NEC's NPN SILICON RF TWIN TRANSISTOR FEATURES OUTLINE DIMENSIONS • LOW VOLTAGE, LOW CURRENT OPERATION • SMALL PACKAGE OUTLINE: 1.0±0.05 0.8 +0.07 -0.05 LOW HEIGHT PROFILE: E1 C2 Q1 6 B1 5 2 E2 3 Q2 4 B2 PIN CONNECTIONS 1. Collector (Q1) 2. Emitter (Q1) 3. Collector (Q2) 4. Base (Q2) 5. Emitter (Q2) 6. Base (Q1) 0.125 +0.1 -0.05 0.5±0.05 DESCRIPTION NEC's UPA862TD contains one NE851 and one NE685 NPN high frequency silicon bipolar chip. The NE851 is an excellent oscillator chip, featuring low 1/f noise and high immunity to pushing effects. The NE685 is an excellent buffer transistor, featuring low noise and high gain. NEC's new ultra small TD package is ideal for all portable wireless applications where reducing board space is a prime consideration. Each transistor chip is independently mounted and easily configured for oscillator/buffer amplifier and other applications. 1 5 C1 4 IDEAL FOR 1-2 GHz OSCILLATORS 6 1 2 0.4 0.8 0.4 3 • 1.2 +0.07 -0.05 Q1 - Ideal buffer amplifier transistor Q2 - Ideal oscillator transistor vY TWO DIFFERENT DIE TYPES: 0.15±0.05 (Top View) Just 0.50 mm high • (Units in mm) Package Outline TD (TOP VIEW) 1.2 mm x 0.8 mm • UPA862TD ELECTRICAL CHARACTERISTICS (TA = 25°C) PART NUMBER PACKAGE OUTLINE SYMBOLS Q1 UNITS MIN TYP MAX ICBO Collector Cutoff Current at VCB = 5 V, IE = 0 nA 100 IEBO Emitter Cutoff Current at VEB = 1 V, IC = 0 nA 100 hFE fT DC Current Gain1 at VCE = 3 V, IC = 10 mA Gain Bandwidth at VCE = 3 V, IC = 10 mA, f = 2 GHz GHz 75 110 10 12 7 8.5 150 Feedback Capacitance2 at VCB = 3 V, IE = 0, f = 1 MHz pF Insertion Power Gain at VCE = 3 V, IC =10 mA, f = 2 GHz dB NF Noise Figure at VCE = 3 V, IC = 3 mA, f = 2 GHz dB ICBO Collector Cutoff Current at VCB = 10 V, IE = 0 nA 600 IEBO Emitter Cutoff Current at VEB = 1 V, IC = 0 nA 600 hFE DC Current Gain1 at VCE = 3 V, IC = 7 mA Cre |S21E|2 Q2 PARAMETERS AND CONDITIONS UPA862TD TD fT Gain Bandwidth at VCE = 1 V, IC = 15 mA, f = 2 GHz 0.4 1.5 100 GHz 5.0 120 Feedback Capacitance2 at VCB = 3 V, IE = 0, f = 1 MHz pF |S21E|2 Insertion Power Gain at VCE = 1 V, IC =5 mA, f = 2 GHz dB 3.0 4.0 dB 4.5 5.5 NF Noise Figure at VCE = 1 V, IC = 10 mA, f = 2 GHz dB 2.5 145 6.5 Cre |S21|S21E|2E|2 Insertion Power GainIat VCE = 1 V, IC =15 mA, f = 2 GHz 0.7 0.6 1.9 0.8 2.5 Notes: 1. Pulsed measurement, pulse width ≤ 350 µs, duty cycle ≤ 2 %. 2. Collector to base capacitance when measured with capacitance meter (automatic balanced bridge method), with emitter connected to guard pin of capacitances meter. California Eastern Laboratories UPA862TD ABSOLUTE MAXIMUM RATINGS1,2 (TA = 25°C) SYMBOLS PARAMETERS UNITS RATINGS Q1 Q2 VCBO Collector to Base Voltage V 9 9 VCEO Collector to Emitter Voltage V 6 5.5 VEBO Emitter to Base Voltage V 2 1.5 100 IC Collector Current mA 30 PT Total Power Dissipation1 mW 180 192 210 Total TJ Junction Temperature °C 150 TSTG Storage Temperature °C -65 to +150 ORDERING INFORMATION PART NUMBER UPA862TD-T3-A QUANTITY 10K Pcs./Reel PACKAGING Tape & Reel 150 Note: 1. Operation in excess of any one of these parameters may result in permanent damage. 