ONSEMI BUD42DT4

BUD42D
High Speed, High Gain
Bipolar NPN Transistor with
Antisaturation Network and
Transient Voltage
Suppression Capability
The BUD42D is a state−of−the−art bipolar transistor. Tight dynamic
characteristics and lot to lot minimum spread make it ideally suitable
for light ballast applications.
Main Features:
•
•
•
•
•
•
Free Wheeling Diode Built In
Flat DC Current Gain
Fast Switching Times and Tight Distribution
“6 Sigma” Process Providing Tight and Reproducible Parameter
Spreads
Epoxy Meets UL94, VO @ 1/8”
ESD Ratings: Machine Model, C; >400 V
Human Body Model, 3B; >8000 V
http://onsemi.com
4 AMPERES
650 VOLTS
25 WATTS
POWER TRANSISTOR
MARKING DIAGRAMS
4
Collector
Two Versions:
• BUD42D−1: Case 369D for Insertion Mode
• BUD42D, BUD42DT4: Case 369C for Surface Mount Mode
1 2
MAXIMUM RATINGS
3
Symbol
Value
Unit
Collector−Emitter Sustaining Voltage
VCEO
350
Vdc
Collector−Base Breakdown Voltage
VCBO
650
Vdc
Collector−Emitter Breakdown Voltage
VCES
650
Vdc
VEBO
9
Vdc
Collector Current − Continuous
− Peak (Note 1)
IC
ICM
4.0
8.0
Adc
Base Current − Continuous
− Peak (Note 1)
IB
IBM
1.0
2.0
Adc
*Total Device Dissipation @ TC = 25C
*Derate above 25C
PD
25
0.2
Watt
W/C
TJ, Tstg
−65 to
+150
C
hFE
hFE
13
16
−
−
Symbol
Value
Unit
Thermal Resistance − Junction−to−Case
RθJC
5.0
°C/W
Thermal Resistance − Junction−to−Ambient
RθJA
71.4
°C/W
TL
260
°C
Emitter−Base Voltage
Operating and Storage Temperature
THERMAL CHARACTERISTICS
Characteristic
Maximum Lead Temperature for Soldering
Purposes: 1/8″ from Case for 5 seconds
2
1
Collector 3
Base
Emmitter
4
Collector
4
1
2
3
DPAK
CASE 369D
Style 1
1
2
3
Base Collector Emmitter
Y
= Year
WW
= Work Week
BUD43D = Device Code
TYPICAL GAIN
Typical Gain @ IC = 1 A, VCE = 2 V
Typical Gain @ IC = 0.3 A, VCE = 1 V
DPAK
CASE 369C
Style 1
YWW
BU
D42D
Rating
YWW
BU
D42D
4
ORDERING INFORMATION
Device
Package
Shipping
DPAK
75 Units/Rail
BUD42D−1
DPAK
Straight Lead
75 Units/Rail
BUD42DT4
DPAK
2500 Tape & Reel
BUD42D
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%
 Semiconductor Components Industries, LLC, 2003
August, 2003 − Rev. 2
1
Publication Order Number:
BUD42D/D
BUD42D
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
350
430
−
650
780
−
9.0
12
−
Unit
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage
(IC = 100 mA, L = 25 mH)
VCEO(sus)
Collector−Base Breakdown Voltage
(ICBO = 1 mA)
VCBO
Emitter−Base Breakdown Voltage
(IEBO = 1 mA)
VEBO
Vdc
Vdc
Vdc
Collector Cutoff Current
(VCE = Rated VCEO, IB = 0)
@ TC = 25°C
@ TC = 125°C
ICEO
−
−
−
−
100
200
µAdc
Collector Cutoff Current
