APT50GS60BRDQ2(G) APT50GS60SRDQ2(G) 600V, 50A, VCE(ON) = 2.8V Typical Thunderbolt® High Speed NPT IGBT with Anti-Parallel 'DQ' Diode The Thunderbolt HS™ series is based on thin wafer non-punch through (NPT) technology similar to the Thunderbolt® series, but trades higher VCE(ON) for significantly lower turn-on energy Eoff. The low switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET performance but lower cost. An extremely tight parameter distribution combined with a positive VCE(ON) temperature coefficient make it easy to parallel Thunderbolts HS™ IGBT's. Controlled slew rates result in very good noise and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode. TO -2 47 D3PAK APT50GS60BRDQ2(G) APT50GS60SRDQ2(G) Features Typical Applications • Fast Switching with low EMI • ZVS Phase Shifted and other Full Bridge • Very Low EOFF for Maximum Efficiency • Half Bridge • Short circuit rated • High Power PFC Boost • Low Gate Charge • Welding • Tight parameter distribution • Induction heating • Easy paralleling • High Frequency SMPS Single die IGBT with separate DQ diode die • RoHS Compliant Absolute Maximum Ratings Symbol Parameter Rating I C1 Continuous Collector Current TC = @ 25°C 93 I C1 Continuous Collector Current TC = @ 100°C 50 I CM Pulsed Collector Current 1 195 VGE Gate-Emitter Voltage SSOA Unit A ±30V V Switching Safe Operating Area 195 EAS Single Pulse Avalanche Energy 2 280 mJ tSC Short Circut Withstand Time 3 10 µs IF Diode Continuous Forward Current I FRM TC = 25°C 90 TC = 100°C 55 Diode Max. Repetitive Forward Current A 195 Thermal and Mechanical Characteristics RθJC Junction to Case Thermal Resistance RθCS Case to Sink Thermal Resistance, Flat Greased Surface TJ, TSTG Soldering Temperature for 10 Seconds (1.6mm from case) WT Package Weight Max Unit - - 415 W - - 0.30 Diode Operating and Storage Junction Temperature Range TL Torque IGBT Typ Mounting Torque (TO-247), 6-32 M3 Screw 0.67 - 0.11 - -55 - 150 - - 300 - 0.22 - oz - 5.9 - g - - 10 in·lbf - - 1.1 N·m CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed. Microsemi Website - http://www.microsemi.com °C/W °C 8-2007 Total Power Dissipation TC = @ 25°C Min Rev A Parameter 052-6300 Symbol PD Static Characteristics Symbol VBR(CES) ∆VBR(CES)/∆TJ VCE(ON) VEC VGE(th) TJ = 25°C unless otherwise specified Parameter Collector-Emitter Breakdown Voltage Breakdown Voltage Temperature Coeff Collector-Emitter On Voltage 4 Diode Forward Voltage 4 ∆VGE(th)/∆TJ Threshold Voltage Temp Coeff ICES Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Dynamic Characteristics Symbol gfs Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Co(cr) Reverse Transfer Capacitance Charge Related 5 Co(er) Reverse Transfer Capacitance Current Related 6 Qg Total Gate Charge Gate-Emitter Charge Ggc Gate-Collector Charge td(on) Turn-On Delay Time td(off) tf 8-2007 Fall Time Turn-On Switching Energy Turn-On Switching Energy 9 Eoff Turn-Off Switching Energy 10 td(on) Turn-On Delay Time Eon1 Unit 600 - - V Reference to 25°C, IC = 250µA - 0.60 - V/°C VGE = 15V IC = 50A TJ = 25°C - 2.8 3.15 TJ = 125°C - 3.25 - TJ = 25°C - 2.15 - TJ = 125°C VGE = VCE, IC = 1mA VCE = 600V, VGE = 0V Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy 8 Eon2 Turn-On Switching Energy 9 Eoff Turn-Off Switching Energy 10 trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irrm Peak Reverse Recovery Current - 1.8 - 3 4 5 V - 6.7 - TJ = 25°C - - 50 TJ = 125°C - - TBD - - ±100 nA Min Typ Max Unit - 31 - S - 2635 - - 240 - - 145 - - 115 - VGE = ±20V