2. Mounted on 1.08cm2 x 1.0 mm(t) glass epoxy PCB TYPICAL PERFORMANCE CURVES (TA = 25°C) TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE Total Power Dissipation, Ptot (mW) 300 Mounted on Glass Epoxy PCB (1.08 cm2 x 1.0 mm (t) ) 250 2 Elements in total 210 200 190 180 150 Q2 Q1 100 50 0 25 50 75 100 125 150 Q1 Q2 REVERSE TRANSFR CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE REVERSE TRANSFR CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE 0.5 Reverse Transfer Capacitance, Cre (pF) Reverse Transfer Capacitance, Cre (pF) Ambient Temperature, TA (°C) f = 1 MHz 0.4 0.3 0.2 0.1 0 2 4 6 8 Collector to Base Voltage, VCB (V) 10 1.0 f = 1 MHz 0.8 0.6 0.4 0.2 0 2 4 6 8 Collector to Base Voltage, VCB (V) 10 UPA862TD TYPICAL PERFORMANCE CURVES (TA = 25°C) 100 Q1 Q2 COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE 100 VCE = 1 V 10 Collector Current, IC (mA) Collector Current, IC (mA) 10 1 0.1 0.01 1 0.1 0.01 0.001 0.001 0.0001 0.4 100 0.5 0.6 0.7 0.8 0.9 0.0001 0.4 1.0 0.5 0.6 0.7 0.8 1.0 0.9 Base to Emitter Voltage, VBE (V) Base to Emitter Voltage, VBE (V) COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE 100 VCE = 2 V 1 0.1 0.01 0.001 VCE = 2 V 10 Collector Current, IC (mA) 10 Collector Current, IC (mA) VCE = 1 V 1 0.1 0.01 0.001 0.0001 0.4 0.5 0.6 0.7 0.8 1.0 0.9 0.0001 0.4 0.5 0.6 0.7 0.8 1.0 0.9 Base to Emitter Voltage, VBE (V) Base to Emitter Voltage, VBE (V) COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE 40 60 Collector Current, IC (mA) Collector Current, IC (mA) 400 µa 360 µa 50 300 µa 30 270 µa 240 µa 240 µa 20 180 µa 150 µa 120 µa 10 90 µa 60 µa 320 µa 280 µa 40 240 µa 30 200 µa 160 µa 20 120 µa 80 µa 10 IB = 40 µa IB = 30 µa 0 1 2 3 4 5 6 7 Collector to Emitter Voltage, VCE (V) 8 0 1 2 3 4 5 6 7 Collector to Emitter Voltage, VCE (V) 8 UPA862TD TYPICAL PERFORMANCE CURVES (TA = 25°C) Q1 Q2 DC CURRENT GAIN vs. COLLECTOR CURRENT DC CURRENT GAIN vs. COLLECTOR CURRENT 1000 1000 VCE = 1 V DC Current Gain, HFE DC Current Gain, HFE VCE = 1 V 100 10 0.1 1 10 100 10 0.1 100 Collector Current, IC (mA) 1 10 Collector Current, IC (mA) DC CURRENT GAIN vs. COLLECTOR CURRENT DC CURRENT GAIN vs. COLLECTOR CURRENT 1000 1000 VCE = 2 V DC Current Gain, HFE DC Current Gain, HFE VCE = 2 V 100 10 0.1 1 10 100 10 0.1 100 Collector Current, IC (mA) 10 100 GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT 10 VCE = 2 V f = 2 GHz Gain Bandwidth