BUD43D2 Bipolar NPN Transistor High Speed, High Gain Bipolar NPN Transistor Integrating an Antisaturation Network and a Transient Voltage Suppression Capability The BUD43D2 is a state–of–the–art bipolar transistor. Tight dynamic characteristics and lot to lot minimum spread make it ideally suitable for light ballast applications. Main Features: • • • • Free Wheeling Diode Built In Flat DC Current Gain Fast Switching Times and Tight Distribution “6 Sigma” Process Providing Tight and Reproducible Parameter Spreads http://onsemi.com 2 AMPERES 700 VOLTS 25 WATTS POWER TRANSISTOR Two Versions: • BUD43D2–1: Case 369 for Insertion Mode • BUD43D2: Case 369A for Surface Mount Mode MAXIMUM RATINGS Symbol Value Unit Collector–Emitter Sustaining Voltage Rating VCEO 400 Vdc Collector–Base Breakdown Voltage VCBO 700 Vdc Collector–Emitter Breakdown Voltage VCES 700 Vdc Emitter–Base Voltage VEBO 12 Vdc Collector Current – Continuous Collector Current – Peak (Note 1) IC ICM 2.0 5.0 Adc Base Current – Continuous Base Current – Peak (Note 1) IB IBM 1.0 2.0 Adc TYPICAL GAIN Typical Gain @ IC = 100 mA, VCE = 1 V @ IC = 0.3 A, VCE = 1 V hFE – 55 32 DPAK CASE 369 STYLE 1 DPAK CASE 369A STYLE 1 MARKING DIAGRAMS YWW BUD 43D2 YWW BUD 43D2 THERMAL CHARACTERISTICS Characteristic Symbol Value Unit 25 0.2 W W/°C Total Device Dissipation @ TC = 25°C Derate above 25°C PD Operating and Storage Temperature Range TJ, Tstg –65 to +150 °C Thermal Resistance – Junction–to–Case RJC 5.0 °C/W Thermal Resistance – Junction–to–Ambient RJA 71.4 °C/W TL 260 °C Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 sec. Y = Year WW = Work Week BUD43D2 = Device Code ORDERING INFORMATION Device BUD43D2–1 Package Shipping DPAK 75 Units/Rail 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10% Semiconductor Components Industries, LLC, 2002 June, 2002 – Rev. 2 1 Publication Order Number: BUD43D2/D BUD43D2 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 400 470 – Vdc OFF CHARACTERISTICS Collector–Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) Collector–Base Breakdown Voltage (ICBO = 1 mA) @ TC = 25°C VCBO 700 920 – Vdc Emitter–Base Breakdown Voltage (IEBO = 1 mA) @ TC = 25°C VEBO 12 14.5 – Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) @ TC = 25°C @ TC = 125°C ICEO – – – – 50 500 Adc Collector Cutoff Current (VCE = Rated VCES, VEB = 0) ICES – – – – – – 50 500 100 Adc Collector Cutoff Current (VCE = 500 V, VEB = 0) @ TC = 25°C @ TC = 125°C @ TC = 125°C Emitter–Cutoff Current (VEB = 10 Vdc, IC = 0) @ TC = 25°C IEBO – – 100 Adc @ TC = 25°C @ TC = 125°C VBE(sat) – – 0.78 0.65 0.9 0.8 Vdc – – 0.85 0.76 1.0 0.9 – – 0.40 0.60 0.65 1.0 ON CHARACTERISTICS Base–Emitter Saturation Voltage (IC = 0.4 Adc, IB = 40 mAdc) (IC = 1 Adc, IB = 0.2 Adc) Collector–Emitter Saturation Voltage (IC = 0.4 Adc, IB = 20 mAdc) @ TC = 25°C @ TC = 125°C @ TC = 25°C @ TC = 125°C VCE(sat) (IC = 0.4 Adc, IB = 40 mAdc) @ TC = 25°C @ TC = 125°C – – 0.20 0.20 0.4 0.5 (IC = 1 Adc, IB = 0.2 Adc) @ TC = 25°C @ TC = 125°C – – 0.25 0.30 0.5 0.6 DC Current