(VCE = Rated VCES, VEB = 0)
@ TC = 25°C
@ TC = 125°C
ICES
−
−
−
−
10
200
µAdc
−
−
100
Emitter−Cutoff Current
(VEB = 9 Vdc, IC = 0)
µAdc
IEBO
ON CHARACTERISTICS
Base−Emitter Saturation Voltage
(IC = 1 Adc, IB = 0.2 Adc)
VBE(sat)
−
0.85
1.2
Vdc
Collector−Emitter Saturation Voltage
(IC = 2 Adc, IB = 0.5 Adc)
VCE(sat)
−
0.2
1.0
Vdc
8.0
10
13
12
−
−
−
0.9
1.5
4.6
−
6.55
−
−
0.8
−
−
2.8
3.2
−
−
DC Current Gain
(IC = 1 Adc, VCE = 2 Vdc)
(IC = 2 Adc, VCE = 5 Vdc)
hFE
−
DIODE CHARACTERISTICS
Forward Diode Voltage
(IEC = 1.0 Adc)
VEC
V
SWITCHING CHARACTERISTICS: Resistive Load (D.C.≤ 10%, Pulse Width = 40 µs)
Turn−Off Time
(IC = 1.2 Adc, IB1 = 0.4 A, IB2 = 0.1 A, VCC = 300 V)
Toff
Fall Time
(IC = 2.5 Adc, IB1 = IB2 = 0.5 A, VCC = 150 V, VBE = −2 V)
Tf
µs
µs
DYNAMIC SATURATION VOLTAGE
Dynamic Saturation
Voltage:
Determined 1 µs and
3 µs respectively after
rising IB1 reaches
90% of final IB1
IC = 400 mA
IB1 = 40 mA
VCC = 300 V
IC = 1 A
IB1 = 200 mA
VCC = 300 V
@ 1 µs
@ TC = 25°C
@ TC = 125°C
@ 3 µs
@ TC = 25°C
@ TC = 125°C
−
−
0.75
1.3
−
−
@ 1 µs
@ TC = 25°C
@ TC = 125°C
−
−
2.1
4.7
−
−
@ 3 µs
@ TC = 25°C
@ TC = 125°C
−
−
0.35
0.6
−
−
http://onsemi.com
2
VCE(dsat)
V
BUD42D
TYPICAL STATIC CHARACTERISTICS
100
hFE , DC CURRENT GAIN
hFE , DC CURRENT GAIN
100
TJ = 125°C
TJ = 25°C
10
1
TJ = −20°C
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
TJ = 25°C
10
1
10
TJ = −20°C
0.001
Figure 1. DC Current Gain @ VCE = 1 V
10
IC/IB = 5
VCE , VOLTAGE (VOLTS)
TJ = 25°C
VCE , VOLTAGE (VOLTS)
10
Figure 2. DC Current Gain @ VCE = 5 V
3
2A
2
1.5 A
1A
1
IC = 0.2 A
0
0.001
0.01
1
TJ = 125°C
0.1
0.4 A
1
0.1
IB, BASE CURRENT (AMPS)
0.01
0.001
10
TJ = 25°C
TJ = −20°C
Figure 3. Collector Saturation Region
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 4. Collector−Emitter Saturation Voltage
100
10
IC/IB = 8
IC/IB = 10
10
VCE , VOLTAGE (VOLTS)
VCE , VOLTAGE (VOLTS)
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
1
TJ = −20°C
TJ = 25°C
0.1
0.01
0.001
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
1
TJ = 25°C
0.1
0.01
0.001
10
TJ = −20°C
Figure 5. Collector−Emitter Saturation Voltage
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Collector−Emitter Saturation Voltage
http://onsemi.com
3
10
BUD42D
TYPICAL STATIC CHARACTERISTICS
10
10
1
IC/IB = 8
VBE , VOLTAGE (VOLTS)
VBE , VOLTAGE (VOLTS)
IC/IB = 5
TJ = −20°C
TJ = 125°C
0.1
0.001
1
TJ = 125°C
TJ = 25°C
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
TJ = −20°C
0.1
0.001
10
Figure 7. Base−Emitter Saturation Region
10
10
FORWARD DIODE VOLTAGE (VOLTS)
IC/IB = 10
VBE , VOLTAGE (VOLTS)
