IRF GB10RF120K

Bulletin I27278 01/07
GB10RF120K
IGBT PIM MODULE
VCES = 1200V
Features
• Low VCE (on) Non Punch Through IGBT Technology
• Low Diode VF
IC = 13A @ TC=80°C
• 10μs Short Circuit Capability
• Square RBSOA
tsc > 10μs @ TJ =150°C
• HEXFRED Antiparallel Diode with Ultrasoft
Reverse Recovery Characteristics
• Positive VCE (on) Temperature Coefficient
• Ceramic DBC Substrate
VCE(on) typ. = 2.68V
ECONO2 PIM
• Low Stray Inductance Design
• TOTALLY LEAD-FREE
Benefits
•
•
•
•
•
•
•
Benchmark Efficiency for Motor Control
Rugged Transient Performance
Low EMI, Requires Less Snubbing
Direct Mounting to Heatsink
PCB Solderable Terminals
Low Junction to Case Thermal Resistance
UL Approved E78996
R
23
24
Absolute Maximum Ratings
Parameter
Inverter
Ratings
Units
Collector-to-Emitter Voltage
VCES
1200
V
Gate-to-Emitter Voltage
VGES
±20
Collector Current
Diode Maximum Forward Current
Power Dissipation
Input Rectifier
Test Conditions
IC
Continuos
25°C / 80°C
20 / 13
ICM
Pulsed
25°C
40
IFM
Pulsed
25°C
40
PD
One IGBT
25°C
Repetitive Peak Reverse Voltage
V RRM
Average Output Current
IF(AV)
Surge Current (Non Repetitive)
IFSM
I2 t (Non Repetitive)
Brake
Symbol
50/60Hz sine pulse
80°C
Rated VRRM applied, 10ms,
I2t
88
A
W
1600
V
13
A
120
72
A 2s
Collector-to-Emitter Voltage
VCES
1200
V
Gate-to-Emitter Voltage
VGES
±20
sine pulse
IC
Continuous
25°C / 80°C
20 / 13
ICM
Pulsed
25°C
40
Power Dissipation
PD
One IGBT
25°C
Maximum Operating Junction Temperature
TJ
Collector Current
Storage Temperature Range
TSTG
Isolation Voltage
VISOL
A
88
W
150
°C
-40 to +125
AC (1 min)
2500
V
Thermal and Mechanical Characteristics
Parameter
Min
Typical
Maximum
Units
Junction-to-Case Inverter IGBT Thermal Resistance
-
-
1.42
°C/W
Junction-to-Case Inverter FRED Thermal Resistance
-
-
1.97
Junction-to-Case Brake DIODE Thermal Resistance
Symbol
RθJC
Junction-to-Case Brake IGBT Thermal Resistance
Junction-to-Case Input Rectifier Thermal Resistance
Case-to-Sink, flat, greased surface
Mounting Torque (M5)
Weight
1
RθCS
-
-
1.97
-
-
1.42
1.11
-
0.05
-
2.7
-
3.3
170
Nm
g
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Inverter
IGBT
BV(CES)
Parameter
Collector-to-Emitter Breakdown Voltage
Min. Typ. Max. Units Conditions
1200
V
VGE = 0 IC = 500μA
ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage
-
1.33
-
V/°C
Collector-to-Emitter Voltage
-
2.68
3.03
V
-
3.68
4.55
IC = 20A VGE = 15V
-
3.19
3.61
IC = 10A VGE = 15V TJ = 125°C
-
4.52
5.17
4
-
6
ΔV GE (th)/ΔT J Thresold Voltage temp. coefficient
-
-9.7
-
mV/°C
ICES
Zero Gate Voltage Collector Current
-
-
100
μA
-
750
-
IGES
Gate-to-Emitter Leakage Current
