PD - 97723 PDP TRENCH IGBT IRG7PC28UPbF Key Parameters Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (E PULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package VCE min VCE(ON) typ. @ IC = 40A IRP max @ TC= 25°C TJ max 600 1.70 225 150 c V V A °C C C E C G G E TO-247AC n-channel G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Max. Units ±30 V A Continuous Collector, VGE @ 15V 61 33 Repetitive Peak Current Power Dissipation 225 160 W 64 1.3 W/°C -40 to + 150 °C Parameter VGE IC @ TC = 25°C Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG c Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw x 300 x 10lb in (1.1N m) N Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com d Junction-to-Case Thermal Resistance, Case-to-Sink Junction-to-Ambient d Typ. Max. ––– 0.78 0.24 ––– ––– 40 Units °C/W 1 09/02/11 IRG7PC28UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES V(BR)ECS Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage ΔΒVCES/ΔTJ Breakdown Voltage Temp. Coefficient VCE(on) VGE(th) ΔVGE(th)/ΔTJ ICES 600 15 ––– ––– ––– ––– ––– ––– 0.57 1.25 ––– ––– ––– 1.42 ––– ––– 1.70 1.96 1.95 ––– ––– ––– 2.97 1.75 ––– ––– Gate Threshold Voltage Gate Threshold Voltage Coefficient 2.2 ––– ––– -11 Collector-to-Emitter Leakage Current ––– ––– 0.5 30 Static Collector-to-Emitter Voltage Conditions Min. Typ. Max. Units e V V VGE = 0V, ICE = 1.0mA VGE = 0V, ICE = 1.0A V/°C Reference to 25°C, ICE = 1.0mA VGE = 15V, ICE = 12A VGE = 15V, ICE = 24A V VGE = 15V, ICE VGE = 15V, ICE VGE = 15V, ICE e e = 40A e = 70A e = 160A e VGE = 15V, ICE = 40A, TJ = 150°C 4.7 V VCE = VGE, ICE = 250μA ––– mV/°C VCE = 600V, VGE = 0V 20 ––– μA VCE = 600V, VGE = 0V, TJ = 100°C VCE = 600V, VGE = 0V, TJ = 125°C VCE = 600V, VGE = 0V, TJ = 150°C ––– 90 Gate-to-Emitter Forward Leakage ––– ––– 305 ––– ––– 100 nA Gate-to-Emitter Reverse Leakage Forward Transconductance ––– ––– ––– 55 -100 ––– VGE = 30V VGE = -30V S Total Gate Charge Gate-to-Collector Charge ––– ––– 70 25 ––– ––– VCE = 25V, ICE = 40A VCE = 400V, IC = 40A, VGE = 15V Turn-On delay time ––– 30 ––– Rise time Turn-Off delay time ––– ––– 35 260 ––– ––– Fall time Turn-On delay time ––– ––– 145 25 ––– ––– Rise time Turn-Off delay time ––– ––– 40 280 ––– ––– Fall time ––– 320 ––– tst Shoot Through Blocking Time 100 ––– ––– EPULSE Energy per Pulse ––– 770 ––– ––– 930 ––– Input Capacitance Output Capacitance ––– ––– Class H1C (2000V) (Per JEDEC standard JESD22-A114) Class M4 (425V) (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 1880 ––– 75 ––– pF VCE = 30V LC Reverse Transfer Capacitance Internal Collector Inductance ––– ––– 45 4.5 ––– ––– LE Internal Emitter Inductance ––– 7.5 ––– IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf Human Body Model ESD Machine Model Cies Coes Cres e nC e IC = 40A, VCC = 400V ns RG = 22Ω, L=100μH TJ = 25°C IC = 40A, VCC = 400V ns RG = 22Ω, L=100μH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40μF, VGE = 15V μJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40μF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C ƒ = 1.0MHz Between lead, nH 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle <= 0.02, ton=1.0μsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRG7PC28UPbF 200 200 175 175 150 150 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 100 75 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 125 ICE (A) ICE (A) 125 100 75 50 25 25 0 0 0 2 4 6 8 10 0 2 4 VCE (V) 10 Fig 2. Typical Output Characteristics @ 75°C 200 200 175 175 150 150 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 100 75 