VGE = 0V, VCE = 25V f = 1MHz VGE = 0V VCE = 0 to 400V Inductive Switching IGBT and Diode: Turn-Off Delay Time Eon2 tf Rev A Rise Time 8 td(off) Max VGE = 0 to 15V IC = 50A, VCE = 300V Eon1 tr Typ Test Conditions VCE = 50V, IC = 50A Forward Transconductance Qge Min TJ = 25°C unless otherwise specified Cies tr 052-6300 Parameter Test Conditions VGE = 0V, IC = 250µA IC = 50A Gate-Emitter Threshold Voltage APT50GS60B_SRDQ2(G) TJ = 25°C, VCC = 400V, IC = 50A RG = 4.7Ω 7, VGG = 15V mV/°C µA pF 85 - 235 - - 18 - - 100 - - 16 - - 33 - - 225 - - 37 - - TBD - - 1.2 - - 0.755 - nC ns mJ - 33 - Inductive Switching IGBT and Diode: - 33 - - 250 - TJ = 125°C, VCC = 400V, IC = 50A RG = 4.7Ω 7, VGG = 15V - 23 - - TBD - - 1.7 - - 0.950 - - 25 - ns - 35 - nC - 3 - A IF = 50A VR = 400V diF/dt = 200A/µs ns mJ TYPICAL PERFORMANCE CURVES APT50GS60B_SRDQ2(G) 250 VGE = 15V T = 125°C J 125 IC, COLLECTOR CURRENT (A) 100 75 TJ = 25°C 50 TJ = 125°C TJ = 150°C 125 100 75 0 TJ = 25°C TJ = 125°C 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) 4 IC = 50A 3 IC = 25A 2 1 0 7V 50 6V 6 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 5 IC = 100A 4 IC = 50A 3 IC = 25A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 14 VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 0 0 50 100 150 200 GATE CHARGE (nC) FIGURE 6, Gate Charge 250 100 5000 1000 Coes Cres 0 100 200 300 400 500 600 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 7, Capacitance vs Collector-To-Emitter Voltage IC, DC COLLECTOR CURRENT(A) Cies 10 8V 75 16 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 5, On State Voltage vs Junction Temperature 100 9V 100 FIGURE 4, On State Voltage vs Gate-to- Emitter Voltage VGE, GATE-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC = 100A VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE P J C, CAPACITANCE ( F) I = 25A C T = 25°C 125 FIGURE 2, Output Characteristics FIGURE 3, Transfer Characteristics 5 10V 150 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 250µs PULSE TEST<0.5 % DUTY CYCLE 25 11V 175 0 FIGURE 1, Output Characteristics 50 = 13 & 15V 25 0 0 1 2 3 4 5 6 VCE(ON), COLLECTER-TO-EMITTER VOLTAGE (V) 150 GE 90 80 70 60 50 40 30 20 10 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 8-2007 25 V 200 Rev A IC, COLLECTOR CURRENT (A) 225 052-6300 150 TYPICAL PERFORMANCE CURVES 16 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 18 VGE = 15V 14 12 10 8 6 4 VCE = 400V TJ = 25°C, TJ =125°C 2 RG = 4.7Ω 0 L = 100µH 250 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current VGE =15V,TJ=125°C 200 VGE =15V,TJ=25°C 150 100 50 VCE = 400V RG = 4.7Ω 0 0 100 APT50GS60B_SRDQ2(G) 300 20 L = 100µH 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 80 RG = 4.7Ω, L = 100µH, VCE = 400V RG = 4.7Ω, L = 100µH, VCE = 400V 70 TJ = 25 or 125°C,VGE = 15V 60 tf, FALL TIME (ns) tr, RISE TIME (ns) 80 60 40 50 40 TJ = 125°C, VGE = 15V 30 20 20 TJ = 25°C, VGE = 15V 10 0 0 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 2500 V = 400V CE V = +15V GE R = 4.7Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 6000 G 5000 TJ = 125°C,VGE =15V 4000 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 3000 2000 1000 TJ = 25°C,VGE =15V 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current J 8 Eon2,100A 4 Eon2,50A Eoff,50A 2 0 Eoff,25A Eon2,25A 0 1500 1000 500 TJ = 25°C, VGE = 15V 6 Eoff,100A 6 TJ = 125°C, VGE = 15V 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (mJ) SWITCHING ENERGY LOSSES mJ) 8-2007 Rev A 052-6300 = 400V V CE = +15V V GE T = 125°C