ONSEMI BUD43D2-1

BUD43D2
Bipolar NPN Transistor
High Speed, High Gain Bipolar NPN
Transistor Integrating an Antisaturation
Network and a Transient Voltage
Suppression Capability
The BUD43D2 is a state–of–the–art bipolar transistor. Tight
dynamic characteristics and lot to lot minimum spread make it ideally
suitable for light ballast applications.
Main Features:
•
•
•
•
Free Wheeling Diode Built In
Flat DC Current Gain
Fast Switching Times and Tight Distribution
“6 Sigma” Process Providing Tight and Reproducible Parameter
Spreads
http://onsemi.com
2 AMPERES
700 VOLTS
25 WATTS
POWER TRANSISTOR
Two Versions:
• BUD43D2–1: Case 369 for Insertion Mode
• BUD43D2: Case 369A for Surface Mount Mode
MAXIMUM RATINGS
Symbol
Value
Unit
Collector–Emitter Sustaining Voltage
Rating
VCEO
400
Vdc
Collector–Base Breakdown Voltage
VCBO
700
Vdc
Collector–Emitter Breakdown Voltage
VCES
700
Vdc
Emitter–Base Voltage
VEBO
12
Vdc
Collector Current – Continuous
Collector Current – Peak (Note 1)
IC
ICM
2.0
5.0
Adc
Base Current – Continuous
Base Current – Peak (Note 1)
IB
IBM
1.0
2.0
Adc
TYPICAL GAIN
Typical Gain
@ IC = 100 mA, VCE = 1 V
@ IC = 0.3 A, VCE = 1 V
hFE
–
55
32
DPAK
CASE 369
STYLE 1
DPAK
CASE 369A
STYLE 1
MARKING DIAGRAMS
YWW
BUD
43D2
YWW
BUD
43D2
THERMAL CHARACTERISTICS
Characteristic
Symbol
Value
Unit
25
0.2
W
W/°C
Total Device Dissipation
@ TC = 25°C
Derate above 25°C
PD
Operating and Storage
Temperature Range
TJ, Tstg
–65 to
+150
°C
Thermal Resistance –
Junction–to–Case
RJC
5.0
°C/W
Thermal Resistance –
Junction–to–Ambient
RJA
71.4
°C/W
TL
260
°C
Maximum Lead Temperature for Soldering
Purposes: 1/8″ from Case for 5 sec.
Y
= Year
WW
= Work Week
BUD43D2 = Device Code
ORDERING INFORMATION
Device
BUD43D2–1
Package
Shipping
DPAK
75 Units/Rail
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%
 Semiconductor Components Industries, LLC, 2002
June, 2002 – Rev. 2
1
Publication Order Number:
BUD43D2/D
BUD43D2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
VCEO(sus)
400
470
–
Vdc
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH)
Collector–Base Breakdown Voltage (ICBO = 1 mA)
@ TC = 25°C
VCBO
700
920
–
Vdc
Emitter–Base Breakdown Voltage (IEBO = 1 mA)
@ TC = 25°C
VEBO
12
14.5
–
Vdc
Collector Cutoff Current
(VCE = Rated VCEO, IB = 0)
@ TC = 25°C
@ TC = 125°C
ICEO
–
–
–
–
50
500
Adc
Collector Cutoff Current (VCE = Rated VCES, VEB = 0)
ICES
–
–
–
–
–
–
50
500
100
Adc
Collector Cutoff Current (VCE = 500 V, VEB = 0)
@ TC = 25°C
@ TC = 125°C
@ TC = 125°C
Emitter–Cutoff Current (VEB = 10 Vdc, IC = 0)
@ TC = 25°C
