BUD42D High Speed, High Gain Bipolar NPN Transistor with Antisaturation Network and Transient Voltage Suppression Capability The BUD42D is a state−of−the−art bipolar transistor. Tight dynamic characteristics and lot to lot minimum spread make it ideally suitable for light ballast applications. Main Features: • • • • • • Free Wheeling Diode Built In Flat DC Current Gain Fast Switching Times and Tight Distribution “6 Sigma” Process Providing Tight and Reproducible Parameter Spreads Epoxy Meets UL94, VO @ 1/8” ESD Ratings: Machine Model, C; >400 V Human Body Model, 3B; >8000 V http://onsemi.com 4 AMPERES 650 VOLTS 25 WATTS POWER TRANSISTOR MARKING DIAGRAMS 4 Collector Two Versions: • BUD42D−1: Case 369D for Insertion Mode • BUD42D, BUD42DT4: Case 369C for Surface Mount Mode 1 2 MAXIMUM RATINGS 3 Symbol Value Unit Collector−Emitter Sustaining Voltage VCEO 350 Vdc Collector−Base Breakdown Voltage VCBO 650 Vdc Collector−Emitter Breakdown Voltage VCES 650 Vdc VEBO 9 Vdc Collector Current − Continuous − Peak (Note 1) IC ICM 4.0 8.0 Adc Base Current − Continuous − Peak (Note 1) IB IBM 1.0 2.0 Adc *Total Device Dissipation @ TC = 25C *Derate above 25C PD 25 0.2 Watt W/C TJ, Tstg −65 to +150 C hFE hFE 13 16 − − Symbol Value Unit Thermal Resistance − Junction−to−Case RθJC 5.0 °C/W Thermal Resistance − Junction−to−Ambient RθJA 71.4 °C/W TL 260 °C Emitter−Base Voltage Operating and Storage Temperature THERMAL CHARACTERISTICS Characteristic Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 seconds 2 1 Collector 3 Base Emmitter 4 Collector 4 1 2 3 DPAK CASE 369D Style 1 1 2 3 Base Collector Emmitter Y = Year WW = Work Week BUD43D = Device Code TYPICAL GAIN Typical Gain @ IC = 1 A, VCE = 2 V Typical Gain @ IC = 0.3 A, VCE = 1 V DPAK CASE 369C Style 1 YWW BU D42D Rating YWW BU D42D 4 ORDERING INFORMATION Device Package Shipping DPAK 75 Units/Rail BUD42D−1 DPAK Straight Lead 75 Units/Rail BUD42DT4 DPAK 2500 Tape & Reel BUD42D 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10% Semiconductor Components Industries, LLC, 2003 August, 2003 − Rev. 2 1 Publication Order Number: BUD42D/D BUD42D ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max 350 430 − 650 780 − 9.0 12 − Unit OFF CHARACTERISTICS Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) VCEO(sus) Collector−Base Breakdown Voltage (ICBO = 1 mA) VCBO Emitter−Base Breakdown Voltage (IEBO = 1 mA) VEBO Vdc Vdc Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) @ TC = 25°C @ TC = 125°C ICEO − − − − 100 200 µAdc Collector Cutoff Current (VCE = Rated VCES, VEB = 0) @ TC = 25°C @ TC = 125°C ICES − − − − 10 200 µAdc − − 100 Emitter−Cutoff Current (VEB = 9 Vdc, IC = 0) µAdc IEBO ON CHARACTERISTICS Base−Emitter Saturation Voltage (IC = 1 Adc, IB = 0.2 Adc) VBE(sat) − 0.85 1.2 Vdc Collector−Emitter Saturation Voltage (IC = 2 Adc, IB = 0.5 Adc) VCE(sat) − 0.2 1.0 Vdc 8.0 10 13 12 − − − 0.9 1.5 4.6 − 6.55 − − 0.8 − − 2.8 3.2 − − DC Current Gain (IC = 1 Adc, VCE = 2 Vdc) (IC = 2 Adc, VCE = 5 Vdc) hFE − DIODE CHARACTERISTICS Forward Diode Voltage (IEC = 1.0 Adc) VEC V SWITCHING CHARACTERISTICS: Resistive Load (D.C.