Bulletin I27278 01/07 GB10RF120K IGBT PIM MODULE VCES = 1200V Features • Low VCE (on) Non Punch Through IGBT Technology • Low Diode VF IC = 13A @ TC=80°C • 10μs Short Circuit Capability • Square RBSOA tsc > 10μs @ TJ =150°C • HEXFRED Antiparallel Diode with Ultrasoft Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate VCE(on) typ. = 2.68V ECONO2 PIM • Low Stray Inductance Design • TOTALLY LEAD-FREE Benefits • • • • • • • Benchmark Efficiency for Motor Control Rugged Transient Performance Low EMI, Requires Less Snubbing Direct Mounting to Heatsink PCB Solderable Terminals Low Junction to Case Thermal Resistance UL Approved E78996 R 23 24 Absolute Maximum Ratings Parameter Inverter Ratings Units Collector-to-Emitter Voltage VCES 1200 V Gate-to-Emitter Voltage VGES ±20 Collector Current Diode Maximum Forward Current Power Dissipation Input Rectifier Test Conditions IC Continuos 25°C / 80°C 20 / 13 ICM Pulsed 25°C 40 IFM Pulsed 25°C 40 PD One IGBT 25°C Repetitive Peak Reverse Voltage V RRM Average Output Current IF(AV) Surge Current (Non Repetitive) IFSM I2 t (Non Repetitive) Brake Symbol 50/60Hz sine pulse 80°C Rated VRRM applied, 10ms, I2t 88 A W 1600 V 13 A 120 72 A 2s Collector-to-Emitter Voltage VCES 1200 V Gate-to-Emitter Voltage VGES ±20 sine pulse IC Continuous 25°C / 80°C 20 / 13 ICM Pulsed 25°C 40 Power Dissipation PD One IGBT 25°C Maximum Operating Junction Temperature TJ Collector Current Storage Temperature Range TSTG Isolation Voltage VISOL A 88 W 150 °C -40 to +125 AC (1 min) 2500 V Thermal and Mechanical Characteristics Parameter Min Typical Maximum Units Junction-to-Case Inverter IGBT Thermal Resistance - - 1.42 °C/W Junction-to-Case Inverter FRED Thermal Resistance - - 1.97 Junction-to-Case Brake DIODE Thermal Resistance Symbol RθJC Junction-to-Case Brake IGBT Thermal Resistance Junction-to-Case Input Rectifier Thermal Resistance Case-to-Sink, flat, greased surface Mounting Torque (M5) Weight 1 RθCS - - 1.97 - - 1.42 1.11 - 0.05 - 2.7 - 3.3 170 Nm g www.irf.com GB10RF120K Bulletin I27278 11/06 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Inverter IGBT BV(CES) Parameter Collector-to-Emitter Breakdown Voltage Min. Typ. Max. Units Conditions 1200 V VGE = 0 IC = 500μA ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage - 1.33 - V/°C Collector-to-Emitter Voltage - 2.68 3.03 V - 3.68 4.55 IC = 20A VGE = 15V - 3.19 3.61 IC = 10A VGE = 15V TJ = 125°C - 4.52 5.17 4 - 6 ΔV GE (th)/ΔT J Thresold Voltage temp. coefficient - -9.7 - mV/°C ICES Zero Gate Voltage Collector Current - - 100 μA - 750 - IGES Gate-to-Emitter Leakage Current - - ±200 QG Total Gate Charge (turn-on) - 48 72 QGE Gate-to-Emitter Charge (turn-on) - 8 15 QGC Gate-to-Collector Charge (turn-on) - 22 33 EON Turn-On Switching Loss - 0.96 1.44 EOFF Turn-Off Switching Loss - 0.46 0.70 VGE = 15V RG = 22Ω L = 1mH ETOT Total Switching Loss - 1.42 2.14 Tj = 25°C EON Turn-On Switching Loss - 1.25 1.88 EOFF Turn-Off Switching Loss - 0.69 0.95 VGE = 15V RG = 22Ω L = 1mH ETOT Total Switching Loss - 1.94 2.83 Tj = 125°C td(on) Turn-On delay time - 86 130 tr Rise time - 21 32 VGE = 15V RG = 22Ω L = 1mH td(off) Turn-Off delay time - 118 180 Tj = 125°C tf Fall time - 274 410 Cies Input Capacitance - 750 1150 Coes Output