IEBO
–
–
100
Adc
@ TC = 25°C
@ TC = 125°C
VBE(sat)
–
–
0.78
0.65
0.9
0.8
Vdc
–
–
0.85
0.76
1.0
0.9
–
–
0.40
0.60
0.65
1.0
ON CHARACTERISTICS
Base–Emitter Saturation Voltage
(IC = 0.4 Adc, IB = 40 mAdc)
(IC = 1 Adc, IB = 0.2 Adc)
Collector–Emitter Saturation Voltage
(IC = 0.4 Adc, IB = 20 mAdc)
@ TC = 25°C
@ TC = 125°C
@ TC = 25°C
@ TC = 125°C
VCE(sat)
(IC = 0.4 Adc, IB = 40 mAdc)
@ TC = 25°C
@ TC = 125°C
–
–
0.20
0.20
0.4
0.5
(IC = 1 Adc, IB = 0.2 Adc)
@ TC = 25°C
@ TC = 125°C
–
–
0.25
0.30
0.5
0.6
DC Current Gain
(IC = 0.4 Adc, VCE = 1 Vdc)
@ TC = 25°C
@ TC = 125°C
20
18
32
26
–
–
(IC = 1 Adc, VCE = 1 Vdc)
@ TC = 25°C
@ TC = 125°C
10
7.0
15
9.5
–
–
(IC = 2 Adc, VCE = 5 Vdc)
@ TC = 25°C
8.0
13
–
@ TC = 25°C
–
0.8
1.0
(IEC = 0.2 Adc)
@ TC = 125°C
–
0.6
–
(IEC = 0.4 Adc)
@ TC = 25°C
–
0.9
1.2
(IEC = 1 Adc)
@ TC = 25°C
–
1.1
1.5
@ TC = 25°C
–
415
–
(IF = 0.4 Adc, di/dt = 10 A/s)
@ TC = 25°C
–
390
–
(IF = 1 Adc, di/dt = 10 A/s)
@ TC = 25°C
–
340
–
hFE
Vdc
–
DIODE CHARACTERISTICS
Forward Diode Voltage
(IEC = 0.2 Adc)
Forward Recovery Time (see Figure 22)
(IF = 0.2 Adc, di/dt = 10 A/s)
VEC
Vdc
Tfr
http://onsemi.com
2
ns
BUD43D2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
VCE(dsat)
–
–
3.3
6.8
–
–
V
DYNAMIC SATURATION VOLTAGE
IC = 400 mA
IB1 = 40 mA
VCC = 300 Vdc
Dynamic Saturation
Voltage
IC = 1 A
IB1 = 200 mA
VCC = 300 Vdc
@ 1 s
@ TC = 25°C
@ TC = 125°C
@ 3 s
@ TC = 25°C
@ TC = 125°C
–
–
0.5
1.3
–
–
@ 1 s
@ TC = 25°C
@ TC = 125°C
–
–
4.4
12.8
–
–
@ 3 s
@ TC = 25°C
@ TC = 125°C
–
–
0.5
1.8
–
–
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz)
fT
–
13
–
MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1 MHz)
Cob
–
50
75
pF
Input Capacitance (VEB = 8 Vdc, f = 1 MHz)
Cib
–
250
500
pF
SWITCHING CHARACTERISTICS: Resistive Load (Vclamp = 300 V, VCC = 15 V, L = 200 H)
Turn–on Time
@ TC = 25°C
@ TC = 125°C
ton
–
–
200
200
250
–
ns
@ TC = 25°C
@ TC = 125°C
toff
–
–
1.5
1.5
1.75
–
s
@ TC = 25°C
@ TC = 125°C
ton
–
–
225
600
300
–
ns
@ TC = 25°C
@ TC = 125°C
toff
800
–
–
1300
1100
–
ns
@ TC = 25°C
@ TC = 125°C
tf
–
–
90
105
150
–
ns
@ TC = 25°C
@ TC = 125°C
ts
–
–
0.55
0.7
0.75
–
s
Crossover Time
@ TC = 25°C
@ TC = 125°C
tc
–
–
85
80
150
–
ns
Fall Time
@ TC = 25°C
@ TC = 125°C
tf
–
–
100
90
150
–
ns
@ TC = 25°C
@ TC = 125°C
ts
–
–
1.05
1.45
1.5
–
s
Crossover Time
@ TC = 25°C
@ TC = 125°C
tc
–
–
100
100
175
–
ns
Fall Time
@ TC = 25°C
@ TC = 125°C
tf
–
–
110
180
150
–
ns
@ TC = 25°C
@ TC = 125°C
ts
2.5
–
–
2.8
2.8
–
s
Crossover Time
@ TC = 25°C
@ TC = 125°C
tc
–
–
150
400
250
–
ns
Fall Time