G 2000 0 0 10 = 400V V CE = +15V V GE R = 4.7Ω = 400V V CE = +15V V GE R = 4.7Ω G 5 Eon2,100A 4 3 Eoff,100A 2 Eon2,50A Eoff,50A 1 Eon2,25A 0 Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT50GS60B_SRDQ2(G) 200 200 100 ICM VCE(on) 10 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 100 13µs 100µs 1ms 10ms 1 100ms DC line 0.1 TJ = 125°C TC = 75°C ICM VCE(on) 10 13µs 100µs 1ms 10ms TJ = 150°C TC = 25°C 1 0.1 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) Figure 17, Forward Safe Operating Area 100ms DC line Scaling for Different Case & Junction Temperatures: IC = IC(T = 25°C)*(TJ - TC)/125 C 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) Figure 18, Maximum Forward Safe Operating Area 0.30 0.9 0.25 0.7 0.20 0.5 0.15 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.35 0.3 0.10 t1 t2 0.05 0 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.1 0.05 10-5 10-1 10-2 10-3 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10-4 1.0 0.00606 0.260 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. Figure 20, Transient Thermal Impedance Model 75°C 100 Fmax = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 80 60 40 T = 125°C J T = 75°C C D = 50 % = 400V V CE R = 4.7Ω 20 0 G 100°C fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 20 30 40 50 60 70 80 90 IC, COLLECTOR CURRENT (A) Figure 21, Operating Frequency vs Collector Current 0 10 8-2007 0.226 120 Rev A 0.0731 Dissipated Power (Watts) 140 052-6300 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 160 APT50GS60B_SRDQ2(G) APT40DQ60 Gate Voltage 10% TJ = 125°C td(on) tr IC V CC Collector Current V CE 90% 5% 10% A 5% Collector Voltage Switching Energy D.U.T. Figure 23, Turn-on Switching Waveforms and Definitions Figure 22, Inductive Switching Test Circuit Gate Voltage TJ = 125°C 90% td(off) Collector Voltage 90% tf 10% Collector Current 0 Switching Energy Figure 24, Turn-off Switching Waveforms and Definitions FOOT NOTE: 052-6300 Rev A 8-2007 1 2 3 4 5 6 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. Starting at TJ = 25°C, L = 224µH, RG = 25Ω, IC = 50A Short circuit time: VGE = 15V, VCC ≤ 600V, TJ ≤ 150°C Pulse test: Pulse width < 380µs, duty cycle < 2% Co(cr) is defined as a fixed capacitance with the same stored charge as Coes with VCE = 67% of V(BR)CES. Co(er) is defined as a fixed capacitance with the same stored energy as Coes with VCE = 67% of V(BR)CES. To calculate Co(er) for any value of VCE less than V(BR)CES, use this equation: Co(er) = 5.57E-8/VDS^2 + 7.15E-8/VDS + 2.75E-10. 7 RG is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452). 8 Eon1 is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode. 9 Eon2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy. 10 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. APT50GS60B_SRDQ2(G) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector (Cathode) e1 SAC: Tin, Silver, Copper 5.38 (.212) 6.20 (.244) Drain (Heat Sink) TO-247 Package Outline D3 Pak Package Outline 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) 13.41 (.528) 13.51(.532) 13.79 (.543) 13.99(.551) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) Revised 8/29/97 11.51 (.453) 11.61 (.457) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter (Anode) 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter (Anode) Collector (Cathode) Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads (Cathode) are Plated Rev A 4.50 (.177) Max. 052-6300 0.46 (.018) 0.56 (.022) {3 Plcs} 2.87 (.113) 3.12 (.123) 8-2007 3.50 (.138) 3.81 (.150)