Capacitance - 190 290 VCC = 30V Cres Reverse Transfer Capacitance - 20 35 f = 1Mhz RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area V CE(ON) VGE(th) Gate Threshold Voltage VGE = 0 IC = 1mA (25°C - 125°C) IC = 10A VGE = 15V IC = 20A VGE = 15V TJ = 125°C VCE = VGE IC = 250μA VCE = VGE IC = 1mA (25°C-125°C) VGE = 0 VCE = 1200V VGE = 0 VCE = 1200V Tj = 125°C nA VGE = ±20V IC = 10A nC VCC = 600A VGE = 15V mJ mJ ns pF IC = 10A VCC = 600V 1 IC = 10A VCC = 600V 1 IC = 10A VCC = 600V VGE = 0 Tj = 125°C IC = 40A RG = 22Ω VGE = 15V to 0 10 - - μs Tj = 150°C VCC = 960V VP = 1200V RG = 22Ω Inverter Irr Diode Peak Rev. Recovery Current - 22 - A VGE = 15V to 0 Tj = 125°C VCC = 600V IF = 10A L = 1mH IGBT VGE = 15V RG = 22Ω V FM 2 Diode Forward Voltage Drop 2.02 2.50 2.53 3.35 V IF = 10A 2.13 2.63 IF = 10A Tj = 125°C 2.81 3.57 IF = 20A Tj = 125°C IF = 20A www.irf.com GB10RF120K Bulletin I27278 11/06 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V FM Input Rectifier IRM Parameter Maximum Forward Voltage Drop Maximum Reverse Leakage Current Min. Typ. Max. Units Conditions 1.12 V IF = 10A - - 0.05 - - 1.0 mA Tj = 25°C VR = 1600V Tj = 150°C VR = 1600V rT Forward Slope Resistance - - 18.1 mΩ V F(TO) Conduction Thresold Voltage - - 0.78 V Brake BV(CES) Collector-to-Emitter Breakdown Voltage 1200 - - V VGE = 0 IC = 500μA IGBT ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage - 1.33 - V/°C VGE = 0 IC = 1mA (25°C - 125°C) VCE(ON) - 2.68 3.03 V - 3.68 4.55 IC = 20A VGE = 15V - 3.19 3.61 IC = 10A VGE = 15V TJ = 125°C - 4.52 5.17 IC = 20A VGE = 15V TJ = 125°C 4.0 - 6.0 VCE = VGE IC = 250μA Collector-to-Emitter Voltage Tj = 150°C IC = 10A VGE = 15V VGE(th) Gate Threshold Voltage ΔV GE (th)/ΔT J Thresold Voltage temp. coefficient - -9.7 - mV/°C ICES Zero Gate Voltage Collector Current - - 100 μA - 750 - IGES Gate-to-Emitter Leakage Current - - ±200 QG Total Gate Charge (turn-on) - 48 72 QGE Gate-to-Emitter Charge (turn-on) - 8 15 QGC Gate-to-Collector Charge (turn-on) - 22 33 EON Turn-On Switching Loss - 0.96 1.44 EOFF Turn-Off Switching Loss - 0.46 0.70 VGE = 15V RG = 22Ω L = 1mH ETOT Total Switching Loss - 1.42 2.14 Tj = 25°C EON Turn-On Switching Loss - 1.25 1.88 EOFF Turn-Off Switching Loss - 0.69 0.95 ETOT Total Switching Loss - 1.94 2.830 td(on) Turn-On delay time - tr Rise time - 21 32 VGE = 15V RG = 22Ω L = 1mH td(off) Turn-Off delay time - 118 180 Tj = 125°C tf Fall time - 274 410 Cies Input Capacitance - 750 1150 Coes Output Capacitance - 190 290 VCC = 30V Cres Reverse Transfer Capacitance - 20 35 f = 1Mhz RBSOA Reverse Bias Safe Operating Area SCSOA Short Circuit Safe Operating Area 86 130 VCE = VGE IC = 1mA (25°C-125°C) VGE = 0 VCE = 1200V VGE = 0 VCE = 1200V Tj = 125°C nA VGE = ±20V IC = 10A nC VCC = 600A VGE = 15V mJ mJ IC = 10A VCC = 600V 1 IC = 10A VCC = 600V VGE = 15V RG = 22Ω L = 1mμH Tj = 125°C ns pF FULL SQUARE 1 IC =10A VCC = 600V VGE = 0 Tj = 125°C IC = 40A RG = 22Ω VGE = 15V to 0 10 - - μs Tj = 150°C VCC = 960V, VP = 1200V RG = 22Ω Brake Diode Irr Diode Peak Rev. Recovery Current - 22 - A VGE = 15V to 0 Tj = 125°C VCC = 600V IF = 10A L = 1mH VGE = 15V RG = 22Ω V FM NTC R B 1 Diode Forward Voltage Drop Resistance B Value - 2.02 2.5 - 2.53 3.35 V IF = 10A - 2.13 2.63 IF = 10A Tj = 