@ TC = 25°C
@ TC = 125°C
tf
–
–
150
175
225
–
ns
@ TC = 25°C
@ TC = 125°C
ts
1.7
–
–
2.2
2.0
–
s
@ TC = 25°C
@ TC = 125°C
tc
–
–
125
330
250
–
ns
Turn–off Time
IC = 1 Adc, IB1 = 0.2 Adc
IB2 = 0.5
0 5 Adc
VCC = 300 Vdc
Turn–on Time
Turn–off Time
IC = 0.5 Adc, IB1 = 50 mAdc
IB2 = 250 mAdc
VCC = 300 Vdc
SWITCHING CHARACTERISTICS: Inductive Load
Fall Time
Storage Time
Storage Time
Storage Time
Storage Time
Crossover Time
IC = 0.4 Adc
IB1 = 40 mAdc
IB2 = 0.2 Adc
IC = 1.0 Adc
IB1 = 0.2 Adc
IB2 = 0.5 Adc
IC = 0.8 Adc
IB1 = 160 mAdc
IB2 = 160 mAdc
IC = 0.4 Adc
IB1 = 40 mAdc
IB2 = 40 mAdc
http://onsemi.com
3
BUD43D2
100
100
TJ = 125°C
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
TJ = 125°C
–20°C
25°C
10
–20°C
25°C
10
1
0.1
1
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
0.001
10
Figure 1. DC Current Gain @ VCE = 1 V
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 2. DC Current Gain @ VCE = 5 V
3
10
VCE, VOLTAGE (VOLTS)
VCE, VOLTAGE (VOLTS)
TJ = 25°C
2
2A
1.5 A
1A
1
0.4 A
1
TJ = 125°C
0.1
–20°C
25°C
IC = 0.2 A
0.01
0
0.001
0.01
0.1
1
IB, BASE CURRENT (AMPS)
0.001
10
Figure 3. Collector Saturation Region
10
VCE, VOLTAGE (VOLTS)
VCE, VOLTAGE (VOLTS)
10
Figure 4. Collector–Emitter Saturation Voltage
IC/IB = 5
100
10
1
TJ = 125°C
0.1
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
–20°C
1
TJ = 125°C
25°C
–20°C
0.1
25°C
0.01
0.01
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
0.001
10
Figure 5. Collector–Emitter Saturation Voltage
IC/IB = 10
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 6. Collector–Emitter Saturation Voltage
IC/IB = 20
http://onsemi.com
4
BUD43D2
10
1
VBE, VOLTAGE (VOLTS)
VBE, VOLTAGE (VOLTS)
10
–20°C
25°C
TJ = 125°C
0.1
1
–20°C
25°C
TJ = 125°C
0.1
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
0.001
Figure 7. Base–Emitter Saturation Region
IC/IB = 5
FORWARD DIODE VOLTAGE (VOLTS)
VBE, VOLTAGE (VOLTS)
1 –20°C
25°C
TJ = 125°C
0.1
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
10
VEC(V) = –20°C
1
125°C
0.1
25°C
0.01
0.1
1
10
REVERSE EMITTER–COLLECTOR CURRENT (AMPS)
Figure 9. Base–Emitter Saturation Region
IC/IB = 20
Figure 10. Forward Diode Voltage
1000
1000
Cib (pF)
TJ = 25°C
f(test) = 1 MHz
BVCER @ ICER = 10 mA
900
TC = 25°C
BVCER (VOLTS)
C, CAPACITANCE (pF)
10
Figure 8. Base–Emitter Saturation Region
IC/IB = 10
10
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
100
Cob (pF)
10
800
700
BVCER(sus) @ ICER = 200 mA,
LC = 25 mH
600
500
1
400
1
10
VR, REVERSE VOLTAGE (VOLTS)
100
10
Figure 11. Capacitance
100
RBE
Figure 12. BVCER = f(RBE)
