.25
1
3
0.75
2
0.5
1
0.25
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
Tc (ºC)
Figure 13. Status Leakage Current
Figure 15. On State Resistance Vs VCC
Ron (mOhm)
Ilstat (µA)
400
0.1
0.09
350
Vstat=Vcc=36V
Iout=0.5A
0.08
300
0.07
250
0.06
Tc= 150ºC
200
0.05
0.04
150
Tc= 25ºC
0.03
100
0.02
Tc= - 40ºC
50
0.01
0
0
-50
-25
0
25
50
75
100
125
150
5
175
10
15
20
25
30
35
40
Vcc (V)
Tc (ºC)
Figure 16. Input High Level
Figure 14. On State Resistance Vs Tcase
Ron (mOhm)
Vih (V)
400
3.6
3.4
350
Iout=0.5A
Vcc=8V; 13V; 36V
300
3.2
250
3
200
2.8
150
2.6
100
2.4
50
2.2
2
0
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
11/24
VN800S-E / VN800PT-E
Figure 17. Input Low Level
Figure 20. Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1
1.8
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
800
700
Vcc=24V
Rl=48Ohm
125
150
175
Vcc=24V
Rl=48Ohm
600
1000
500
800
400
600
300
400
200
200
100
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
150
175
100
125
150
175
Tc (ºC)
Figure 19. Overvoltage Shutdown
Figure 22. ILIM Vs Tcase
Vov (V)
Ilim (A)
50
2.5
48
2.25
46
2
44
1.75
42
1.5
40
1.25
38
1
36
0.75
34
0.5
32
0.25
30
Vcc=24V
Rl=10mOhm
0
-50
-25
0
25
50
75
Tc (°C)
12/24
100
Figure 21. Turn-off Voltage Slope
1600
1200
75
Tc (°C)
Figure 18. Turn-on Voltage Slope
1400
50
100
125
150
175
-50
-25
0
25
50
75
Tc (ºC)
VN800S-E / VN800PT-E
Figure 23. SO-8 Maximum turn off current versus load inductance
ILMAX (A)
10
A
B
1
C
0.1
1
10
100
1000
L(mH )
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
13/24
VN800S-E / VN800PT-E
Figure 24. PPAK Maximum turn off current versus load inductance
ILMAX (A)
10
A
B
1
C
0.1
1
10
100
1000
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/24
VN800S-E / VN800PT-E
SO-8 Thermal Data
Figure 25. SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.14cm2, 2cm2).
Figure 26. SO-8 Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (ºC/W)
SO8 at 2 pins connected to TAB
110
105
100
95
90
85
80
75
70
0
0.5
1
1.5
2
2.5
PCB Cu heatsink area (cm^2)
15/24
VN800S-E / VN800PT-E
PPAK Thermal Data
Figure 27. PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.44cm2, 8cm2).
Figure 28. PPAK Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (ºC/W)
90
80
70
60
50
40
30
20
10
0
0
2
4
6
PCB Cu heatsink area (cm^2)
16/24
8
10
VN800S-E / VN800PT-E
Figure 29. SO-8 Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
0.5 cm2
100
2 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
T ime (s)
Figure 30. Thermal fitting model of a single
channel HSD in SO-8
10
100
1000
Pulse calculation formula
Z THδ = R T H ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 13. Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.14
0.24
1.2
4.5
21
16
58
0.00015
0.0005
7.50E-03
0.045
0.35
1.05
2
28
2
17/24
VN800S-E / VN800PT-E
Figure 31. PPAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.44 cm2
6 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
Time (s)
Figure 32. Thermal fitting model of a single
channel HSD in PPAK
10
100
1000
Pulse calculation formula
Z THδ = R T H ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 14. Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
18/24
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.44
0.04
0.25
0.3
2
15
61
0.0008
0.007
0.02
0.3
0.45
0.8
6
24
5
VN800S-E / VN800PT-E
PACKAGE MECHANICAL
Table 15. SO-8 Mechanical Data
Symbol
millimeters
Min
Typ
A
a1
Max
1.75
0.1
0.25
a3
0.65
0.85
a2
1.65
b
0.35
0.48
b1
0.19
0.25
C
0.25
c1
0.5
45 (typ.)
D
4.8
E
5.8
e
5
6.2
1.27
e3
3.81
F
3.8
4
L
0.4
1.27
M
0.6
S
L1
8 (max.)
0.8
1.2
Figure 33. SO-8 Package Dimensions
19/24
VN800S-E / VN800PT-E
PACKAGE MECHANICAL
Table 16. PPAK Mechanical Data
Symbol
millimeters
Min
Typ
Max
A
2.20
2.40
A1
0.90
1.10
A2
0.03
0.23
B
0.40
0.60
B2
5.20
5.40
C
0.45
0.60
C2
0.48
0.60
D1
5.1
D
6.00
6.20
E
6.40
6.60
E1
4.7
e
1.27
G
4.90
5.25
G1
2.38
2.70
H
9.35
L2
L4
1.00
0.60
R
V2
10.10
0.8
1.00
0.2
0º
Package Weight
8º
Gr. 0.3
Figure 34. PPAK Package Dimensions
P032T1
20/24
VN800S-E / VN800PT-E
Figure 35. SO-8 Tube Shipment (no suffix)
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
A
100
2000
532
3.2
6
0.6
All dimensions are in mm.
Figure 36. SO-8 Tape And Reel Shipment (suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
12.4
60
18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
12
4
8
1.5
1.5
5.5
4.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
21/24
VN800S-E / VN800PT-E
Figure 37. PPAK Suggested Pad Layout and Tube Shipment (no suffix)
A
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
3
1.8
75
3000
532
6
21.3
0.6
6.7
All dimensions are in mm.
Figure 38. PPAK Tape and Reel Shipment (suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
16.4
60
22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
8
1.5
1.5
7.5
2.75
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
22/24
500mm min
VN800S-E / VN800PT-E
REVISION HISTORY
Table 17. Revision History
Date
Revision
Oct. -2004
1
Description of Changes
- First Issue
23/24
VN800S-E / VN800PT-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
24/24