-
-
±200
QG
Total Gate Charge (turn-on)
-
48
72
QGE
Gate-to-Emitter Charge (turn-on)
-
8
15
QGC
Gate-to-Collector Charge (turn-on)
-
22
33
EON
Turn-On Switching Loss
-
0.96
1.44
EOFF
Turn-Off Switching Loss
-
0.46
0.70
VGE = 15V RG = 22Ω L = 1mH
ETOT
Total Switching Loss
-
1.42
2.14
Tj = 25°C
EON
Turn-On Switching Loss
-
1.25
1.88
EOFF
Turn-Off Switching Loss
-
0.69
0.95
VGE = 15V RG = 22Ω L = 1mH
ETOT
Total Switching Loss
-
1.94
2.83
Tj = 125°C
td(on)
Turn-On delay time
-
86
130
tr
Rise time
-
21
32
VGE = 15V RG = 22Ω L = 1mH
td(off)
Turn-Off delay time
-
118
180
Tj = 125°C
tf
Fall time
-
274
410
Cies
Input Capacitance
-
750
1150
Coes
Output Capacitance
-
190
290
VCC = 30V
Cres
Reverse Transfer Capacitance
-
20
35
f = 1Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
V CE(ON)
VGE(th)
Gate Threshold Voltage
VGE = 0
IC = 1mA (25°C - 125°C)
IC = 10A VGE = 15V
IC = 20A VGE = 15V TJ = 125°C
VCE = VGE IC = 250μA
VCE = VGE IC = 1mA (25°C-125°C)
VGE = 0 VCE = 1200V
VGE = 0 VCE = 1200V Tj = 125°C
nA
VGE = ±20V
IC = 10A
nC
VCC = 600A
VGE = 15V
mJ
mJ
ns
pF
IC = 10A VCC = 600V
1
IC = 10A VCC = 600V
1
IC = 10A VCC = 600V
VGE = 0
Tj = 125°C IC = 40A
RG = 22Ω VGE = 15V to 0
10
-
-
μs
Tj = 150°C
VCC = 960V VP = 1200V
RG = 22Ω
Inverter
Irr
Diode Peak Rev. Recovery Current
-
22
-
A
VGE = 15V to 0
Tj = 125°C
VCC = 600V IF = 10A L = 1mH
IGBT
VGE = 15V RG = 22Ω
V FM
2
Diode Forward Voltage Drop
2.02
2.50
2.53
3.35
V
IF = 10A
2.13
2.63
IF = 10A Tj = 125°C
2.81
3.57
IF = 20A Tj = 125°C
IF = 20A
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V FM
Input
Rectifier IRM
Parameter
Maximum Forward Voltage Drop
Maximum Reverse Leakage Current
Min. Typ. Max. Units Conditions
1.12 V
IF = 10A
-
-
0.05
-
-
1.0
mA
Tj = 25°C VR = 1600V
Tj = 150°C VR = 1600V
rT
Forward Slope Resistance
-
-
18.1
mΩ
V F(TO)
Conduction Thresold Voltage
-
-
0.78
V
Brake
BV(CES)
Collector-to-Emitter Breakdown Voltage
1200
-
-
V
VGE = 0
IC = 500μA
IGBT
ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage
-
1.33
-
V/°C
VGE = 0
IC = 1mA (25°C - 125°C)
VCE(ON)
-
2.68
3.03
V
-
3.68
4.55
IC = 20A VGE = 15V
-
3.19
3.61
IC = 10A VGE = 15V TJ = 125°C
-
4.52
5.17
IC = 20A VGE = 15V TJ = 125°C
4.0
-
6.0
VCE = VGE IC = 250μA
Collector-to-Emitter Voltage
Tj = 150°C
IC = 10A VGE = 15V
VGE(th)
Gate Threshold Voltage
ΔV GE (th)/ΔT J
Thresold Voltage temp. coefficient
-
-9.7
-
mV/°C
ICES
Zero Gate Voltage Collector Current
-
-
100
μA
-
750
-
IGES
Gate-to-Emitter Leakage Current
-
-
±200
QG
Total Gate Charge (turn-on)
-
48
72
QGE
Gate-to-Emitter Charge (turn-on)
-
8
15
QGC
Gate-to-Collector Charge (turn-on)
-