http://onsemi.com
5
1000
BUD43D2
800
4500
IC/IB = 10
TJ = 125°C
TJ = 25°C
700
VCC = 300 V
600
Pw = 40 s
3500
IBon = IBoff
500
VCC = 300 V
PW = 40 s
400
t, TIME (s)
t, TIME (s)
IBon = IBoff
4000
IC/IB = 10
300
3000
2500
2000
200
IC/IB = 5
100
1500
0
1000
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
2
TJ = 125°C
TJ = 25°C
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
Figure 13. Resistive Switching, ton
3500
t, TIME (s)
2
TJ = 25°C, G5
IBon = IBoff,
VCE = 15 V,
VZ = 300 V
LC = 200 H
1
TJ = 125°C,
IC/IB = 10
2500
TJ = 25°C,
IC/IB = 10
2000
1500
0
0
IBon = IBoff,
VCE = 15 V,
VZ = 300 V
LC = 200 H
3000
TJ = 125°C, G5
3
t, TIME (s)
2
Figure 14. Resistive Switching, toff
4
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
1000
2
Figure 15. Inductive Storage Time, tsi @ G = 5
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
2
Figure 16. Inductive Storage Time, tsi @ IC/IB = 10
3000
700
IBon = IBoff,
VCC = 15 V,
VZ = 300 V
LC = 200 H
600
2500
500
TJ = 125°C,
IC/IB = 20
t, TIME (s)
t, TIME (s)
IC/IB = 5
2000
IBon = IBoff,
VCE = 15 V,
VZ = 300 V
LC = 200 H
1500
1000
0.5
TJ = 25°C,
IC/IB = 20
1
1.5
IC, COLLECTOR CURRENT (AMPS)
400
tc @ TJ = 125°C
tc @ TJ = 25°C
300
200
tfi @ TJ = 125°C
100
tfi @ TJ = 25°C
0
0
2
Figure 17. Inductive Storage Time,
tsi @ IC/IB = 20
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
Figure 18. Inductive Fall and Cross Over Time,
tfi and tc @ hFE = 5
http://onsemi.com
6
2
BUD43D2
1000
2200
t, TIME (s)
800
700
hFE = 20,
TJ = 125°C
2000
hFE = 10,
TJ = 125°C
1600
600
hFE = 20,
TJ = 25°C
500
400
200
100
1200
1000
hFE = 20,
TJ = 25°C
800
hFE = 10,
TJ = 25°C
400
200
0
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
2
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
Figure 19. Inductive Fall Time,
tfi @ hFE = 10 and 20
5
700
IBon = IBoff,
VCC = 15 V,
VZ = 300 V
LC = 200 H
tfi, FALL TIME (ns)
600
IC = 1 A, TJ = 125°C
3
IC = 1 A, TJ = 25°C
IC = 1 A, TJ = 125°C
IC = 0.3 A,
TJ = 125°C
500
400
300
2 IC = 0.3 A, TJ = 125°C
IC = 0.3 A, TJ = 25°C
200
IC = 0.3 A, TJ = 25°C
1
3
4
5
6
7
8
9 10 11
hFE, FORCED GAIN
12 13
14
100
15
IC = 1 A, TJ = 25°C
3
Figure 21. Inductive Storage Time, tsi
5
6
7
8
9 10 11
hFE, FORCED GAIN
12
13
14
15
2700
IBon = IBoff,
VCC = 15 V,
VZ = 300 V
LC = 200 H
900
800
IB1&2 = 100 mA
IC = 1 A, TJ = 125°C
2200
700
t, TIME (s)
CROSS–OVER TIME (ns)
4
Figure 22. Inductive Fall Time, tf
1000
600
500
IC = 0.3 A,
TJ = 125°C
400
IC = 1 A, TJ = 25°C
300
IB1&2 = 500 mA
1700
IB1&2 = 50 mA
1200
IBon = IBoff,
VCC = 15 V,
VZ = 300 V
LC = 200 H