≤ 10%, Pulse Width = 40 µs) Turn−Off Time (IC = 1.2 Adc, IB1 = 0.4 A, IB2 = 0.1 A, VCC = 300 V) Toff Fall Time (IC = 2.5 Adc, IB1 = IB2 = 0.5 A, VCC = 150 V, VBE = −2 V) Tf µs µs DYNAMIC SATURATION VOLTAGE Dynamic Saturation Voltage: Determined 1 µs and 3 µs respectively after rising IB1 reaches 90% of final IB1 IC = 400 mA IB1 = 40 mA VCC = 300 V IC = 1 A IB1 = 200 mA VCC = 300 V @ 1 µs @ TC = 25°C @ TC = 125°C @ 3 µs @ TC = 25°C @ TC = 125°C − − 0.75 1.3 − − @ 1 µs @ TC = 25°C @ TC = 125°C − − 2.1 4.7 − − @ 3 µs @ TC = 25°C @ TC = 125°C − − 0.35 0.6 − − http://onsemi.com 2 VCE(dsat) V BUD42D TYPICAL STATIC CHARACTERISTICS 100 hFE , DC CURRENT GAIN hFE , DC CURRENT GAIN 100 TJ = 125°C TJ = 25°C 10 1 TJ = −20°C 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C TJ = 25°C 10 1 10 TJ = −20°C 0.001 Figure 1. DC Current Gain @ VCE = 1 V 10 IC/IB = 5 VCE , VOLTAGE (VOLTS) TJ = 25°C VCE , VOLTAGE (VOLTS) 10 Figure 2. DC Current Gain @ VCE = 5 V 3 2A 2 1.5 A 1A 1 IC = 0.2 A 0 0.001 0.01 1 TJ = 125°C 0.1 0.4 A 1 0.1 IB, BASE CURRENT (AMPS) 0.01 0.001 10 TJ = 25°C TJ = −20°C Figure 3. Collector Saturation Region 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 4. Collector−Emitter Saturation Voltage 100 10 IC/IB = 8 IC/IB = 10 10 VCE , VOLTAGE (VOLTS) VCE , VOLTAGE (VOLTS) 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C 1 TJ = −20°C TJ = 25°C 0.1 0.01 0.001 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C 1 TJ = 25°C 0.1 0.01 0.001 10 TJ = −20°C Figure 5. Collector−Emitter Saturation Voltage 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) Figure 6. Collector−Emitter Saturation Voltage http://onsemi.com 3 10 BUD42D TYPICAL STATIC CHARACTERISTICS 10 10 1 IC/IB = 8 VBE , VOLTAGE (VOLTS) VBE , VOLTAGE (VOLTS) IC/IB = 5 TJ = −20°C TJ = 125°C 0.1 0.001 1 TJ = 125°C TJ = 25°C 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) TJ = −20°C 0.1 0.001 10 Figure 7. Base−Emitter Saturation Region 10 10 FORWARD DIODE VOLTAGE (VOLTS) IC/IB = 10 VBE , VOLTAGE (VOLTS) 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) Figure 8. Base−Emitter Saturation Region 10 1 TJ = 25°C TJ = −20°C TJ = 125°C 0.1 0.001 TJ = 25°C 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) VEC(V) = −20°C 1 VEC(V) = 125°C 0.1 0.01 10 Figure 9. Base−Emitter Saturation Region VEC(V) = 25°C 0.1 1 REVERSE EMITTER−COLLECTOR CURRENT Figure 10. Forward Diode Voltage http://onsemi.com 4 10 BUD42D TYPICAL SWITCHING CHARACTERISTICS 1000 900 800 100 BVCER (VOLTS) C, CAPACITANCE (pF) Cib TJ = 25°C f(test) = 1 MHz Cob 10 ICER = 10 mA 700 600 ICER = 100 mA lC = 25 mH 500 400 TC = 25°C 1 1 10 VR, REVERSE VOLTAGE (VOLTS) 300 100 10 10000 RBE () Figure 11. Capacitance Figure 12. BVCER = f(RBE) 800 9 IBon = IBoff VCC = 300 V PW = 40 µs IBon = IBoff VCC = 300 V PW = 40 µs 700 600 6 500 t, TIME (ns) t, TIME (ns) 1000 100 hFE = 10 400 hFE = 5 300 hFE = 5 3 200 TJ = 125°C TJ = 25°C 100 0 TJ = 125°C TJ = 25°C 0.5 1.5 1 IC, COLLECTOR CURRENT (AMPS) 0 0 2 0 Figure 13. Resistive Switching, ton 1.5 0.5 1 IC, COLLECTOR CURRENT (AMPS) 2 Figure 14. Resistive Switching, toff 4 4 TJ = 125°C TJ = 125°C 3 t, TIME ( µ s) IBon = IBoff VCE = 15 V VZ = 300 V LC = 200 µH 3 t, TIME ( µ s) hFE = 10 TJ = 25°C 2 IBon = IBoff VCE = 15 V VZ = 300 V LC = 200 µH TJ = 25°C 2 1 0 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 1 2 0.5 Figure 15. Inductive Storage Time, tsi @ hFE = 5 1.5 1 IC, COLLECTOR CURRENT (AMPS) Figure 16. Inductive Storage Time, tsi @ hFE = 10 http://onsemi.com 5 2 BUD42D TYPICAL SWITCHING CHARACTERISTICS 250 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH t, TIME (ns) 300 TJ = 125°C TJ = 25°C t, TIME (ns) 400 tc 200 TJ = 125°C 200 TJ = 25°C IBon = IBoff VCE = 15 V VZ = 300 V LC = 200 µH 150 tfi 100 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 100 2 1.5 1 IC, COLLECTOR CURRENT (AMPS) 0.5 Figure 17. Inductive Fall and Cross Over Time, tfi and tc @ hFE = 5 2 Figure 18. Inductive Fall Time, tfi @ hFE = 10 5 500 4 t, TIME ( s) t, TIME (ns) 400 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH TJ = 125°C IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH TJ = 125°C TJ = 25°C IC = 1 A 3 300 TJ = 25°C 200 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) IC = 0.3 A 2 1 2 3 Figure 19. Inductive Cross Over Time, tc @ hFE = 10 5 6 10 11 12 300 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH CROSS−OVER TIME (ns) IC = 0.3 A 200 IC = 1 A IC = 1 A 3 4 5 6 7 hFE, FORCED GAIN 8 9 IC = 0.3 A 200 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 100 7 8 9 hFE, FORCED GAIN Figure 20. Inductive Storage Time, tsi 300 t fi , FALL TIME (ns) 4 100 10 2 Figure 21. Inductive Fall Time, tf 4 6 hFE, FORCED GAIN 8 Figure 22. Inductive Cross Over Time, tc http://onsemi.com 6 10 BUD42D TYPICAL SWITCHING CHARACTERISTICS 3 t fr , FORWARD RECOVERY TIME (ns) t, TIME ( s) 2.5 440 IB 1 & 2 = 200 mA IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH 500 mA 2 50 mA 100 mA 1.5 1 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) di/dt = 10 A/s, TC = 25°C 420 400 380 360 340 320 300 2 1.5 1 0.5 IF, FORWARD CURRENT (AMPS) 0 Figure 23. Inductive Storage Time, tsi 2 Figure 24. Forward Recovery Time, tfr 10 IC VCE 90% IC 8 Dyn 1 s tfi tsi Dyn 3 s 6 0V Vclamp 90% IB IB tc 4 1 s IB 3 s 10% IC 10% Vclamp 90% IB1 2 0 0 TIME Figure 25. Dynamic Saturation Voltage Measurements 2 4 TIME 6 Figure 26. Inductive Switching Measurements http://onsemi.com 7 8 BUD42D TYPICAL SWITCHING CHARACTERISTICS Table 1. Inductive Load Switching Drive Circuit +15 V 1 µF 150 Ω 3W 100 Ω 3W VCE PEAK MTP8P10 VCE RB1 MPF930 MUR105 MPF930 +10 V IC PEAK 100 µF MTP8P10 IB1 Iout IB A 50 Ω MJE210 COMMON 500 µF IB2 RB2 150 Ω 3W V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 Volts IC(pk) = 100 mA MTP12N10 1 µF −Voff VFR (1.1 VF) UNLESS OTHERWISE SPECIFIED VF VFRM tfr IF 0.1 VF 10% IF Figure 27. tfr Measurement http://onsemi.com 8 Inductive Switching L = 200 µH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 RBSOA L = 500 µH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 BUD42D MAXIMUM RATINGS 5 1 s IC , COLLECTOR CURRENT (AMPS) 5 ms 10 s 1 ms dc EXTENDED SOA IC , COLLECTOR CURRENT (AMPS) 10 1 0.1 0.01 10 100 VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS) 4 3 2 VBE(off) = −5 V 1 0 1000 TJ = 125°C GAIN ≥ 4 LC = 500 H VBE = 0 V 300 Figure 28. Forward Bias Safe Operating Area VBE(off) = −1.5 V 400 500 600 VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS) 700 Figure 29. Reverse Bias Safe Operating Area POWER DERATING FACTOR 1 SECOND BREAKDOWN DERATING 0.8 0.6 0.4 0.2 THERMAL DERATING 0 20 40 60 80 100 120 TC, CASE TEMPERATURE (°C) 140 160 Figure 30. Power