ONSEMI BUL42D

BUL42D
High Speed, High Gain
Bipolar NPN Transistor
Integrating an
Antisaturation Network and
a Transient Voltage
Suppression Capability
The BUL42D is a state–of–the–art bipolar transistor. Tight dynamic
characteristics and lot to lot minimum spread make it ideally suitable
for light ballast applications.
Main Features:
•
•
•
•
http://onsemi.com
4 AMPERES
700 VOLTS
75 WATTS
POWER TRANSISTOR
Free Wheeling Diode Built In
Flat DC Current Gain
Fast Switching Times and Tight Distribution
“Six Sigma” Process Providing Tight and Reproducible Parameter
Spreads
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Emitter Sustaining Voltage
VCEO
400
Vdc
Collector–Base Breakdown Voltage
VCBO
700
Vdc
Collector–Emitter Breakdown Voltage
VCES
700
Vdc
Emitter–Base Voltage
VEBO
9
Vdc
IC
Adc
Collector Current – Continuous
– Peak (Note 1)
ICM
4.0
8.0
Base Current – Continuous
– Peak (Note 1)
IB
IBM
1.0
2.0
Adc
*Total Device Dissipation @ TC = 25C
*Derate above 25C
PD
75
0.6
Watt
W/C
TJ, Tstg
–65 to +150
C
hFE
hFE
13
16
–
–
Symbol
Value
Unit
Operating and Storage Temperature
MARKING
DIAGRAM
TO–220
CASE 221A
STYLE 1
Y
WW
BUL
42D
YWW
= Year
= Work Week
TYPICAL GAIN
Typical Gain @ IC = 1 A, VCE = 2 V
Typical Gain @ IC = 0.3 A, VCE = 1 V
ORDERING INFORMATION
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance –
Junction–to–Case
RθJC
1.66
°C/W
Thermal Resistance –
Junction–to–Ambient
RθJA
62.5
°C/W
TL
260
°C
Maximum Lead Temperature for Soldering
Purposes: 1/8″ from Case for 5 seconds
Device
BUL42D
Package
Shipping
TO–220
50 Units/Rail
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%
 Semiconductor Components Industries, LLC, 2002
April, 2002 – Rev. 1
1
Publication Order Number:
BUL42D/D
BUL42D
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
400
430
–
700
780
–
9.0
12
–
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage
(IC = 100 mA, L = 25 mH)
VCEO(sus)
Collector–Base Breakdown Voltage
(ICBO = 1 mA)
VCBO
Emitter–Base Breakdown Voltage
(IEBO = 1 mA)
VEBO
Vdc
Vdc
Vdc
Collector Cutoff Current
(VCE = Rated VCEO, IB = 0)
@ TC = 25°C
@ TC = 125°C
ICEO
–
–
–
–
100
200
Adc
Collector Cutoff Current
(VCE = Rated VCES, VEB = 0)
@ TC = 25°C
@ TC = 125°C
ICES
–
–
–
–
10
200
Adc
–
–
100
Emitter–Cutoff Current
(VEB = 9 Vdc, IC = 0)
Adc
IEBO
ON CHARACTERISTICS
Base–Emitter Saturation Voltage
(IC = 1 Adc, IB = 0.2 Adc)
VBE(sat)
–
0.85
1.2
Vdc
Collector–Emitter Saturation Voltage
(IC = 2 Adc, IB = 0.5 Adc)
VCE(sat)
–
0.2
1.0
Vdc
8.0
10
13
12
–
–
–
0.9
1.5
4.6
–
6.55
–
–
0.8
–
–
2.8
3.2
–
–
DC Current Gain
(IC = 1 Adc, VCE = 2 Vdc)
(IC = 2 Adc, VCE = 5 Vdc)
hFE
–
DIODE CHARACTERISTICS
Forward Diode Voltage
(IEC = 1.0 Adc)
VEC
V
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 40 s)
Turn–Off Time