700
IC = 0.3 A, TJ = 25°C
200
100
2
Figure 20. Inductive Cross Over Time,
tc @ hFE = 10
IBon = IBoff,
VCC = 15 V,
VZ = 300 V
LC = 200 H
4
t, TIME (s)
hFE = 10,
TJ = 125°C
1400
600
hFE = 10,
TJ = 25°C
300
hFE = 20,
TJ = 125°C
IBon = IBoff,
VCC = 15 V,
VZ = 300 V
LC = 200 H
1800
t, TIME (s)
IBon = IBoff,
VCE = 15 V,
VZ = 300 V
LC = 200 H
900
IB1&2 = 200 mA
200
3
5
7
9
11
hFE, FORCED GAIN
0
15
13
Figure 23. Inductive Cross Over Time, tc
1
1.5
0.5
2
2.5
IC, COLLECTOR CURRENT (AMPS)
Figure 24. Inductive Storage Time, tsi
http://onsemi.com
7
3
BUD43D2
10
IC
9
VCE
Dyn 1 s
tsi
7
Dyn 3 s
6
0V
4
1 s
IB
10% IC
tc
90% IB1
IB
3
3 s
10% Vclamp
Vclamp
5
90% IB
90% IC
tfi
8
2
1
0
1
0
2
3
4
TIME
TIME
Figure 25. Dynamic Saturation Voltage
Measurements
5
7
6
8
Figure 26. Inductive Switching Measurements
Table 1. Inductive Load Switching Drive Circuit
+15 V
1 F
150 3W
100 3W
MTP8P10
VCE PEAK
MTP8P10
MPF930
VCE
RB1
MUR105
MPF930
+10 V
IC PEAK
100 F
IB1
Iout
IB
A
MJE210
500 F
150 3W
IB2
RB2
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 Volts
IC(pk) = 100 mA
MTP12N10
1 F
VFR (1.1 VF) Unless
Otherwise Specified
VF
VFRM
IC, COLLECTOR CURRENT (AMPS)
-Voff
tfr
IF
0.1 VF
10% IF
Inductive Switching
L = 200 H
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
RBSOA
L = 500 H
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
10
1 s
5 ms
1
10 s
1 ms
DC
0.1
EXTENDED SOA
COMMON
50
0.01
10
Figure 27. tfr Measurement
1000
100
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 28. Forward Bias Safe Operating Area,
Maximum Rating
http://onsemi.com
8
BUD43D2
1
TJ = 125°C
Gain = 4
LC = 500 H
2
POWER DERATING FACTOR
IC, COLLECTOR CURRENT (AMPS)
2.5
1.5
VBE(off) = –1.5 V
1
VBE(off) = –5 V
0.5
Second Breakdown Derating
0.8
0.6
Thermal Derating
0.4
0.2
VBE = 0 V
0
200
0
300
900
400
500
700
800
600
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
20
60
80
100
120
TC, CASE TEMPERATURE (°C)
40
Figure 29. Reverse Bias Safe Operating Area,
Maximum Rating
140
160
Figure 30. Power Derating
Figure 28 may be found at any case temperature by using the
appropriate curve on Figure 30.
TJ(pk) may be calculated from the data in Figure 31. At any
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown. For inductive loads, high
voltage and current must be sustained simultaneously during
turn–off with the base to emitter junction reverse biased. The
safe level is specified as reverse biased safe operating area
(Figure 29). This rating is verified under clamped conditions
so that the device is never subjected to an avalanche mode.