22
33
EON
Turn-On Switching Loss
-
0.96
1.44
EOFF
Turn-Off Switching Loss
-
0.46
0.70
VGE = 15V RG = 22Ω L = 1mH
ETOT
Total Switching Loss
-
1.42
2.14
Tj = 25°C
EON
Turn-On Switching Loss
-
1.25
1.88
EOFF
Turn-Off Switching Loss
-
0.69
0.95
ETOT
Total Switching Loss
-
1.94 2.830
td(on)
Turn-On delay time
-
tr
Rise time
-
21
32
VGE = 15V RG = 22Ω L = 1mH
td(off)
Turn-Off delay time
-
118
180
Tj = 125°C
tf
Fall time
-
274
410
Cies
Input Capacitance
-
750
1150
Coes
Output Capacitance
-
190
290
VCC = 30V
Cres
Reverse Transfer Capacitance
-
20
35
f = 1Mhz
RBSOA
Reverse Bias Safe Operating Area
SCSOA
Short Circuit Safe Operating Area
86
130
VCE = VGE IC = 1mA (25°C-125°C)
VGE = 0 VCE = 1200V
VGE = 0 VCE = 1200V Tj = 125°C
nA
VGE = ±20V
IC = 10A
nC
VCC = 600A
VGE = 15V
mJ
mJ
IC = 10A VCC = 600V
1
IC = 10A VCC = 600V
VGE = 15V RG = 22Ω L = 1mμH
Tj = 125°C
ns
pF
FULL SQUARE
1
IC =10A VCC = 600V
VGE = 0
Tj = 125°C IC = 40A
RG = 22Ω VGE = 15V to 0
10
-
-
μs
Tj = 150°C
VCC = 960V, VP = 1200V
RG = 22Ω
Brake
Diode
Irr
Diode Peak Rev. Recovery Current
-
22
-
A
VGE = 15V to 0
Tj = 125°C
VCC = 600V IF = 10A L = 1mH
VGE = 15V RG = 22Ω
V FM
NTC
R
B
1
Diode Forward Voltage Drop
Resistance
B Value
-
2.02
2.5
-
2.53
3.35
V
IF = 10A
-
2.13
2.63
IF = 10A Tj = 125°C
-
2.81
3.57
IF = 20A Tj = 125°C
-
5000
-
-
493.3
-
-
3375
-
IF = 20A
Ω
Tj = 25°C
Tj = 100°C
K
Tj = 25°C / 50°C
Energy Losses include "tail" and diode reverse recovery
www.irf.com
3
GB10RF120K
Bulletin I27278 11/06
Inverter
20
20
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
15
Ice (A)
Ice (A)
15
10
5
0
0
3
4
5
6
Vce (V)
Fig. 1 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
1
2
0
3
4
5
6
Vce (V)
Fig. 2 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80μs
80
1
18
Tj = 25°C
Tj = 125°C
60
Ice=5A
Ice=10A
Ice=20A
16
14
Vce (V)
50
40
30
12
10
8
6
20
4
10
2
0
0
0
2
4
6
8 10 12 14 16 18 20
Vge (V)
Fig. 3 - Typ. Transfer Characteristics
VCE=50V; tp=10μs
20
5
10
15
Vge (V)
Fig. 4 - Typical VCE vs. VGE
TJ = 25°C
20
10000
18
14
Capacitance (pF)
Ice=12.5A
Ice=25A
Ice=50A
16
12
10
8
6
Cies
1000
Coes
100
Cres
4
2
5
10
Vge (V)
15
Fig. 5 - Typical VCE vs. VGE
TJ = 125°C
4
2
20
70
Ice (A)
10
5
0
Vce (V)
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
20
10
0
20
40
60
80
100
Vce (V)
Fig. 6- Typ. Capacitance vs. VCE
VGE= 0; f = 1MHz
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Inverter
35
35
Rg=4.7Ω
Rg=10Ω
Rg=22Ω
Rg=33Ω
Rg=47Ω
30
25
Irr (A)
Irr (A)
25
30
20
15
20
15
10
10
5
5
0
0
0
5
10
15
20
25
If (A)
Fig. 13 - Typical Diode IRR vs. IF
TJ = 125°C
0
30
12
Thermistor Resistance ( kΩ)
14
25
Irr (A)
20
30
40