Product, fT (GHz) Gain Bandwidth Product, fT (GHz) 1 Collector Current, IC (mA) GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT 14 100 12 10 8 6 4 2 VCE = 2 V f = 2 GHz 8 6 4 2 0 0 0.1 1 10 Collector Current, IC (mA) 100 1 10 Collector Current, IC (mA) 100 UPA862TD TYPICAL PERFORMANCE CURVES (TA = 25°C) Q1 Q2 INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY 35 Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) 35 VCE = 1 V IC = 10 mA 30 25 MSG MAG 20 15 10 |S21e|2 5 0 0.1 1 VCE = 1 V IC = 5 mA 30 25 MSG 20 MAG 15 10 5 |S21e|2 0 0.1 10 Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) 35 35 VCE = 2 V IC = 10 mA 30 MSG MAG 20 15 10 |S21e|2 5 0 0.1 1 VCE = 1 V IC = 15 mA 30 25 MAG 15 10 5 10 INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY 35 VCE = 3 V IC = 10 mA Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) 1 Frequency, f (GHz) 35 30 MSG MAG 20 15 |S21e|2 5 0 0.1 |S21e|2 0 0.1 10 INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY 10 MSG 20 Frequency, f (GHz) 25 10 INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY 25 1 Frequency, f (GHz) Frequency, f (GHz) 1 Frequency, f (GHz) 10 VCE = 2 V IC = 5 mA 30 25 MSG 20 MAG 15 10 5 |S21e|2 0 0.1 1 Frequency, f (GHz) 10 UPA862TD TYPICAL PERFORMANCE CURVES (TA = 25°C) Q1 Q2 INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT 20 Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) 25 VCE = 1 V f = 1 GHz MSG 20 MAG 15 |S21e|2 10 5 0 1 10 |S21e|2 5 1 15 Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) VCE = 1 V f = 2 GHz 20 15 MSG MAG 10 |S21e|2 5 MAG 10 |S21e|2 5 0 -5 100 VCE = 1 V f = 2 GHz 1 Collector Current, IC (mA) 15 Insertion Power Gain, (dB) Maximum Available Gain, MAG(dB) 20 |S21e|2 Insertion Power Gain, |S21e|2 (dB) Maximum Available Gain, MAG(dB) Maximum Stable Gain, MSG(dB) VCE = 2 V f = 2 GHz MSG MAG |S21e|2 5 0 1 10 Collector Current, IC (mA) 100 INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT 25 10 10 Collector Current, IC (mA) INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT 15 100 INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT 25 10 10 Collector Current, IC (mA) INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT 1 MAG 10 Collector Current, IC (mA) 0 MSG 15 0 100 VCE = 1 V f = 1 GHz 100 VCE = 2 V f = 2 GHz MAG 10 |S21e|2 5 0 -5 1 10 Collector Current, IC (mA) 100 UPA862TD TYPICAL PERFORMANCE CURVES (TA = 25°C) Q1 Q2 NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT 20 10 6 12 4 8 2 4 NF 4 12 3 9 2 6 NF 1 0 0 100 10 1 10 NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT 6 20 6 12 Ga 4 8 2 4 NF 0 5 4 12 Ga 3 9 2 6 NF 1 3 0 0 100 10 15 1 0 100 10 Collector Current, IC (mA) Collector Current, IC (mA) NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT 10 6 20 Associated Gain, Ga (dB) 16 Noise Figure, NF (dB) 8 Associated Gain, Ga (dB) 18 VCE = 2 V f = 2 GHz 16 6 Ga 4 12 8 2 NF 0 10 Collector Current, IC (mA) 4 0 100 5 Noise Figure, NF (dB) 8 Associated Gain, Ga (dB) VCE = 2 V f = 2 GHz 15 4 12 Ga 3 9 2 NF 1 6 3 0 1 10 Collector Current, IC (mA) 0 100 Associated Gain, Ga (dB) Noise Figure, NF (dB) 18 VCE = 1 V f = 2 GHz VCE = 1 V f = 2 GHz Noise Figure, NF (dB) 0 100 10 Collector Current, IC (mA) NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT 1 3 0 Collector Current, IC (mA) 1 15 Ga Associated Gain, Ga (dB) 6 5 Noise Figure, NF (dB) 16 Associated Gain, Ga (dB) Noise Figure, NF (dB) Ga 8 1 18 VCE = 1 V f = 1 GHz VCE = 1 V f = 1 GHz UPA862TD TYPICAL SCATTERING PARAMETERS +90° j50 +120° j25 +60° j100 S21 = 10 +150° S12 = .2 j10 0 10 25 50 +180° 100 +30° +0° S22 = 1 -j10 S11 = 1 -150° Coordinates in Ohms Frequency in GHz VCE = 2.5 V, IC = 10 mA -j100 -j25 -j50 GHz S21 S11 MAG 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 0.726 0.667 0.594 0.521 0.459 0.408 0.366 0.334 0.310 0.292 0.282 0.273 0.268 0.266 0.264 0.264 0.265 0.267 0.270 0.276 0.282 0.288 0.295 0.301 0.307 0.312 0.316 0.321 0.325 0.329 ANG - 18.1 - 37.4 - 53.3 - 66.9 - 78.6 - 89.0 - 98.3 -107.2 -115.8 -123.8 -131.2 -138.6 -145.2 -151.1 -156.7 -161.9 -166.7 -171.4 -175.6 -179.4 177.1 174.1 171.4 168.9 166.8 165.1 163.4 161.9 160.2 158.9 -120° -60° -90° 0.100 to 3.000GHz by 0.050 0.100 to 3.000GHz by 0.050 UPA82TD (Q1) VCE = 2.5V, IC = 10 mA Frequency -30° MAG 20.331 18.720 16.706 14.756 13.006 11.512 10.269 9.233 8.382 7.661 7.052 6.529 6.079 5.681 5.329 5.015 4.736 4.488 4.266 4.060 3.878 3.704 3.556 3.414 3.283 3.159 3.049 2.943 2.848 2.759 S12 ANG 161.8 148.4 136.9 127.5 120.0 113.9 108.8 104.4 100.7 97.4 94.4 91.7 89.2 86.8 84.6 82.5 80.5 78.7 76.8 75.0 73.3 71.6 70.0 68.5 66.9 65.5 64.1 62.7 61.3 60.0 MAG 0.013 0.024 0.033 0.040 0.045 0.050 0.055 0.060 0.064 0.068 0.073 0.077 0.082 0.086 0.091 0.095 0.100 0.104 0.109 0.113 0.118 0.122 0.127 0.131 0.136 0.140 0.144 0.148 0.153 0.157 S22 ANG 80.9 71.4 66.5 62.4 60.6 59.4 59.1 58.9 59.0 59.3 59.4 59.5 59.7 59.7 59.8 59.8 59.7 59.6 59.5 59.5 59.2 59.1 58.8 58.5 58.1 58.0 57.8 57.4 57.1 56.7 MAG 0.937 0.863 0.774 0.691 0.623 0.565 0.517 0.477 0.446 0.419 0.399 0.379 0.363 0.348 0.335 0.322 0.310 0.299 0.290 0.282 0.274 0.269 0.264 0.259 0.256 0.251 0.248 0.245 0.243 0.242 K ANG - 11.7 - 21.2 - 28.1 - 33.1 - 36.3 - 38.6 - 40.0 - 41.0 - 41.9 - 42.5 - 43.3 - 44.0 - 45.1 - 46.2 - 47.6 - 48.7 - 50.1 - 51.5 - 53.0 - 54.6 - 56.5 - 58.7 - 60.7 - 63.0 - 65.2 - 67.5 - 69.6 - 71.6 - 73.2 - 75.0 MAG1 (dB) 0.21 0.30 0.39 0.50 0.58 0.66 0.73 0.79 0.84 0.88 0.92 0.95 0.97 0.99 1.01 1.03 1.04 1.06 1.07 1.08 1.09 