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
Figure 8. Base−Emitter Saturation Region
10
1
TJ = 25°C
TJ = −20°C
TJ = 125°C
0.1
0.001
TJ = 25°C
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
VEC(V) = −20°C
1
VEC(V) = 125°C
0.1
0.01
10
Figure 9. Base−Emitter Saturation Region
VEC(V) = 25°C
0.1
1
REVERSE EMITTER−COLLECTOR CURRENT
Figure 10. Forward Diode Voltage
http://onsemi.com
4
10
BUD42D
TYPICAL SWITCHING CHARACTERISTICS
1000
900
800
100
BVCER (VOLTS)
C, CAPACITANCE (pF)
Cib
TJ = 25°C
f(test) = 1 MHz
Cob
10
ICER = 10 mA
700
600
ICER = 100 mA
lC = 25 mH
500
400
TC = 25°C
1
1
10
VR, REVERSE VOLTAGE (VOLTS)
300
100
10
10000
RBE ()
Figure 11. Capacitance
Figure 12. BVCER = f(RBE)
800
9
IBon = IBoff
VCC = 300 V
PW = 40 µs
IBon = IBoff
VCC = 300 V
PW = 40 µs
700
600
6
500
t, TIME (ns)
t, TIME (ns)
1000
100
hFE = 10
400
hFE = 5
300
hFE = 5
3
200
TJ = 125°C
TJ = 25°C
100
0
TJ = 125°C
TJ = 25°C
0.5
1.5
1
IC, COLLECTOR CURRENT (AMPS)
0
0
2
0
Figure 13. Resistive Switching, ton
1.5
0.5
1
IC, COLLECTOR CURRENT (AMPS)
2
Figure 14. Resistive Switching, toff
4
4
TJ = 125°C
TJ = 125°C
3
t, TIME ( µ s)
IBon = IBoff
VCE = 15 V
VZ = 300 V
LC = 200 µH
3
t, TIME ( µ s)
hFE = 10
TJ = 25°C
2
IBon = IBoff
VCE = 15 V
VZ = 300 V
LC = 200 µH
TJ = 25°C
2
1
0
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
1
2
0.5
Figure 15. Inductive Storage Time,
tsi @ hFE = 5
1.5
1
IC, COLLECTOR CURRENT (AMPS)
Figure 16. Inductive Storage Time,
tsi @ hFE = 10
http://onsemi.com
5
2
BUD42D
TYPICAL SWITCHING CHARACTERISTICS
250
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
t, TIME (ns)
300
TJ = 125°C
TJ = 25°C
t, TIME (ns)
400
tc
200
TJ = 125°C
200
TJ = 25°C
IBon = IBoff
VCE = 15 V
VZ = 300 V
LC = 200 µH
150
tfi
100
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
100
2
1.5
1
IC, COLLECTOR CURRENT (AMPS)
0.5
Figure 17. Inductive Fall and Cross Over Time,
tfi and tc @ hFE = 5
2
Figure 18. Inductive Fall Time,
tfi @ hFE = 10
5
500
4
t, TIME ( s)
t, TIME (ns)
400
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
TJ = 125°C
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
TJ = 125°C
TJ = 25°C
IC = 1 A
3
300
TJ = 25°C
200
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
IC = 0.3 A
2
1
2
3
Figure 19. Inductive Cross Over Time,
tc @ hFE = 10
5
6
10
11
12
300
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
CROSS−OVER TIME (ns)
IC = 0.3 A
200
IC = 1 A
IC = 1 A
3
4
5
6
7
hFE, FORCED GAIN
8
9
IC = 0.3 A
200
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
100
7
8
9
hFE, FORCED GAIN
Figure 20. Inductive Storage Time, tsi
300
t fi , FALL TIME (ns)