50
Rg (Ω )
Fig. 14 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 10A
Thermistor
35
20
15
10
5
0
400
10
10
8
6
4
2
0
500
600 700 800 900 1000
dif/dt (A/µs)
Fig. 15- Typical Diode IRR vs. diF/dt; VCC= 600V;
VGE= 15V; ICE= 10A; TJ = 125°C
0
20
40
60
80
100
120
140
160
180
T J , Junction Temperature (°C)
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
Instantaneous Forward Current - I F ( A )
90
80
T J = 125°C
70
T J = 25°C
60
50
40
30
20
10
0
0.0
0.5
1.0
1.5
2.0
2.5
Forward Voltage Drop - V F ( V )
Fig. 17- Typ. Diode Forward Characteristics
tp = 80μs
6
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Inverter
Thermal Response (ZthJC )
10
1
0.5
0.3
0.1
0.1
R1
R1
0.05
TτJ
J
τ1
0.02
0.01
0.01
R2
R2
Ri (°C/W)
0.5523
0.8679
TC
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
(THERMAL RESPONSE)
0.001
1E-05
τi (sec)
0,413
0.649
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
1E-04
1E-03
1E-02
1E-01
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E+00
Thermal Response (ZthJC )
10
1
0.5
0.3
R1
R1
0.1
0.1
τJ
τ1
0.05
0.01
SINGLE PULSE
(THERMAL RESPONSE)
www.irf.com
R3
R3
TC
τ1
Ci= τi/Ri
Ci= i/Ri
0.02
0.01
1E-05
R2
R2
TJ
1E-04
τ2
τ2
τ3
τ3
Ri (°C/W) τi (sec)
0.5125 0.000527
0.4129 0.001438
1.0447 0.027308
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
1E-03
1E-02
1E-01
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
1E+00
7
GB10RF120K
Bulletin I27278 11/06
Brake
20
20
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
15
Ice (A)
Ice (A)
15
10
5
0
0
3
4
5
6
Vce (V)
Fig. 20 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
1
2
0
3
4
5
6
Vce (V)
Fig. 21 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80μs
80
1
18
Tj = 25°C
Tj = 125°C
60
Ice=5A
Ice=10A
Ice=20A
16
14
Vce (V)
50
40
30
12
10
8
6
20
4
10
2
0
0
0
2
4
6
8 10 12 14 16 18 20
Vge (V)
Fig. 22 - Typ. Transfer Characteristics
VCE=50V; tp=10μs
20
5
10
15
Vge (V)
Fig. 23 - Typical VCE vs. VGE
TJ = 25°C
20
10000
18
14
Capacitance (pF)
Ice=12.5A
Ice=25A
Ice=50A
16
12
10
8
6
Cies
1000
Coes
100
Cres
4
2
5
10
Vge (V)
15
Fig. 24 - Typical VCE vs. VGE
TJ = 125°C
8
2
20
70
Ice (A)
10
5
0
Vce (V)
Vge=18V
Vge=15V
Vge=12V
Vge=10V
Vge=8V
20
10
0
20
40
60
80
100
Vce (V)
Fig. 25- Typ. Capacitance vs. VCE
VGE= 0; f = 1MHz
www.irf.com
GB10RF120K
Brake
Bulletin I27278 01/07
16
40
14
35
600V
12
30
If (A)
VGE (V)
10
8
25
20
6
15
4
10
2
5
0
0
Tj = 25°C
Tj = 125°C
10
20
30
40
QG, Total Gate Charge (nC)
0
50
0
1.5 2 2.5 3 3.5 4
Vf (V)
Fig. 27 - Typ. Diode Forward Characteristics
tp = 80μs
Fig. 26 - Typical Gate Charge vs. VGE
ICE = 10A
0.5
1
1
3
tF
Energy (mJ)
2
EON
1.5
1
0.5
Swiching Time (µs)