125°C - 2.81 3.57 IF = 20A Tj = 125°C - 5000 - - 493.3 - - 3375 - IF = 20A Ω Tj = 25°C Tj = 100°C K Tj = 25°C / 50°C Energy Losses include "tail" and diode reverse recovery www.irf.com 3 GB10RF120K Bulletin I27278 11/06 Inverter 20 20 Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 15 Ice (A) Ice (A) 15 10 5 0 0 3 4 5 6 Vce (V) Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 1 2 0 3 4 5 6 Vce (V) Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80μs 80 1 18 Tj = 25°C Tj = 125°C 60 Ice=5A Ice=10A Ice=20A 16 14 Vce (V) 50 40 30 12 10 8 6 20 4 10 2 0 0 0 2 4 6 8 10 12 14 16 18 20 Vge (V) Fig. 3 - Typ. Transfer Characteristics VCE=50V; tp=10μs 20 5 10 15 Vge (V) Fig. 4 - Typical VCE vs. VGE TJ = 25°C 20 10000 18 14 Capacitance (pF) Ice=12.5A Ice=25A Ice=50A 16 12 10 8 6 Cies 1000 Coes 100 Cres 4 2 5 10 Vge (V) 15 Fig. 5 - Typical VCE vs. VGE TJ = 125°C 4 2 20 70 Ice (A) 10 5 0 Vce (V) Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 20 10 0 20 40 60 80 100 Vce (V) Fig. 6- Typ. Capacitance vs. VCE VGE= 0; f = 1MHz www.irf.com GB10RF120K Bulletin I27278 11/06 Inverter 35 35 Rg=4.7Ω Rg=10Ω Rg=22Ω Rg=33Ω Rg=47Ω 30 25 Irr (A) Irr (A) 25 30 20 15 20 15 10 10 5 5 0 0 0 5 10 15 20 25 If (A) Fig. 13 - Typical Diode IRR vs. IF TJ = 125°C 0 30 12 Thermistor Resistance ( kΩ) 14 25 Irr (A) 20 30 40 50 Rg (Ω ) Fig. 14 - Typical Diode IRR vs. RG TJ = 125°C; IF = 10A Thermistor 35 20 15 10 5 0 400 10 10 8 6 4 2 0 500 600 700 800 900 1000 dif/dt (A/µs) Fig. 15- Typical Diode IRR vs. diF/dt; VCC= 600V; VGE= 15V; ICE= 10A; TJ = 125°C 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig. 16 - Thermistor Resistance vs. Temperature Input Rectifier Instantaneous Forward Current - I F ( A ) 90 80 T J = 125°C 70 T J = 25°C 60 50 40 30 20 10 0 0.0 0.5 1.0 1.5 2.0 2.5 Forward Voltage Drop - V F ( V ) Fig. 17- Typ. Diode Forward Characteristics tp = 80μs 6 www.irf.com GB10RF120K Bulletin I27278 11/06 Inverter Thermal Response (ZthJC ) 10 1 0.5 0.3 0.1 0.1 R1 R1 0.05 TτJ J τ1 0.02 0.01 0.01 R2 R2 Ri (°C/W) 0.5523 0.8679 TC τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE (THERMAL RESPONSE) 0.001 1E-05 τi (sec) 0,413 0.649 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc 1E-04 1E-03 1E-02 1E-01 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1E+00 Thermal Response (ZthJC ) 10 1 0.5 0.3 R1 R1 0.1 0.1 τJ τ1 0.05 0.01 SINGLE PULSE (THERMAL RESPONSE) www.irf.com R3 R3 TC τ1 Ci= τi/Ri Ci= i/Ri 0.02 0.01 1E-05 R2 R2 TJ 1E-04 τ2 τ2 τ3 τ3 Ri (°C/W) τi (sec) 0.5125 0.000527 0.4129 0.001438 1.0447 0.027308 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc 1E-03 1E-02 1E-01 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 1E+00 7 GB10RF120K Bulletin I27278 11/06 Brake 20 20 Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 15 Ice (A) Ice (A) 15 10 5 0 0 3 4 5 6 Vce (V) Fig. 20 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 1 2 0 3 4 5 6 Vce (V) Fig. 21 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80μs 80 1 18 Tj = 25°C Tj = 125°C 60 Ice=5A Ice=10A Ice=20A 16 14 Vce (V) 50 40 30 12 10 8 6 20 4 10 2 0 0 0 2 4 6 8 10 12 14 16 18 20 Vge (V) Fig. 22 - Typ. Transfer Characteristics VCE=50V; tp=10μs 20 5 10 15 Vge (V) Fig. 23 - Typical VCE vs. VGE TJ = 25°C 20 10000 18 14 