(IC = 1.2 Adc, IB1 = 0.4 A, IB2 = 0.1 A, VCC = 300 V)
Toff
Fall Time
(IC = 2.5 Adc, IB1 = IB2 = 0.5 A, VCC = 150 V, VBE = –2 V)
Tf
s
s
DYNAMIC SATURATION VOLTAGE
Dynamic Saturation
Voltage:
Determined 1 s and
3 s respectively after
rising IB1 reaches
90% of final IB1
IC = 400 mA
IB1 = 40 mA
VCC = 300 V
IC = 1 A
IB1 = 200 mA
VCC = 300 V
@ 1 s
@ TC = 25°C
@ TC = 125°C
@ 3 s
@ TC = 25°C
@ TC = 125°C
–
–
0.75
1.3
–
–
@ 1 s
@ TC = 25°C
@ TC = 125°C
–
–
2.1
4.7
–
–
@ 3 s
@ TC = 25°C
@ TC = 125°C
–
–
0.35
0.6
–
–
http://onsemi.com
2
VCE(dsat)
V
BUL42D
TYPICAL STATIC CHARACTERISTICS
100
hFE , DC CURRENT GAIN
hFE , DC CURRENT GAIN
100
TJ = 125°C
TJ = 25°C
10
1
TJ = -20°C
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
TJ = 25°C
10
1
10
TJ = -20°C
0.001
Figure 1. DC Current Gain @ VCE = 1 V
10
VCE , VOLTAGE (VOLTS)
VCE , VOLTAGE (VOLTS)
TJ = 25°C
2A
1.5 A
1A
1
IC = 0.2 A
0
0.001
0.01
IC/IB = 5
1
TJ = 125°C
0.1
0.01
0.001
10
Figure 3. Collector Saturation Region
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 4. Collector–Emitter Saturation Voltage
100
10
IC/IB = 8
IC/IB = 10
10
VCE , VOLTAGE (VOLTS)
VCE , VOLTAGE (VOLTS)
TJ = 25°C
TJ = -20°C
0.4 A
1
0.1
IB, BASE CURRENT (AMPS)
10
Figure 2. DC Current Gain @ VCE = 5 V
3
2
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
1
TJ = -20°C
TJ = 25°C
0.1
0.01
0.001
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
1
TJ = 25°C
0.1
0.01
0.001
10
TJ = -20°C
Figure 5. Collector–Emitter Saturation Voltage
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Collector–Emitter Saturation Voltage
http://onsemi.com
3
10
BUL42D
TYPICAL STATIC CHARACTERISTICS
10
10
1
IC/IB = 8
VBE , VOLTAGE (VOLTS)
VBE , VOLTAGE (VOLTS)
IC/IB = 5
TJ = -20°C
TJ = 125°C
0.1
0.001
TJ = 25°C
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
1
TJ = -20°C
TJ = 125°C
0.1
0.001
10
Figure 7. Base–Emitter Saturation Region
10
10
FORWARD DIODE VOLTAGE (VOLTS)
IC/IB = 10
VBE , VOLTAGE (VOLTS)
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
Figure 8. Base–Emitter Saturation Region
10
1
TJ = 25°C
TJ = -20°C
TJ = 125°C
0.1
0.001
TJ = 25°C
1
0.01
0.1
IC, COLLECTOR CURRENT (AMPS)
VEC(V) = -20°C
1
VEC(V) = 125°C
0.1
0.01
10
Figure 9. Base–Emitter Saturation Region
VEC(V) = 25°C
0.1
1
REVERSE EMITTER-COLLECTOR CURRENT
Figure 10. Forward Diode Voltage
http://onsemi.com
4
10
BUL42D
TYPICAL SWITCHING CHARACTERISTICS
1000
900
800
100
BVCER (VOLTS)
C, CAPACITANCE (pF)
Cib
TJ = 25°C
f(test) = 1 MHz
Cob
10
ICER = 10 mA
700
600
ICER = 100 mA
lC = 25 mH
500
400
1
1
10
VR, REVERSE VOLTAGE (VOLTS)
300
100
TC = 25°C
10
10000
RBE ()
Figure 11. Capacitance
Figure 12. BVCER = f(RBE)
800
9
IBon = IBoff
VCC = 300 V
PW = 40 µs
IBon = IBoff
VCC = 300 V
PW = 40 µs
700
500
6
t, TIME (ns)
600