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 125 ICE (A) 125 ICE (A) 8 VCE (V) Fig 1. Typical Output Characteristics @ 25°C 100 75 50 25 25 0 0 0 2 4 6 8 10 12 14 0 2 4 VCE (V) 6 8 10 12 14 VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 2.0 175 VCE, Voltage Collector-to-Emitter (V) 200 ICE, Collector-to-Emitter Current (A) 6 T J = 25°C T J = 150°C 150 125 100 75 50 25 0 IC = 20A 1.8 T J = 25°C 1.6 T J = 150°C 1.4 1.2 2 4 6 8 VGE, Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 10 0 5 10 15 20 VGE, Voltage Gate-to-Emitter (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG7PC28UPbF 70 250 Repetitive Peak Current (A) 60 IC (A) 50 40 30 20 200 150 100 ton= 2μs Duty cycle <= 0.05 Half Sine Wave 50 10 0 0 25 50 75 100 125 25 150 T C (°C) 100 125 150 Fig 8. Typical Repetitive Peak Current vs. Case Temperature 950 950 V CC = 240V 850 L = 220nH C = 0.4μF 900 L = 220nH C = variable 100°C 850 Energy per Pulse (μJ) 900 Energy per Pulse (μJ) 75 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature 800 750 700 25°C 650 600 100°C 800 750 700 650 25°C 600 550 550 500 500 450 450 160 170 180 190 200 210 220 230 240 200 205 210 215 220 225 230 235 240 IC, Peak Collector Current (A) VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1100 1000 V CC = 240V 1000 Tc = 25°C Tj = 150°C Single Pulse C= 0.4μF L = 220nH t = 1μs half sine 900 100 C= 0.3μF 800 10μsec 100μsec IC (A) Energy per Pulse (μJ) 50 700 1msec 10 600 C= 0.2μF 500 400 1 20 40 60 80 100 120 140 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 160 1.0 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRG7PC28UPbF 100000 VGE, Gate-to-Emitter Voltage (V) C oes = C ce + C gc 10000 Capacitance (pF) 16 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc Cies 1000 100 Coes IC = 40A 14 12 VCES = 120V VCES = 300V 10 VCES = 400V 8 6 4 2 Cres 10 0 0 100 200 300 400 500 0 10 VCE, Collector-toEmitter-Voltage(V) 20 30 40 50 60 70 80 Q G, Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 6000 5000 EOFF Energy (μJ) 4000 3000 2000 EON 1000 0 0 10 20 30 40 50 60 70 80 90 IC (A) Fig. 15 - Typ. Energy Loss vs. IC TJ = 150°C; L = 250μH; VCE = 400V, RG = 22Ω; VGE = 15V 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 0.001 τJ R1 R1 τJ τ1 1E-005 R3 R3 Ri (°C/W) R4 R4 τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 R2 R2 τ4 τ4 τi (sec) 0.01204 0.000012 0.25428 0.000249 0.33102 0.002663 0.18356 0.016738 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG7PC28UPbF A RG C DRIVER PULSE A L VCC B PULSE B Ipulse RG DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRG7PC28UPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. The specifications set forth in this data sheet are the sole and exclusive specifications applicable to the identified product, and no specifications or features are implied whether by industry custom, sampling or otherwise. We qualify our products in accordance with our internal practices and procedures, which by their nature do not include qualification to all possible or even all widely used applications. Without limitation, we have not qualified our product for medical use or applications involving hi-reliability applications. Customers are encouraged to and responsible for qualifying product to their own use and their own application environments, especially where particular features are critical to operational performance or safety. Please contact your IR representative if you have specific design or use requirements or for further information. Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/11 www.irf.com 7