Derating Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30. Tj(pk) may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn−off with the base to emitter junction reverse biased. The safe level is specified as reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on TC = 25°C; Tj(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC > 25°C. Second Breakdown limitations do not derate like thermal limitations. Allowable current at the voltages shown on http://onsemi.com 9 BUD42D 1 r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) D = 0.5 0.2 0.1 0.1 0.05 P(pk) 0.02 0.01 t1 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE RθJC(t) = r(t) RθJC RθJC = 5°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) − TC = P(pk) RθJC(t) 0.01 0.01 0.1 1 10 100 1000 t, TIME (ms) Figure 31. Thermal Response Minimum Pad Sizes Recommended for Surface Mounted Applications 6.20 0.244 2.58 0.101 5.80 0.228 3.0 0.118 1.6 0.063 6.172 0.243 SCALE 3:1 mm inches TYPICAL SOLDER HEATING PROFILE The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177−189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints. For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones, and a figure for belt speed. Taken together, these control settings make up a heating “profile” for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 32 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. http://onsemi.com 10 BUD42D STEP 1 PREHEAT ZONE 1 RAMP" 200°C 150°C STEP 2 STEP 3 VENT HEATING SOAK" ZONES 2 & 5 RAMP" DESIRED CURVE FOR HIGH MASS ASSEMBLIES STEP 5 STEP 4 HEATING HEATING ZONES 3 & 6 ZONES 4 & 7 SPIKE" SOAK" 170°C 160°C 140°C 100°C SOLDER IS LIQUID FOR 40 TO 80 SECONDS (DEPENDING ON MASS OF ASSEMBLY) DESIRED CURVE FOR LOW MASS ASSEMBLIES TIME (3 TO 7 MINUTES TOTAL) TMAX Figure 32. Typical Solder Heating Profile http://onsemi.com 11 STEP 7 COOLING 205° TO 219°C PEAK AT SOLDER JOINT 150°C 100°C 50°C STEP 6 VENT BUD42D PACKAGE DIMENSIONS DPAK CASE 369C−01 ISSUE O −T− C B V SEATING PLANE E R 4 Z A S 1 2 DIM A B C D E F G H J K L R S U V Z 3 U K F J L H D 2 PL G 0.13 (0.005) M T INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.027 0.035 0.018 0.023 0.037 0.045 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.090 BSC 0.180 0.215 0.025 0.040 0.020 −−− 0.035 0.050 0.155 −−− MILLIMETERS MIN MAX 5.97 6.22 6.35 6.73 2.19 2.38 0.69 0.88 0.46 0.58 0.94 1.14 4.58 BSC 0.87 1.01 0.46 0.58 2.60 2.89 2.29 BSC 4.57 5.45 0.63 1.01 0.51 −−− 0.89 1.27 3.93 −−− STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR DPAK CASE 369D−01 ISSUE O C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. E R 4 Z A S 1 2 3 −T− SEATING PLANE K J F H D G 3 PL 0.13 (0.005) M DIM A B C D E F G H J K R S V Z INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.027 0.035 0.018 0.023 0.037 0.045 0.090 BSC 0.034 0.040 0.018 0.023 0.350 0.380 0.180 0.215 0.025 0.040 0.035 0.050 0.155 −−− STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR T http://onsemi.com 12 MILLIMETERS MIN MAX 5.97 6.35 6.35 6.73 2.19 2.38 0.69 0.88 0.46 0.58 0.94 1.14 2.29 BSC 0.87 1.01 0.46 0.58 8.89 9.65 4.45 5.45 0.63 1.01 0.89 1.27 3.93 −−− BUD42D Notes http://onsemi.com 13 BUD42D ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800−282−9855 Toll Free USA/Canada http://onsemi.com 14 BUD42D/D