BUL42D High Speed, High Gain Bipolar NPN Transistor Integrating an Antisaturation Network and a Transient Voltage Suppression Capability The BUL42D is a state–of–the–art bipolar transistor. Tight dynamic characteristics and lot to lot minimum spread make it ideally suitable for light ballast applications. Main Features: • • • • http://onsemi.com 4 AMPERES 700 VOLTS 75 WATTS POWER TRANSISTOR Free Wheeling Diode Built In Flat DC Current Gain Fast Switching Times and Tight Distribution “Six Sigma” Process Providing Tight and Reproducible Parameter Spreads MAXIMUM RATINGS Rating Symbol Value Unit Collector–Emitter Sustaining Voltage VCEO 400 Vdc Collector–Base Breakdown Voltage VCBO 700 Vdc Collector–Emitter Breakdown Voltage VCES 700 Vdc Emitter–Base Voltage VEBO 9 Vdc IC Adc Collector Current – Continuous – Peak (Note 1) ICM 4.0 8.0 Base Current – Continuous – Peak (Note 1) IB IBM 1.0 2.0 Adc *Total Device Dissipation @ TC = 25C *Derate above 25C PD 75 0.6 Watt W/C TJ, Tstg –65 to +150 C hFE hFE 13 16 – – Symbol Value Unit Operating and Storage Temperature MARKING DIAGRAM TO–220 CASE 221A STYLE 1 Y WW BUL 42D YWW = Year = Work Week TYPICAL GAIN Typical Gain @ IC = 1 A, VCE = 2 V Typical Gain @ IC = 0.3 A, VCE = 1 V ORDERING INFORMATION THERMAL CHARACTERISTICS Characteristic Thermal Resistance – Junction–to–Case RθJC 1.66 °C/W Thermal Resistance – Junction–to–Ambient RθJA 62.5 °C/W TL 260 °C Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 seconds Device BUL42D Package Shipping TO–220 50 Units/Rail 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10% Semiconductor Components Industries, LLC, 2002 April, 2002 – Rev. 1 1 Publication Order Number: BUL42D/D BUL42D ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max 400 430 – 700 780 – 9.0 12 – Unit OFF CHARACTERISTICS Collector–Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) VCEO(sus) Collector–Base Breakdown Voltage (ICBO = 1 mA) VCBO Emitter–Base Breakdown Voltage (IEBO = 1 mA) VEBO Vdc Vdc Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) @ TC = 25°C @ TC = 125°C ICEO – – – – 100 200 Adc Collector Cutoff Current (VCE = Rated VCES, VEB = 0) @ TC = 25°C @ TC = 125°C ICES – – – – 10 200 Adc – – 100 Emitter–Cutoff Current (VEB = 9 Vdc, IC = 0) Adc IEBO ON CHARACTERISTICS Base–Emitter Saturation Voltage (IC = 1 Adc, IB = 0.2 Adc) VBE(sat) – 0.85 1.2 Vdc Collector–Emitter Saturation Voltage (IC = 2 Adc, IB = 0.5 Adc) VCE(sat) – 0.2 1.0 Vdc 8.0 10 13 12 – – – 0.9 1.5 4.6 – 6.55 – – 0.8 – – 2.8 3.2 – – DC Current Gain (IC = 1 Adc, VCE = 2 Vdc) (IC = 2 Adc, VCE = 5 Vdc) hFE – DIODE CHARACTERISTICS Forward Diode Voltage (IEC = 1.0 Adc) VEC V SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 40 s) Turn–Off Time (IC = 1.2 Adc, IB1 = 0.4 A, IB2 = 0.1 A, VCC = 300 V) Toff Fall Time (IC = 2.5 Adc, IB1 = IB2 = 0.5 A, VCC = 150 V, VBE = –2 V) Tf s s DYNAMIC SATURATION VOLTAGE Dynamic Saturation Voltage: Determined 1 s and 3 s respectively after rising IB1 reaches 90% of final IB1 IC = 400 mA IB1 = 40 mA VCC = 300 V IC = 1 A IB1 = 200 mA VCC = 300 V @ 1 s @ TC = 25°C @ TC = 125°C @ 3 s @ TC = 25°C @ TC = 125°C – – 0.75 1.3 – – @ 1 s @ TC = 25°C @ TC = 125°C – – 2.1 4.7 – – @ 3 s @ TC = 25°C @ TC = 125°C – – 0.35 0.6 – – http://onsemi.com 2 VCE(dsat) V BUL42D TYPICAL STATIC CHARACTERISTICS 100 hFE , DC CURRENT GAIN hFE , DC CURRENT GAIN 100 TJ = 125°C TJ = 25°C 10 1 TJ = -20°C 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C TJ = 25°C 10 1 10 TJ = -20°C 0.001 Figure 1. DC Current Gain @ VCE = 1 V 10 VCE , VOLTAGE (VOLTS) VCE , VOLTAGE (VOLTS) TJ = 25°C 2A 1.5 A 1A 1 IC = 0.2 A 0 0.001 0.01 IC/IB = 5 1 TJ = 125°C 0.1 0.01 0.001 10 Figure 3. Collector Saturation Region 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 4. Collector–Emitter Saturation Voltage 100 10 IC/IB = 8 IC/IB = 10 10 VCE , VOLTAGE (VOLTS) VCE , VOLTAGE (VOLTS) TJ = 25°C TJ = -20°C 0.4 A 1 0.1 IB, BASE CURRENT (AMPS) 10 Figure 2. DC Current Gain @ VCE = 5 V 3 2 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C 1 TJ = -20°C TJ = 25°C 0.1 0.01 0.001 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C 1 TJ = 25°C 0.1 0.01 0.001 10 TJ = -20°C Figure 5. Collector–Emitter Saturation Voltage 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) Figure 6. Collector–Emitter Saturation Voltage http://onsemi.com 3 10 BUL42D TYPICAL STATIC CHARACTERISTICS 10 10 1 IC/IB = 8 VBE , VOLTAGE (VOLTS) VBE , VOLTAGE (VOLTS) IC/IB = 5 TJ = -20°C TJ = 125°C 0.1 0.001 TJ = 25°C 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) 1 TJ = -20°C TJ = 125°C 0.1 0.001 10 Figure 7. Base–Emitter Saturation Region 10 10 FORWARD DIODE VOLTAGE (VOLTS) IC/IB = 10 VBE , VOLTAGE (VOLTS) 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) Figure 8. Base–Emitter Saturation Region 10 1 TJ = 25°C TJ = -20°C TJ = 125°C 0.1 0.001 TJ = 25°C 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) VEC(V) = -20°C 1 VEC(V) = 125°C 0.1 0.01 10 Figure 9. Base–Emitter Saturation Region VEC(V) = 25°C 0.1 1 REVERSE EMITTER-COLLECTOR CURRENT Figure 10. Forward Diode Voltage http://onsemi.com 4 10 BUL42D TYPICAL SWITCHING CHARACTERISTICS 1000 900 800 100 BVCER (VOLTS) C, CAPACITANCE (pF) Cib TJ = 25°C f(test) = 1 MHz Cob 10 ICER = 10 mA 700 600 ICER = 100 mA lC = 25 mH 500 400 1 1 10 VR, REVERSE VOLTAGE (VOLTS) 300 100 TC = 25°C 10 10000 RBE () Figure 11. Capacitance Figure 12. BVCER = f(RBE) 800 9 IBon = IBoff VCC = 300 V PW = 40 µs IBon = IBoff VCC = 300 V PW = 40 µs 700 500 6 t, TIME (ns) 600 t, TIME (ns) 1000 100 hFE = 10 400 hFE = 5 300 hFE = 5 3 200 TJ = 125°C TJ = 25°C 100 0 0.5 1.5 1 IC, COLLECTOR CURRENT (AMPS) 0 0 2 TJ = 125°C TJ = 25°C 0 Figure 13. Resistive Switching, ton 1.5 0.5 1 IC, COLLECTOR CURRENT (AMPS) 4 3 TJ = 125°C TJ = 125°C 3 t, TIME ( µ s) IBon = IBoff VCE = 15 V VZ = 300 V LC = 200 µH TJ = 25°C 2 2 Figure 14. Resistive Switching, toff 4 t, TIME ( µ s) hFE = 10 IBon = IBoff VCE = 15 V VZ = 300 V LC = 200 µH TJ = 25°C 2 1 0 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 1 2 0.5 Figure 15. Inductive Storage Time, tsi @ hFE = 5 1.5 1 IC, COLLECTOR CURRENT (AMPS) Figure 16. Inductive Storage Time, tsi @ hFE = 10 http://onsemi.com 5 2 BUL42D TYPICAL SWITCHING CHARACTERISTICS 250 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH t, TIME (ns) 300 TJ = 125°C TJ = 25°C t, TIME (ns) 400 tc 200 100 TJ = 25°C IBon = IBoff VCE = 15 V VZ = 300 V LC = 200 µH 150 tfi 0 TJ = 125°C 200 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 100 2 1.5 1 IC, COLLECTOR CURRENT (AMPS) 0.5 Figure 17. Inductive Fall and Cross Over Time, tfi and tc @ hFE = 5 Figure 18. Inductive Fall Time, tfi @ hFE = 10 5 500 4 t, TIME ( s) t, TIME (ns) 400 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH TJ = 125°C IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH 2 TJ = 125°C TJ = 25°C IC = 1 A 3 300 TJ = 25°C 200 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) IC = 0.3 A 2 1 2 3 Figure 19. Inductive Cross Over Time, tc @ hFE = 10 6 7 8 9 hFE, FORCED GAIN 10 11 12 300 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH IC = 0.3 A 200 CROSS-OVER TIME (ns) t fi , FALL TIME (ns) 5 Figure 20. Inductive Storage Time, tsi 300 100 4 IC = 1 A TJ = 125°C TJ = 25°C 3 4 5 6 7 hFE, FORCED GAIN 8 9 IC = 1 A 200 100 10 IC = 0.3 A IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH TJ = 125°C TJ = 25°C 2 Figure 21. Inductive Fall Time, tf 4 6 hFE, FORCED GAIN 8 Figure 22. Inductive Cross Over Time, tc http://onsemi.com 6 10 BUL42D TYPICAL SWITCHING CHARACTERISTICS 3 t fr , FORWARD RECOVERY TIME (ns) t, TIME ( s) 2.5 440 IB 1 & 2 = 200 mA IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 µH 500 mA 2 50 mA 100 mA 1.5 1 0 0.5 1 1.5 IC, COLLECTOR CURRENT (AMPS) 400 380 360 340 320 300 2 di/dt = 10 A/s, TC = 25°C 420 1.5 1 0.5 IF, FORWARD CURRENT (AMPS) 0 Figure 23. Inductive Storage Time, tsi 2 Figure 24. Forward Recovery Time, tfr 10 IC VCE 8 Dyn 1 s Dyn 3 s 0V 6 IB 10% IC tc 4 1 s IB 3 s tfi 10% Vclamp Vclamp 90% IB 90% IC tsi 90% IB1 2 0 0 TIME Figure 25. Dynamic Saturation Voltage Measurements 2 4 TIME 6 Figure 26. Inductive Switching Measurements http://onsemi.com 7 8 BUL42D TYPICAL SWITCHING CHARACTERISTICS Table 1. Inductive Load Switching Drive Circuit +15 V 1 µF 150 Ω 3W 100 Ω 3W VCE PEAK MTP8P10 MPF930 VCE RB1 MUR105 MPF930 +10 V IC PEAK 100 µF MTP8P10 IB1 Iout IB A 50 Ω MJE210 COMMON 500 µF IB2 RB2 V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 Volts IC(pk) = 100 mA MTP12N10 150 Ω 3W 1 µF -Voff VFR (1.1 VF) UNLESS OTHERWISE SPECIFIED VF VFRM tfr IF 0.1 VF 10% IF Figure 27. tfr Measurement http://onsemi.com 8 Inductive Switching L = 200 µH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 RBSOA L = 500 µH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 BUL42D MAXIMUM RATINGS 5 1 s IC , COLLECTOR CURRENT (AMPS) 5 ms 10 s 1 ms EXTENDED SOA dc 1 0.1 0.01 10 100 4 3 2 VBE(off) = -5 V 1 0 1000 TJ = 125°C GAIN ≥ 4 LC = 500 H VBE = 0 V 300 VBE(off) = -1.5 V 400 500 600 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 28. Forward Bias Safe Operating Area Figure 29. Reverse Bias Safe Operating Area 1 POWER DERATING FACTOR IC , COLLECTOR CURRENT (AMPS) 10 SECOND BREAKDOWN DERATING 0.8 0.6 0.4 0.2 THERMAL DERATING 0 20 40 60 80 100 120 TC, CASE TEMPERATURE (°C) Figure 30. Power Derating http://onsemi.com 9 140 160 700 BUL42D Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30. Tj(pk) may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn–off with the base to emitter junction reverse biased. The safe level is specified as reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC–VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on TC = 25°C; Tj(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC > 25°C. Second Breakdown limitations do not derate like thermal limitations. Allowable current at the voltages shown on 1 r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) D = 0.5 0.2 0.1 0.1 0.05 P(pk) 0.02 0.01 t1 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.01 0.01 0.1 1 10 t, TIME (ms) Figure 31. Thermal Response http://onsemi.com 10 RθJC(t) = r(t) RθJC RθJC = 1.66°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RθJC(t) 100 1000 BUL42D PACKAGE DIMENSIONS TO–220 CASE 221A–09 ISSUE AA –T– B SEATING PLANE C F T S 4 A Q 1 2 3 U H K Z L R V J G D N STYLE 1: PIN 1. 2. 3. 4. BASE COLLECTOR EMITTER COLLECTOR http://onsemi.com 11 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. DIM A B C D F G H J K L N Q R S T U V Z INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ----0.080 MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ----2.04 BUL42D ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 12 BUL42D/D