Gain (IC = 0.4 Adc, VCE = 1 Vdc) @ TC = 25°C @ TC = 125°C 20 18 32 26 – – (IC = 1 Adc, VCE = 1 Vdc) @ TC = 25°C @ TC = 125°C 10 7.0 15 9.5 – – (IC = 2 Adc, VCE = 5 Vdc) @ TC = 25°C 8.0 13 – @ TC = 25°C – 0.8 1.0 (IEC = 0.2 Adc) @ TC = 125°C – 0.6 – (IEC = 0.4 Adc) @ TC = 25°C – 0.9 1.2 (IEC = 1 Adc) @ TC = 25°C – 1.1 1.5 @ TC = 25°C – 415 – (IF = 0.4 Adc, di/dt = 10 A/s) @ TC = 25°C – 390 – (IF = 1 Adc, di/dt = 10 A/s) @ TC = 25°C – 340 – hFE Vdc – DIODE CHARACTERISTICS Forward Diode Voltage (IEC = 0.2 Adc) Forward Recovery Time (see Figure 22) (IF = 0.2 Adc, di/dt = 10 A/s) VEC Vdc Tfr http://onsemi.com 2 ns BUD43D2 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCE(dsat) – – 3.3 6.8 – – V DYNAMIC SATURATION VOLTAGE IC = 400 mA IB1 = 40 mA VCC = 300 Vdc Dynamic Saturation Voltage IC = 1 A IB1 = 200 mA VCC = 300 Vdc @ 1 s @ TC = 25°C @ TC = 125°C @ 3 s @ TC = 25°C @ TC = 125°C – – 0.5 1.3 – – @ 1 s @ TC = 25°C @ TC = 125°C – – 4.4 12.8 – – @ 3 s @ TC = 25°C @ TC = 125°C – – 0.5 1.8 – – DYNAMIC CHARACTERISTICS Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz) fT – 13 – MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1 MHz) Cob – 50 75 pF Input Capacitance (VEB = 8 Vdc, f = 1 MHz) Cib – 250 500 pF SWITCHING CHARACTERISTICS: Resistive Load (Vclamp = 300 V, VCC = 15 V, L = 200 H) Turn–on Time @ TC = 25°C @ TC = 125°C ton – – 200 200 250 – ns @ TC = 25°C @ TC = 125°C toff – – 1.5 1.5 1.75 – s @ TC = 25°C @ TC = 125°C ton – – 225 600 300 – ns @ TC = 25°C @ TC = 125°C toff 800 – – 1300 1100 – ns @ TC = 25°C @ TC = 125°C tf – – 90 105 150 – ns @ TC = 25°C @ TC = 125°C ts – – 0.55 0.7 0.75 – s Crossover Time @ TC = 25°C @ TC = 125°C tc – – 85 80 150 – ns Fall Time @ TC = 25°C @ TC = 125°C tf – – 100 90 150 – ns @ TC = 25°C @ TC = 125°C ts – – 1.05 1.45 1.5 – s Crossover Time @ TC = 25°C @ TC = 125°C tc – – 100 100 175 – ns Fall Time @ TC = 25°C @ TC = 125°C tf – – 110 180 150 – ns @ TC = 25°C @ TC = 125°C ts 2.5 – – 2.8 2.8 – s Crossover Time @ TC = 25°C @ TC = 125°C tc – – 150 400 250 – ns Fall Time @ TC = 25°C @ TC = 125°C tf – – 150 175 225 – ns @ TC = 25°C @ TC = 125°C ts 1.7 – – 2.2 2.0 – s @ TC = 25°C @ TC = 125°C tc – – 125 330 250 – ns Turn–off Time IC = 1 Adc, IB1 = 0.2 Adc IB2 = 0.5 0 5 Adc VCC = 300 Vdc Turn–on Time Turn–off Time IC = 0.5 Adc, IB1 = 50 mAdc IB2 = 250 mAdc VCC = 300 Vdc SWITCHING CHARACTERISTICS: Inductive Load Fall Time Storage Time Storage Time Storage Time Storage Time Crossover Time IC = 0.4 Adc IB1 = 40 mAdc IB2 = 0.2 Adc IC = 1.0 Adc IB1 = 0.2 Adc IB2 = 0.5 Adc IC = 0.8 Adc IB1 = 160 mAdc IB2 = 160 mAdc IC = 0.4 Adc IB1 = 40 mAdc IB2 = 40 mAdc http://onsemi.com 3 BUD43D2 100 100 TJ = 125°C hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN TJ = 125°C –20°C 25°C 10 –20°C 25°C 10 1 0.1 1 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 0.001 10 Figure 1. DC Current Gain @ VCE = 1 V 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 2. DC Current Gain @ VCE = 5 V 3 10 VCE, VOLTAGE (VOLTS) VCE, VOLTAGE (VOLTS) TJ = 25°C 2 2A 1.5 A 