Capacitance (pF) Ice=12.5A Ice=25A Ice=50A 16 12 10 8 6 Cies 1000 Coes 100 Cres 4 2 5 10 Vge (V) 15 Fig. 24 - Typical VCE vs. VGE TJ = 125°C 8 2 20 70 Ice (A) 10 5 0 Vce (V) Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V 20 10 0 20 40 60 80 100 Vce (V) Fig. 25- Typ. Capacitance vs. VCE VGE= 0; f = 1MHz www.irf.com GB10RF120K Brake Bulletin I27278 01/07 16 40 14 35 600V 12 30 If (A) VGE (V) 10 8 25 20 6 15 4 10 2 5 0 0 Tj = 25°C Tj = 125°C 10 20 30 40 QG, Total Gate Charge (nC) 0 50 0 1.5 2 2.5 3 3.5 4 Vf (V) Fig. 27 - Typ. Diode Forward Characteristics tp = 80μs Fig. 26 - Typical Gate Charge vs. VGE ICE = 10A 0.5 1 1 3 tF Energy (mJ) 2 EON 1.5 1 0.5 Swiching Time (µs) ETOT 2.5 tdON 0.01 tR EOFF 0.001 0 0 10 15 20 25 Ic (A) Fig. 28 - Typ. Energy Loss vs. IC TJ = 125°C; L=1mH; VCE= 600V;RG= 22Ω; VGE= 15V 5 0 10 15 20 25 Ic (A) Fig. 29 - Typ. Switching Time vs. IC TJ = 125°C; L=1mH; VCE= 600V; RG= 22Ω; VGE= 15V 1.8 5 1 ETOT Tf EON 1.2 0.9 0.6 EOFF Switching Time (µs) 1.5 Energy (mJ) tdOFF 0.1 Td(off) 0.1 Td(on) Tr 0.01 0.3 0 0.001 0 20 30 40 50 Rg (Ω ) Fig. 30 - Typ. Energy Loss vs. RG TJ = 125°C; L=1mH; VCE= 600V; ICE= 10A; VGE= 15V www.irf.com 10 0 10 20 30 40 50 IC (A) Fig. 31 - Typ. Switching Time vs. RG TJ = 125°C; L=1mH; VCE= 600V; ICE= 10A; VGE= 15V 9 GB10RF120K Bulletin I27278 11/06 Brake 35 35 Rg=4.7Ω Rg=10Ω Rg=22Ω Rg=33Ω Rg=47Ω 30 25 Irr (A) Irr (A) 25 30 20 20 15 15 10 10 5 5 0 0 0 5 10 15 If (A) 20 25 0 10 20 30 Rg (Ω ) 40 50 Fig. 33 - Typical Diode IRR vs. RG TJ = 125°C; IF = 10A Fig. 32 - Typical Diode IRR vs. IF TJ = 125°C 35 30 Irr (A) 25 20 15 10 5 0 400 500 600 700 800 dif/dt (A/µs) 900 1000 Fig. 34- Typical Diode IRR vs. diF/dt; VCC= 600V; VGE= 15V; ICE= 10A; TJ = 125°C 10 www.irf.com GB10RF120K Bulletin I27278 11/06 Brake Thermal Response (ZthJC ) 10 1 0.5 0.3 0.1 0.1 R1 R1 0.05 TτJ J τ1 0.02 0.01 0.01 R2 R2 Ri (°C/W) 0.5523 0.8679 TC τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE (THERMAL RESPONSE) 0.001 1E-05 1E-04 τi (sec) 0,413 0.649 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc 1E-03 1E-02 t1 , Rectangular Pulse Duration (sec) 1E-01 1E+00 Fig. 35 - Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT) Thermal Response (ZthJC ) 10 1 0.5 0.3 R1 R1 0.1 0.1 R2 R2 R3 R3 TJ τJ τ1 0.05 TC τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci= i/Ri 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) 0.01 1E-05 1E-04 1E-03 1E-02 t1 , Rectangular Pulse Duration (sec) Ri (°C/W) τi (sec) 0.5125 0.000527 0.4129 0.001438 1.0447 0.027308 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc 1E-01 1E+00 Fig. 36 - Maximum Transient Thermal Impedance, Junction-to-Case (Brake DIODE) www.irf.com 11 GB10RF120K Bulletin I27278 11/06 R= diode clamp/ DUT VCC ICM L + - + VCC 5V - VGE DUT/ DRIVER + - 1mA IC VCC RG Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp/ DUT L + - DUT - + VCC 5V DUT/ DRIVER + - VCC RG RG Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM + VCC - RG Fig.C.T.5 - Resistive Load Circuit 12 www.irf.com GB10RF120K Bulletin I27278 11/06 Econo2 PIM Package Outline Dimensions are shown in millimeters (inches) Econo2 PIM Part Marking Information LOT Made in Italy GB10RF120K Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/06 www.irf.com 13