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC–VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate. The data of Figure 28 is
based on TC = 25°C; TJ(pk) is variable depending on power
level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated when TC > 25°C. Second
Breakdown limitations do not derate the same as thermal
limitations. Allowable current at the voltages shown on
r(t) TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
1
0.5
0.2
0.1
0.1
0.05
RJC(t) = r(t) RJC
RJC = 5C/W MAX
P(pk)
0.02
t1
0.01
t2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.01
0.01
0.1
1
10
t, TIME (ms)
Figure 31. Thermal Response
http://onsemi.com
9
100
1000
BUD43D2
Minimum Pad Sizes Recommended for Surface Mounted Applications
1.6
0.063
2.3
0.090
6.7
0.265
2.3
0.090
1.6
0.063
3.0
0.118
1.8
6.7
0.265
0.070
mm
inches
TYPICAL SOLDER HEATING PROFILE
The line on the graph shows the actual temperature that
might be experienced on the surface of a test board at or
near a central solder joint. The two profiles are based on a
high density and a low density board. The Vitronics
SMD310 convection/infrared reflow soldering system was
used to generate this profile. The type of solder used was
62/36/2 Tin Lead Silver with a melting point between
177–189°C. When this type of furnace is used for solder
reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
For any given circuit board, there will be a group of
control settings that will give the desired heat pattern. The
operator must set temperatures for several heating zones,
and a figure for belt speed. Taken together, these control
settings make up a heating “profile” for that particular
circuit board. On machines controlled by a computer, the
computer remembers these profiles from one operating
session to the next. Figure 32 shows a typical heating
profile for use when soldering a surface mount device to a
printed circuit board. This profile will vary among
soldering systems but it is a good starting point. Factors that
can affect the profile include the type of soldering system in
use, density and types of components on the board, type of
solder used, and the type of board or substrate material
being used. This profile shows temperature versus time.
STEP 1
PREHEAT
ZONE 1
RAMP"
200°C
150°C
STEP 2
STEP 3
VENT
HEATING
SOAK" ZONES 2 & 5
RAMP"
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES
STEP 5
STEP 4
HEATING
HEATING
ZONES 3 & 6 ZONES 4 & 7
SPIKE"
SOAK"
170°C
160°C
140°C
100°C
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
TMAX
TIME (3 TO 7 MINUTES TOTAL)
Figure 32. Typical Solder Heating Profile
http://onsemi.com
10
STEP 7
COOLING
205° TO 219°C
PEAK AT
SOLDER JOINT
150°C
100°C
50°C
STEP 6
VENT
BUD43D2
PACKAGE DIMENSIONS
DPAK
CASE 369A–13
ISSUE AB
–T–
C
B
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
SEATING
PLANE
E
R
4
Z
A
S
1
2
3
U
K
F
J
L
H
D
G
2 PL
0.13 (0.005)
M
T
DIM
A
B
C
D
E
F
G
H
J
K
L
R
S
U
V
Z
INCHES
MIN
MAX
0.235
0.250
0.250
0.265
0.086
0.094
0.027
0.035
0.033
0.040
0.037
0.047
0.180 BSC
0.034
0.040
0.018
0.023
0.102
0.114
0.090 BSC
0.175
0.215
0.020
0.050
0.020
--0.030
0.050
0.138
---
STYLE 1:
PIN 1.
2.
3.
4.
http://onsemi.com
11
BASE
COLLECTOR
EMITTER
COLLECTOR
MILLIMETERS
MIN
MAX
5.97
6.35
6.35
6.73
2.19
2.38
0.69
0.88
0.84
1.01
0.94
1.19
4.58 BSC
0.87
1.01
0.46
0.58
2.60
2.89
2.29 BSC
4.45
5.46
0.51
1.27
0.51
--0.77
1.27
3.51
---
BUD43D2
PACKAGE DIMENSIONS
DPAK STRAIGHT LEADS
CASE 369–07
ISSUE M
C
B
V
E
R
4
A
1
2
3
S
–T–
SEATING
PLANE
K
J
F
H
D
G
M
DIM
A
B
C
D
E
F
G
H
J
K
R
S
V
INCHES
MIN
MAX
0.235
0.250
0.250
0.265
0.086
0.094
0.027
0.035
0.033
0.040
0.037
0.047
0.090 BSC
0.034
0.040
0.018
0.023
0.350
0.380
0.175
0.215
0.050
0.090
0.030
0.050
STYLE 1:
PIN 1.
2.
3.
4.
3 PL
0.13 (0.005)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
T
MILLIMETERS
MIN
MAX
5.97
6.35
6.35
6.73
2.19
2.38
0.69
0.88
0.84
1.01
0.94
1.19
2.29 BSC
0.87
1.01
0.46
0.58
8.89
9.65
4.45
5.46
1.27
2.28
0.77
1.27
BASE
COLLECTOR
EMITTER
COLLECTOR
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
12
BUD43D2/D