ETOT
2.5
tdON
0.01
tR
EOFF
0.001
0
0
10
15
20
25
Ic (A)
Fig. 28 - Typ. Energy Loss vs. IC
TJ = 125°C; L=1mH; VCE= 600V;RG= 22Ω; VGE= 15V
5
0
10
15
20
25
Ic (A)
Fig. 29 - Typ. Switching Time vs. IC
TJ = 125°C; L=1mH; VCE= 600V; RG= 22Ω; VGE= 15V
1.8
5
1
ETOT
Tf
EON
1.2
0.9
0.6
EOFF
Switching Time (µs)
1.5
Energy (mJ)
tdOFF
0.1
Td(off)
0.1
Td(on)
Tr
0.01
0.3
0
0.001
0
20
30
40
50
Rg (Ω )
Fig. 30 - Typ. Energy Loss vs. RG
TJ = 125°C; L=1mH; VCE= 600V; ICE= 10A; VGE= 15V
www.irf.com
10
0
10
20
30
40
50
IC (A)
Fig. 31 - Typ. Switching Time vs. RG
TJ = 125°C; L=1mH; VCE= 600V; ICE= 10A; VGE= 15V
9
GB10RF120K
Bulletin I27278 11/06
Brake
35
35
Rg=4.7Ω
Rg=10Ω
Rg=22Ω
Rg=33Ω
Rg=47Ω
30
25
Irr (A)
Irr (A)
25
30
20
20
15
15
10
10
5
5
0
0
0
5
10
15
If (A)
20
25
0
10
20
30
Rg (Ω )
40
50
Fig. 33 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 10A
Fig. 32 - Typical Diode IRR vs. IF
TJ = 125°C
35
30
Irr (A)
25
20
15
10
5
0
400
500
600 700 800
dif/dt (A/µs)
900 1000
Fig. 34- Typical Diode IRR vs. diF/dt; VCC= 600V;
VGE= 15V; ICE= 10A; TJ = 125°C
10
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Brake
Thermal Response (ZthJC )
10
1
0.5
0.3
0.1
0.1
R1
R1
0.05
TτJ
J
τ1
0.02
0.01
0.01
R2
R2
Ri (°C/W)
0.5523
0.8679
TC
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
(THERMAL RESPONSE)
0.001
1E-05
1E-04
τi (sec)
0,413
0.649
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
1E-03
1E-02
t1 , Rectangular Pulse Duration (sec)
1E-01
1E+00
Fig. 35 - Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
Thermal Response (ZthJC )
10
1
0.5
0.3
R1
R1
0.1
0.1
R2
R2
R3
R3
TJ
τJ
τ1
0.05
TC
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci= i/Ri
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
0.01
1E-05
1E-04
1E-03
1E-02
t1 , Rectangular Pulse Duration (sec)
Ri (°C/W) τi (sec)
0.5125 0.000527
0.4129 0.001438
1.0447 0.027308
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + tc
1E-01
1E+00
Fig. 36 - Maximum Transient Thermal Impedance, Junction-to-Case (Brake DIODE)
www.irf.com
11
GB10RF120K
Bulletin I27278 11/06
R=
diode clamp/
DUT
VCC
ICM
L
+
- +
VCC
5V
-
VGE
DUT/
DRIVER
+
-
1mA
IC
VCC
RG
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp/
DUT
L
+
-
DUT
- +
VCC
5V
DUT/
DRIVER
+
-
VCC
RG
RG
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
+
VCC
-
RG
Fig.C.T.5 - Resistive Load Circuit
12
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Econo2 PIM Package Outline
Dimensions are shown in millimeters (inches)
Econo2 PIM Part Marking Information
LOT
Made in Italy
GB10RF120K
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 11/06
www.irf.com
13