4
100
10
2
Figure 21. Inductive Fall Time, tf
4
6
hFE, FORCED GAIN
8
Figure 22. Inductive Cross Over Time, tc
http://onsemi.com
6
10
BUD42D
TYPICAL SWITCHING CHARACTERISTICS
3
t fr , FORWARD RECOVERY TIME (ns)
t, TIME ( s)
2.5
440
IB 1 & 2 = 200 mA
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
500 mA
2
50 mA
100 mA
1.5
1
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
di/dt = 10 A/s, TC = 25°C
420
400
380
360
340
320
300
2
1.5
1
0.5
IF, FORWARD CURRENT (AMPS)
0
Figure 23. Inductive Storage Time, tsi
2
Figure 24. Forward Recovery Time, tfr
10
IC
VCE
90% IC
8
Dyn 1 s
tfi
tsi
Dyn 3 s
6
0V
Vclamp
90% IB
IB
tc
4
1 s
IB
3 s
10% IC
10% Vclamp
90% IB1
2
0
0
TIME
Figure 25. Dynamic Saturation Voltage
Measurements
2
4
TIME
6
Figure 26. Inductive Switching Measurements
http://onsemi.com
7
8
BUD42D
TYPICAL SWITCHING CHARACTERISTICS
Table 1. Inductive Load Switching Drive Circuit
+15 V
1 µF
150 Ω
3W
100 Ω
3W
VCE PEAK
MTP8P10
VCE
RB1
MPF930
MUR105
MPF930
+10 V
IC PEAK
100 µF
MTP8P10
IB1
Iout
IB
A
50 Ω
MJE210
COMMON
500 µF
IB2
RB2
150 Ω
3W
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 Volts
IC(pk) = 100 mA
MTP12N10
1 µF
−Voff
VFR (1.1 VF) UNLESS
OTHERWISE SPECIFIED
VF
VFRM
tfr
IF
0.1 VF
10% IF
Figure 27. tfr Measurement
http://onsemi.com
8
Inductive Switching
L = 200 µH
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
RBSOA
L = 500 µH
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
BUD42D
MAXIMUM RATINGS
5
1 s
IC , COLLECTOR CURRENT (AMPS)
5 ms
10 s
1 ms
dc
EXTENDED SOA
IC , COLLECTOR CURRENT (AMPS)
10
1
0.1
0.01
10
100
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
4
3
2
VBE(off) = −5 V
1
0
1000
TJ = 125°C
GAIN ≥ 4
LC = 500 H
VBE = 0 V
300
Figure 28. Forward Bias Safe Operating Area
VBE(off) = −1.5 V
400
500
600
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
700
Figure 29. Reverse Bias Safe Operating Area
POWER DERATING FACTOR
1
SECOND BREAKDOWN
DERATING
0.8
0.6
0.4
0.2
THERMAL DERATING
0
20
40
60
80
100
120
TC, CASE TEMPERATURE (°C)
140
160
Figure 30. Power Derating
Figure 28 may be found at any case temperature by using the
appropriate curve on Figure 30.
Tj(pk) may be calculated from the data in Figure 31. At any
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown. For inductive loads, high
voltage and current must be sustained simultaneously during
turn−off with the base to emitter junction reverse biased. The
safe level is specified as reverse biased safe operating area
(Figure 29). This rating is verified under clamped conditions
so that the device is never subjected to an avalanche mode.