1A 1 0.4 A 1 TJ = 125°C 0.1 –20°C 25°C IC = 0.2 A 0.01 0 0.001 0.01 0.1 1 IB, BASE CURRENT (AMPS) 0.001 10 Figure 3. Collector Saturation Region 10 VCE, VOLTAGE (VOLTS) VCE, VOLTAGE (VOLTS) 10 Figure 4. Collector–Emitter Saturation Voltage IC/IB = 5 100 10 1 TJ = 125°C 0.1 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) –20°C 1 TJ = 125°C 25°C –20°C 0.1 25°C 0.01 0.01 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 0.001 10 Figure 5. Collector–Emitter Saturation Voltage IC/IB = 10 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 6. Collector–Emitter Saturation Voltage IC/IB = 20 http://onsemi.com 4 BUD43D2 10 1 VBE, VOLTAGE (VOLTS) VBE, VOLTAGE (VOLTS) 10 –20°C 25°C TJ = 125°C 0.1 1 –20°C 25°C TJ = 125°C 0.1 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 0.001 Figure 7. Base–Emitter Saturation Region IC/IB = 5 FORWARD DIODE VOLTAGE (VOLTS) VBE, VOLTAGE (VOLTS) 1 –20°C 25°C TJ = 125°C 0.1 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 10 VEC(V) = –20°C 1 125°C 0.1 25°C 0.01 0.1 1 10 REVERSE EMITTER–COLLECTOR CURRENT (AMPS) Figure 9. Base–Emitter Saturation Region IC/IB = 20 Figure 10. Forward Diode Voltage 1000 1000 Cib (pF) TJ = 25°C f(test) = 1 MHz BVCER @ ICER = 10 mA 900 TC = 25°C BVCER (VOLTS) C, CAPACITANCE (pF) 10 Figure 8. Base–Emitter Saturation Region IC/IB = 10 10 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 100 Cob (pF) 10 800 700 BVCER(sus) @ ICER = 200 mA, LC = 25 mH 600 500 1 400 1 10 VR, REVERSE VOLTAGE (VOLTS) 100 10 Figure 11. Capacitance 100 RBE Figure 12. BVCER = f(RBE) http://onsemi.com 5 1000 BUD43D2 800 4500 IC/IB = 10 TJ = 125°C TJ = 25°C 700 VCC = 300 V 600 Pw = 40 s 3500 IBon = IBoff 500 VCC = 300 V PW = 40 s 400 t, TIME (s) t, TIME (s) IBon = IBoff 4000 IC/IB = 10 300 3000 2500 2000 200 IC/IB = 5 100 1500 0 1000 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 2 TJ = 125°C TJ = 25°C 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) Figure 13. Resistive Switching, ton 3500 t, TIME (s) 2 TJ = 25°C, G5 IBon = IBoff, VCE = 15 V, VZ = 300 V LC = 200 H 1 TJ = 125°C, IC/IB = 10 2500 TJ = 25°C, IC/IB = 10 2000 1500 0 0 IBon = IBoff, VCE = 15 V, VZ = 300 V LC = 200 H 3000 TJ = 125°C, G5 3 t, TIME (s) 2 Figure 14. Resistive Switching, toff 4 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 1000 2 Figure 15. Inductive Storage Time, tsi @ G = 5 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 2 Figure 16. Inductive Storage Time, tsi @ IC/IB = 10 3000 700 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 H 600 2500 500 TJ = 125°C, IC/IB = 20 t, TIME (s) t, TIME (s) IC/IB = 5 2000 IBon = IBoff, VCE = 15 V, VZ = 300 V LC = 200 H 1500 1000 0.5 TJ = 25°C, IC/IB = 20 1 1.5 IC, COLLECTOR CURRENT (AMPS) 400 tc @ TJ = 125°C tc @ TJ = 25°C 300 200 tfi @ TJ = 125°C 100 tfi @ TJ = 25°C 0 0 2 Figure 17. Inductive Storage Time, tsi @ IC/IB = 20 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) Figure 18. Inductive Fall and Cross Over Time, tfi and tc @ hFE = 5 http://onsemi.com 6 2 BUD43D2 1000 2200 t, TIME (s) 800 