1.09 1.09 1.10 1.10 1.11 1.11 1.12 1.12 1.12 31.83 28.89 27.06 25.69 24.56 23.59 22.70 21.91 21.18 20.50 19.86 19.28 18.71 18.18 17.15 16.18 15.48 14.87 14.33 13.84 13.40 12.97 12.61 12.24 11.90 11.55 11.23 10.91 10.62 10.35 Note: 1. Gain Calculations: MAG = |S21| |S12| (K ± K 2- 1 ). When K ≤ 1, MAG is undefined and MSG values are used. MSG = MAG = Maximum Available Gain MSG = Maximum Stable Gain 2 2 2 |S21| , K = 1 + | ∆ | - |S11| - |S22| , ∆ = S11 S22 - S21 S12 |S12| 2 |S12 S21| UPA862TD TYPICAL SCATTERING PARAMETERS +90° j50 +120° j25 +60° j100 S21 = 10 +150° S12 = .2 j10 0 10 25 50 100 +180° +30° +0° S22 = 1 -j10 S11 = 1 -150° Coordinates in Ohms Frequency in GHz VCE = 1 V, IC = 10 mA -j100 -j25 -j50 -30° -120° 0.100 to 3.000GHz by 0.050 UPA862TD (Q2) VCE = 1 V, IC = 10 mA Frequency GHz 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 MAG 0.692 0.653 0.634 0.622 0.616 0.611 0.609 0.609 0.614 0.618 0.625 0.630 0.634 0.638 0.641 0.644 0.647 0.652 0.657 0.663 0.670 0.676 0.683 0.687 0.692 0.695 0.698 0.702 0.706 0.710 0.100 to 3.000GHz by 0.050 S11 S21 ANG - 58.7 -100.9 -124.2 -139.2 -149.4 -157.1 -163.3 -168.2 -172.5 -176.2 -179.4 177.6 175.0 172.6 170.5 168.4 166.5 164.5 162.8 161.1 159.5 158.1 156.8 155.5 154.5 153.5 152.6 151.8 150.8 150.0 -60° -90° MAG 20.972 16.060 12.209 9.673 7.951 6.721 5.816 5.118 4.573 4.134 3.774 3.469 3.210 2.984 2.788 2.615 2.462 2.327 2.207 2.098 2.000 1.908 1.827 1.750 1.679 1.612 1.554 1.498 1.448 1.401 S12 ANG 144.3 123.6 111.1 102.9 96.9 92.2 88.1 84.6 81.4 78.5 75.7 73.1 70.5 68.1 65.8 63.6 61.4 59.3 57.3 55.3 53.4 51.4 49.6 47.8 46.1 44.5 42.9 41.4 40.0 38.6 MAG 0.028 0.041 0.048 0.053 0.056 0.059 0.063 0.067 0.070 0.074 0.078 0.083 0.088 0.092 0.097 0.102 0.107 0.112 0.118 0.123 0.129 0.134 0.140 0.146 0.152 0.158 0.165 0.171 0.178 0.184 S22 ANG 61.7 48.9 44.0 42.6 42.9 44.5 46.1 47.9 49.8 51.6 53.1 54.8 56.0 57.2 58.2 59.3 60.3 61.1 61.8 62.4 62.9 63.3 63.7 63.9 64.2 64.3 64.5 64.7 64.7 64.7 MAG 0.800 0.599 0.465 0.382 0.329 0.291 0.264 0.243 0.229 0.218 0.212 0.206 0.204 0.202 0.203 0.203 0.204 0.207 0.211 0.216 0.222 0.230 0.239 0.248 0.258 0.267 0.277 0.286 0.294 0.303 K ANG - 29.7 - 46.0 - 53.6 - 58.0 - 60.7 - 63.0 - 64.7 - 66.7 - 68.7 - 71.1 - 73.6 - 76.7 - 80.0 - 83.6 - 87.5 - 91.2 - 95.2 - 99.0 -102.7 -106.1 -109.6 -112.7 -115.9 -119.0 -121.9 -124.6 -127.2 -129.7 -131.9 -133.8 MAG1 (dB) 0.22 0.31 0.43 0.54 0.65 0.74 0.82 0.89 0.94 0.98 1.01 1.03 1.05 1.07 1.08 1.10 1.11 1.11 1.11 1.10 1.09 1.08 1.06 1.05 1.04 1.03 1.03 1.02 1.00 0.99 28.79 25.88 24.04 22.64 21.52 20.54 19.66 18.86 18.13 17.46 16.31 15.12 14.29 13.53 12.83 12.21 11.65 11.16 10.75 10.42 10.11 9.85 9.63 9.39 9.16 8.95 8.74 8.62 8.69 8.81 UPA862TD UPA862TD NONLINEAR MODEL BJT NONLINEAR