t, TIME (ns)
1000
100
hFE = 10
400
hFE = 5
300
hFE = 5
3
200
TJ = 125°C
TJ = 25°C
100
0
0.5
1.5
1
IC, COLLECTOR CURRENT (AMPS)
0
0
2
TJ = 125°C
TJ = 25°C
0
Figure 13. Resistive Switching, ton
1.5
0.5
1
IC, COLLECTOR CURRENT (AMPS)
4
3
TJ = 125°C
TJ = 125°C
3
t, TIME ( µ s)
IBon = IBoff
VCE = 15 V
VZ = 300 V
LC = 200 µH
TJ = 25°C
2
2
Figure 14. Resistive Switching, toff
4
t, TIME ( µ s)
hFE = 10
IBon = IBoff
VCE = 15 V
VZ = 300 V
LC = 200 µH
TJ = 25°C
2
1
0
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
1
2
0.5
Figure 15. Inductive Storage Time,
tsi @ hFE = 5
1.5
1
IC, COLLECTOR CURRENT (AMPS)
Figure 16. Inductive Storage Time,
tsi @ hFE = 10
http://onsemi.com
5
2
BUL42D
TYPICAL SWITCHING CHARACTERISTICS
250
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
t, TIME (ns)
300
TJ = 125°C
TJ = 25°C
t, TIME (ns)
400
tc
200
100
TJ = 25°C
IBon = IBoff
VCE = 15 V
VZ = 300 V
LC = 200 µH
150
tfi
0
TJ = 125°C
200
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
100
2
1.5
1
IC, COLLECTOR CURRENT (AMPS)
0.5
Figure 17. Inductive Fall and Cross Over Time,
tfi and tc @ hFE = 5
Figure 18. Inductive Fall Time,
tfi @ hFE = 10
5
500
4
t, TIME ( s)
t, TIME (ns)
400
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
TJ = 125°C
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
2
TJ = 125°C
TJ = 25°C
IC = 1 A
3
300
TJ = 25°C
200
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
IC = 0.3 A
2
1
2
3
Figure 19. Inductive Cross Over Time,
tc @ hFE = 10
6
7
8
9
hFE, FORCED GAIN
10
11
12
300
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
IC = 0.3 A
200
CROSS-OVER TIME (ns)
t fi , FALL TIME (ns)
5
Figure 20. Inductive Storage Time, tsi
300
100
4
IC = 1 A
TJ = 125°C
TJ = 25°C
3
4
5
6
7
hFE, FORCED GAIN
8
9
IC = 1 A
200
100
10
IC = 0.3 A
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
TJ = 125°C
TJ = 25°C
2
Figure 21. Inductive Fall Time, tf
4
6
hFE, FORCED GAIN
8
Figure 22. Inductive Cross Over Time, tc
http://onsemi.com
6
10
BUL42D
TYPICAL SWITCHING CHARACTERISTICS
3
t fr , FORWARD RECOVERY TIME (ns)
t, TIME ( s)
2.5
440
IB 1 & 2 = 200 mA
IBon = IBoff
VCC = 15 V
VZ = 300 V
LC = 200 µH
500 mA
2
50 mA
100 mA
1.5
1
0
0.5
1
1.5
IC, COLLECTOR CURRENT (AMPS)
400
380
360
340
320
300
2
di/dt = 10 A/s, TC = 25°C
420
1.5
1
0.5
IF, FORWARD CURRENT (AMPS)
0
Figure 23. Inductive Storage Time, tsi
2
Figure 24. Forward Recovery Time, tfr
10
IC
VCE
8
Dyn 1 s
Dyn 3 s
0V
6
IB
10% IC
tc
4
1 s
IB
3 s
tfi
10% Vclamp
Vclamp
90% IB
90% IC
tsi
90% IB1
2
0
0
TIME
Figure 25. Dynamic Saturation Voltage
Measurements
2
4
TIME
6
Figure 26. Inductive Switching Measurements
http://onsemi.com
7
8
BUL42D
TYPICAL SWITCHING CHARACTERISTICS
Table 1. Inductive Load Switching Drive Circuit
+15 V
1 µF
150 Ω
3W
100 Ω
3W
VCE PEAK
MTP8P10