700 hFE = 20, TJ = 125°C 2000 hFE = 10, TJ = 125°C 1600 600 hFE = 20, TJ = 25°C 500 400 200 100 1200 1000 hFE = 20, TJ = 25°C 800 hFE = 10, TJ = 25°C 400 200 0 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 2 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) Figure 19. Inductive Fall Time, tfi @ hFE = 10 and 20 5 700 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 H tfi, FALL TIME (ns) 600 IC = 1 A, TJ = 125°C 3 IC = 1 A, TJ = 25°C IC = 1 A, TJ = 125°C IC = 0.3 A, TJ = 125°C 500 400 300 2 IC = 0.3 A, TJ = 125°C IC = 0.3 A, TJ = 25°C 200 IC = 0.3 A, TJ = 25°C 1 3 4 5 6 7 8 9 10 11 hFE, FORCED GAIN 12 13 14 100 15 IC = 1 A, TJ = 25°C 3 Figure 21. Inductive Storage Time, tsi 5 6 7 8 9 10 11 hFE, FORCED GAIN 12 13 14 15 2700 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 H 900 800 IB1&2 = 100 mA IC = 1 A, TJ = 125°C 2200 700 t, TIME (s) CROSS–OVER TIME (ns) 4 Figure 22. Inductive Fall Time, tf 1000 600 500 IC = 0.3 A, TJ = 125°C 400 IC = 1 A, TJ = 25°C 300 IB1&2 = 500 mA 1700 IB1&2 = 50 mA 1200 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 H 700 IC = 0.3 A, TJ = 25°C 200 100 2 Figure 20. Inductive Cross Over Time, tc @ hFE = 10 IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 H 4 t, TIME (s) hFE = 10, TJ = 125°C 1400 600 hFE = 10, TJ = 25°C 300 hFE = 20, TJ = 125°C IBon = IBoff, VCC = 15 V, VZ = 300 V LC = 200 H 1800 t, TIME (s) IBon = IBoff, VCE = 15 V, VZ = 300 V LC = 200 H 900 IB1&2 = 200 mA 200 3 5 7 9 11 hFE, FORCED GAIN 0 15 13 Figure 23. Inductive Cross Over Time, tc 1 1.5 0.5 2 2.5 IC, COLLECTOR CURRENT (AMPS) Figure 24. Inductive Storage Time, tsi http://onsemi.com 7 3 BUD43D2 10 IC 9 VCE Dyn 1 s tsi 7 Dyn 3 s 6 0V 4 1 s IB 10% IC tc 90% IB1 IB 3 3 s 10% Vclamp Vclamp 5 90% IB 90% IC tfi 8 2 1 0 1 0 2 3 4 TIME TIME Figure 25. Dynamic Saturation Voltage Measurements 5 7 6 8 Figure 26. Inductive Switching Measurements Table 1. Inductive Load Switching Drive Circuit +15 V 1 F 150 3W 100 3W MTP8P10 VCE PEAK MTP8P10 MPF930 VCE RB1 MUR105 MPF930 +10 V IC PEAK 100 F IB1 Iout IB A MJE210 500 F 150 3W IB2 RB2 V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 Volts IC(pk) = 100 mA MTP12N10 1 F VFR (1.1 VF) Unless Otherwise Specified VF VFRM IC, COLLECTOR CURRENT (AMPS) -Voff tfr IF 0.1 VF 10% IF Inductive Switching L = 200 H RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 RBSOA L = 500 H RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 10 1 s 5 ms 1 10 s 1 ms DC 0.1 EXTENDED SOA COMMON 50 0.01 10 Figure 27. tfr Measurement 1000 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 28. Forward Bias Safe Operating Area, Maximum Rating http://onsemi.com 8 BUD43D2 1 TJ = 125°C Gain = 4 LC = 500 H 2 POWER DERATING FACTOR IC, COLLECTOR CURRENT (AMPS) 2.5 1.5 VBE(off) = –1.5 V 1 VBE(off) = –5 V 0.5 Second Breakdown Derating 0.8 0.6 Thermal Derating 0.4 0.2 VBE = 0 V 0 200 0 300 900 400 500 700 800 600 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 20 60 80 100 120 TC, CASE TEMPERATURE (°C) 40 Figure 29. Reverse Bias Safe Operating