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC−VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate. The data of Figure 28 is
based on TC = 25°C; Tj(pk) is variable depending on power
level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated when TC > 25°C. Second
Breakdown limitations do not derate like thermal
limitations. Allowable current at the voltages shown on
http://onsemi.com
9
BUD42D
1
r(t) TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
D = 0.5
0.2
0.1
0.1
0.05
P(pk)
0.02
0.01
t1
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
RθJC(t) = r(t) RθJC
RθJC = 5°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) − TC = P(pk) RθJC(t)
0.01
0.01
0.1
1
10
100
1000
t, TIME (ms)
Figure 31. Thermal Response
Minimum Pad Sizes Recommended for Surface Mounted Applications
6.20
0.244
2.58
0.101
5.80
0.228
3.0
0.118
1.6
0.063
6.172
0.243
SCALE 3:1
mm inches
TYPICAL SOLDER HEATING PROFILE
The line on the graph shows the actual temperature that
might be experienced on the surface of a test board at or
near a central solder joint. The two profiles are based on a
high density and a low density board. The Vitronics
SMD310 convection/infrared reflow soldering system was
used to generate this profile. The type of solder used was
62/36/2 Tin Lead Silver with a melting point between
177−189°C. When this type of furnace is used for solder
reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
For any given circuit board, there will be a group of
control settings that will give the desired heat pattern. The
operator must set temperatures for several heating zones,
and a figure for belt speed. Taken together, these control
settings make up a heating “profile” for that particular
circuit board. On machines controlled by a computer, the
computer remembers these profiles from one operating
session to the next. Figure 32 shows a typical heating
profile for use when soldering a surface mount device to a
printed circuit board. This profile will vary among
soldering systems but it is a good starting point. Factors that
can affect the profile include the type of soldering system in
use, density and types of components on the board, type of
solder used, and the type of board or substrate material
being used. This profile shows temperature versus time.
http://onsemi.com
10
BUD42D
STEP 1
PREHEAT
ZONE 1
RAMP"
200°C
150°C
STEP 2
STEP 3
VENT
HEATING
SOAK" ZONES 2 & 5
RAMP"
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES
STEP 5
STEP 4
HEATING
HEATING
ZONES 3 & 6 ZONES 4 & 7
SPIKE"
SOAK"
170°C
160°C
140°C
100°C
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
TIME (3 TO 7 MINUTES TOTAL)
TMAX
Figure 32. Typical Solder Heating Profile
http://onsemi.com
11
STEP 7
COOLING
205° TO 219°C
PEAK AT
SOLDER JOINT
150°C
100°C
50°C
STEP 6
VENT
BUD42D
PACKAGE DIMENSIONS
DPAK
CASE 369C−01
ISSUE O
−T−
C
B
V
SEATING
PLANE
E
R
4
Z
A
S
1
2
DIM
A
B
C
D
E
F
G
H
J
K
L
R
S
U
V
Z
3
U
K
F
J
L
H
D
2 PL
G
0.13 (0.005)
M
T
INCHES
MIN
MAX
0.235 0.245
0.250 0.265
0.086 0.094
0.027 0.035
0.018 0.023
0.037 0.045
0.180 BSC
0.034 0.040
0.018 0.023
0.102 0.114
0.090 BSC
0.180 0.215
0.025 0.040
0.020
−−−
0.035 0.050
0.155
−−−
MILLIMETERS
MIN
MAX
5.97
6.22
6.35
6.73
2.19
2.38
0.69
0.88
0.46
0.58
0.94
1.14
4.58 BSC
0.87
1.01
0.46
0.58
2.60
2.89
2.29 BSC
4.57
5.45
0.63
1.01
0.51
−−−
0.89
1.27
3.93
−−−
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
DPAK
CASE 369D−01
ISSUE O
C
B
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
E
R
4
Z
A
S
1
2
3
−T−
SEATING
PLANE
K
J
F
H
D
G
3 PL
0.13 (0.005)
M
DIM
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
INCHES
MIN
MAX
0.235 0.245
0.250 0.265
0.086 0.094
0.027 0.035
0.018 0.023
0.037 0.045
0.090 BSC
0.034 0.040
0.018 0.023
0.350 0.380
0.180 0.215
0.025 0.040
0.035 0.050
0.155
−−−
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
T
http://onsemi.com
12
MILLIMETERS
MIN
MAX
5.97
6.35
6.35
6.73
2.19
2.38
0.69
0.88
0.46
0.58
0.94
1.14
2.29 BSC
0.87
1.01
0.46
0.58
8.89
9.65
4.45
5.45
0.63
1.01
0.89
1.27
3.93
−−−
BUD42D
Notes
http://onsemi.com
13
BUD42D
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800−282−9855 Toll Free USA/Canada
http://onsemi.com
14
BUD42D/D