MPF930
VCE
RB1
MUR105
MPF930
+10 V
IC PEAK
100 µF
MTP8P10
IB1
Iout
IB
A
50 Ω
MJE210
COMMON
500 µF
IB2
RB2
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 Volts
IC(pk) = 100 mA
MTP12N10
150 Ω
3W
1 µF
-Voff
VFR (1.1 VF) UNLESS
OTHERWISE SPECIFIED
VF
VFRM
tfr
IF
0.1 VF
10% IF
Figure 27. tfr Measurement
http://onsemi.com
8
Inductive Switching
L = 200 µH
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
RBSOA
L = 500 µH
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
BUL42D
MAXIMUM RATINGS
5
1 s
IC , COLLECTOR CURRENT (AMPS)
5 ms
10 s
1 ms
EXTENDED SOA
dc
1
0.1
0.01
10
100
4
3
2
VBE(off) = -5 V
1
0
1000
TJ = 125°C
GAIN ≥ 4
LC = 500 H
VBE = 0 V
300
VBE(off) = -1.5 V
400
500
600
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 28. Forward Bias Safe Operating Area
Figure 29. Reverse Bias Safe Operating Area
1
POWER DERATING FACTOR
IC , COLLECTOR CURRENT (AMPS)
10
SECOND BREAKDOWN
DERATING
0.8
0.6
0.4
0.2
THERMAL DERATING
0
20
40
60
80
100
120
TC, CASE TEMPERATURE (°C)
Figure 30. Power Derating
http://onsemi.com
9
140
160
700
BUL42D
Figure 28 may be found at any case temperature by using the
appropriate curve on Figure 30.
Tj(pk) may be calculated from the data in Figure 31. At any
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown. For inductive loads, high
voltage and current must be sustained simultaneously during
turn–off with the base to emitter junction reverse biased. The
safe level is specified as reverse biased safe operating area
(Figure 29). This rating is verified under clamped conditions
so that the device is never subjected to an avalanche mode.
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC–VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate. The data of Figure 28 is
based on TC = 25°C; Tj(pk) is variable depending on power
level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated when TC > 25°C. Second
Breakdown limitations do not derate like thermal
limitations. Allowable current at the voltages shown on
1
r(t) TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
D = 0.5
0.2
0.1
0.1
0.05
P(pk)
0.02
0.01
t1
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.01
0.01
0.1
1
10
t, TIME (ms)
Figure 31. Thermal Response
http://onsemi.com
10
RθJC(t) = r(t) RθJC
RθJC = 1.66°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RθJC(t)
100
1000
BUL42D
PACKAGE DIMENSIONS
TO–220
CASE 221A–09
ISSUE AA
–T–
B
SEATING
PLANE
C
F
T
S
4
A
Q
1 2 3
U
H
K
Z
L
R
V
J
G
D
N
STYLE 1:
PIN 1.
2.
3.
4.
BASE
COLLECTOR
EMITTER
COLLECTOR
http://onsemi.com
11
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.147
0.095
0.105
0.110
0.155
0.018
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
BUL42D
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
12
BUL42D/D