Area, Maximum Rating 140 160 Figure 30. Power Derating Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30. TJ(pk) may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn–off with the base to emitter junction reverse biased. The safe level is specified as reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC–VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC > 25°C. Second Breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1 0.5 0.2 0.1 0.1 0.05 RJC(t) = r(t) RJC RJC = 5C/W MAX P(pk) 0.02 t1 0.01 t2 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.01 0.01 0.1 1 10 t, TIME (ms) Figure 31. Thermal Response http://onsemi.com 9 100 1000 BUD43D2 Minimum Pad Sizes Recommended for Surface Mounted Applications 1.6 0.063 2.3 0.090 6.7 0.265 2.3 0.090 1.6 0.063 3.0 0.118 1.8 6.7 0.265 0.070 mm inches TYPICAL SOLDER HEATING PROFILE The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints. For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones, and a figure for belt speed. Taken together, these control settings make up a heating “profile” for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 32 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. STEP 1 PREHEAT ZONE 1 RAMP" 200°C 150°C STEP 2 STEP 3 VENT HEATING SOAK" ZONES 2 & 5 RAMP" DESIRED CURVE FOR HIGH MASS ASSEMBLIES STEP 5 STEP 4 HEATING HEATING ZONES 3 & 6 ZONES 4 & 7 SPIKE" SOAK" 170°C 160°C 140°C 100°C SOLDER IS LIQUID FOR 40 TO 80 SECONDS (DEPENDING ON MASS OF ASSEMBLY) DESIRED CURVE FOR LOW MASS ASSEMBLIES TMAX TIME (3 TO 7 MINUTES TOTAL) Figure 32. Typical Solder Heating Profile http://onsemi.com 10 STEP 7 COOLING 205° TO 219°C PEAK AT SOLDER JOINT 150°C 100°C 50°C STEP 6 VENT BUD43D2 PACKAGE DIMENSIONS DPAK CASE 369A–13 ISSUE AB –T– C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. SEATING PLANE E R 4 Z A S 1 2 3 U K F J L H D G 2 PL 0.13 (0.005) M T DIM A B C D E F G H J K L R S U V Z INCHES MIN MAX 0.235 0.250 0.250 0.265 0.086 0.094 0.027 0.035 0.033 0.040 0.037 0.047 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.090 BSC 0.175 0.215 0.020 0.050 0.020 --0.030 0.050 0.138 --- STYLE 1: PIN 1. 2. 3. 4. http://onsemi.com 11 BASE COLLECTOR EMITTER COLLECTOR MILLIMETERS MIN MAX 5.97 6.35 6.35 6.73 2.19 2.38 0.69 0.88 0.84 1.01 0.94 1.19 4.58 BSC 0.87 1.01 0.46 0.58 2.60 2.89 2.29 BSC 4.45 5.46 0.51 1.27 0.51 --0.77 1.27 3.51 --- BUD43D2 PACKAGE DIMENSIONS DPAK STRAIGHT LEADS CASE 369–07 ISSUE M C B V E R 4 A 1 2 3 S –T– SEATING PLANE K J F H D G M DIM A B C D E F G H J K R S V INCHES MIN MAX 0.235 0.250 0.250 0.265 0.086 0.094 0.027 0.035 0.033 0.040 0.037 0.047 0.090 BSC 0.034 0.040 0.018 0.023 0.350 0.380 0.175 0.215 0.050 0.090 0.030 0.050 STYLE 1: PIN 1. 2. 3. 4. 3 PL 0.13 (0.005) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. T MILLIMETERS MIN MAX 5.97 6.35 6.35 6.73 2.19 2.38 0.69 0.88 0.84 1.01 0.94 1.19 2.29 BSC 0.87 1.01 0.46 0.58 8.89 9.65 4.45 5.46 1.27 2.28 0.77 1.27 BASE COLLECTOR EMITTER COLLECTOR ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 12 BUD43D2/D