MODEL PARAMETERS(1) Parameters Q1 NE685 Q2 NE851 Parameters Q1 NE685 Q2 NE851 IS 7.0e-16 137e-18 MJC 0.34 0.14 BF 109 166 XCJC 0.5 0.5 NF 1 0.9871 CJS 0 0 VAF 15 20.4 VJS 0.75 0.75 IKF 0.19 50 MJS 0 0 ISE 7.90e-13 80.4e-15 FC 0.1 0.55 NE 2.19 2.4 TF 2.0e-12 18e-12 BR 1 28.7 XTF 6 0.1 NR 1.08 0.9889 VTF 3 2 VAR 12.4 2.7 ITF 0.005 0.03 IKR infinity 0.021 PTF 0 0 ISC 0 532e-18 TR 1.0e-9 1.0e-9 NC 2 1.28 EG 1.11 1.11 RE 1.3 0.45 XTB 0 0 RB 5 4 XTI 3 3 RBM 3 1 KF (2) 0 0 IRB 0.005 0 AF (2) 1 1 RC 10 1.7 CJE 0.4e-12 2.4e-12 VJE 0.81 0.87 MJE 0.5 0.34 CJC 0.18e-12 0.65e-12 VJC 0.75 0.52 (1) Gummel-Poon Model Q2 Q1 (2) AF and KF are 1/f noise parameters and are bias dependant. The appropriate values for the 1/f noise parameters (AF and KF) shall be chosen from the table below, according to the desired current range. IC = 5 mA IC =10 mA IC = 15 mA KF 54.38e-12 997.6e-12 500.2e-12 AF 2.071 2.375 2.288 IC = 5 mA IC =10 mA IC = 15 mA KF 4.547e-15 855e-12 1.73e-9 AF 1.4 2.551 2.626 For a better understanding on AF and KF parameters, please refer to AN1026. MODEL RANGE Frequency: 0.1 to 3.0 GHz Bias: VCE =0.5 V to 2.5 V, IC = 1 mA to 20 mA Date: 08/03 UPA862TD SCHEMATIC 0.1 pF C_C1B2 0.03 pF CCBPKG1 Pin_1 LC LC1 0.07 pF 0.01 nH 1.2 nH CCB1 C_C1E1 0.05 pF Pin_2 CCE1 0.28 pF LE LE1 0.01 nH 0.6 nH C_E1C2 0.05 pF Q1 LB1 LB 1.1 nH 0.01 nH C_E1B2 0.1 pF LE2 CCE2 LC LC2 0.01 nH 0.8 nH CCB2 0.01 pF C_B1B2 0.01 pF LE 0.01 nH 0.5 nH Pin_5 C_B2E2 0.01 pF 0.25 pF Pin_3 Pin_6 Q2 LB2 0.6 nH LB 0.01 nH Pin_4 0.03 pF CCEPKG2 0.1 pF CCBPKG2 MODEL RANGE Frequency: 0.1 to 3.0 GHz Bias: VCE = 0.5 V to 2.5 V, IC = 1 mA to 20 mA Date: 08/03 Life Support Applications These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale. 08/04/2003 A Business Partner of NEC Compound Semiconductor Devices, Ltd. 4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500 Facsimile: (408) 988-0279 Subject: Compliance with EU Directives CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE. CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive. This status is based on CEL’s understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information. Restricted Substance per RoHS Concentration Limit per RoHS (values are not yet fixed) Concentration contained in CEL devices -A Not Detected Lead (Pb) < 1000 PPM Mercury < 1000 PPM Not Detected Cadmium < 100 PPM Not Detected Hexavalent Chromium < 1000 PPM Not Detected PBB < 1000 PPM Not Detected PBDE < 1000 PPM Not Detected -AZ (*) If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative. Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall CEL’s liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis. See CEL Terms and Conditions for additional clarification of warranties and liability.