IRG7PC28UPbF

PD - 97723
PDP TRENCH IGBT
IRG7PC28UPbF
Key Parameters
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
VCE min
VCE(ON) typ. @ IC = 40A
IRP max @ TC= 25°C
TJ max
600
1.70
225
150
c
V
V
A
°C
C
C
E
C
G
G
E
TO-247AC
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Max.
Units
±30
V
A
Continuous Collector, VGE @ 15V
61
33
Repetitive Peak Current
Power Dissipation
225
160
W
64
1.3
W/°C
-40 to + 150
°C
Parameter
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
c
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
www.irf.com
d
Junction-to-Case
Thermal Resistance, Case-to-Sink
Junction-to-Ambient
d
Typ.
Max.
–––
0.78
0.24
–––
–––
40
Units
°C/W
1
09/02/11
IRG7PC28UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
V(BR)ECS
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
ΔΒVCES/ΔTJ
Breakdown Voltage Temp. Coefficient
VCE(on)
VGE(th)
ΔVGE(th)/ΔTJ
ICES
600
15
–––
–––
–––
–––
–––
–––
0.57
1.25
–––
–––
–––
1.42
–––
–––
1.70
1.96
1.95
–––
–––
–––
2.97
1.75
–––
–––
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
2.2
–––
–––
-11
Collector-to-Emitter Leakage Current
–––
–––
0.5
30
Static Collector-to-Emitter Voltage
Conditions
Min. Typ. Max. Units
e
V
V
VGE = 0V, ICE = 1.0mA
VGE = 0V, ICE = 1.0A
V/°C Reference to 25°C, ICE = 1.0mA
VGE = 15V, ICE = 12A
VGE = 15V, ICE = 24A
V
VGE = 15V, ICE
VGE = 15V, ICE
VGE = 15V, ICE
e
e
= 40A e
= 70A e
= 160A e
VGE = 15V, ICE = 40A, TJ = 150°C
4.7
V VCE = VGE, ICE = 250μA
––– mV/°C
VCE = 600V, VGE = 0V
20
–––
μA
VCE = 600V, VGE = 0V, TJ = 100°C
VCE = 600V, VGE = 0V, TJ = 125°C
VCE = 600V, VGE = 0V, TJ = 150°C
–––
90
Gate-to-Emitter Forward Leakage
–––
–––
305
–––
–––
100
nA
Gate-to-Emitter Reverse Leakage
Forward Transconductance
–––
–––
–––
55
-100
–––
VGE = 30V
VGE = -30V
S
Total Gate Charge
Gate-to-Collector Charge
–––
–––
70
25
–––
–––
VCE = 25V, ICE = 40A
VCE = 400V, IC = 40A, VGE = 15V
Turn-On delay time
–––
30
–––
Rise time
Turn-Off delay time
–––
–––
35
260
–––
–––
Fall time
Turn-On delay time
–––
–––
145
25
–––
–––
Rise time
Turn-Off delay time
–––
–––
40
280
–––
–––
Fall time
–––
320
–––
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
Energy per Pulse
–––
770
–––
–––
930
–––
Input Capacitance
Output Capacitance
–––
–––
Class H1C (2000V)
(Per JEDEC standard JESD22-A114)
Class M4 (425V)
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
1880 –––
75
–––
pF VCE = 30V
LC
Reverse Transfer Capacitance
Internal Collector Inductance
–––
–––
45
4.5
–––
–––
LE
Internal Emitter Inductance
–––
7.5
–––
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Human Body Model
ESD
Machine Model
Cies
Coes
Cres
e
nC
e
IC = 40A, VCC = 400V
ns
RG = 22Ω, L=100μH
TJ = 25°C
IC = 40A, VCC = 400V
ns
RG = 22Ω, L=100μH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40μF, VGE = 15V
μJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40μF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
ƒ = 1.0MHz
Between lead,
nH
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle <= 0.02, ton=1.0μsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRG7PC28UPbF
200
200
175
175
150
150
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
100
75
50
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
125
ICE (A)
ICE (A)
125
100
75
50
25
25
0
0
0
2
4
6
8
10
0
2
4
VCE (V)
10
Fig 2. Typical Output Characteristics @ 75°C
200
200
175
175
150
150
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
100
75
50
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
125
ICE (A)
125
ICE (A)
8
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
100
75
50
25
25
0
0
0
2
4
6
8
10
12
14
0
2
4
VCE (V)
6
8
10
12
14
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
2.0
175
VCE, Voltage Collector-to-Emitter (V)
200
ICE, Collector-to-Emitter Current (A)
6
T J = 25°C
T J = 150°C
150
125
100
75
50
25
0
IC = 20A
1.8
T J = 25°C
1.6
T J = 150°C
1.4
1.2
2
4
6
8
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
10
0
5
10
15
20
VGE, Voltage Gate-to-Emitter (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG7PC28UPbF
70
250
Repetitive Peak Current (A)
60
IC (A)
50
40
30
20
200
150
100
ton= 2μs
Duty cycle <= 0.05
Half Sine Wave
50
10
0
0
25
50
75
100
125
25
150
T C (°C)
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
950
950
V CC = 240V
850
L = 220nH
C = 0.4μF
900
L = 220nH
C = variable
100°C
850
Energy per Pulse (μJ)
900
Energy per Pulse (μJ)
75
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
800
750
700
25°C
650
600
100°C
800
750
700
650
25°C
600
550
550
500
500
450
450
160 170 180 190 200 210 220 230 240
200 205 210 215 220 225 230 235 240
IC, Peak Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1100
1000
V CC = 240V
1000
Tc = 25°C
Tj = 150°C
Single Pulse
C= 0.4μF
L = 220nH
t = 1μs half sine
900
100
C= 0.3μF
800
10μsec
100μsec
IC (A)
Energy per Pulse (μJ)
50
700
1msec
10
600
C= 0.2μF
500
400
1
20
40
60
80
100
120
140
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
160
1.0
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG7PC28UPbF
100000
VGE, Gate-to-Emitter Voltage (V)
C oes = C ce + C gc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
Cies
1000
100
Coes
IC = 40A
14
12
VCES = 120V
VCES = 300V
10
VCES = 400V
8
6
4
2
Cres
10
0
0
100
200
300
400
500
0
10
VCE, Collector-toEmitter-Voltage(V)
20
30
40
50
60
70
80
Q G, Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
6000
5000
EOFF
Energy (μJ)
4000
3000
2000
EON
1000
0
0
10
20
30
40
50
60
70
80
90
IC (A)
Fig. 15 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 250μH; VCE = 400V, RG = 22Ω; VGE = 15V
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
0.001
τJ
R1
R1
τJ
τ1
1E-005
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
R2
R2
τ4
τ4
τi (sec)
0.01204
0.000012
0.25428
0.000249
0.33102
0.002663
0.18356
0.016738
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG7PC28UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
PULSE B
Ipulse
RG
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG7PC28UPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification
to all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers
are encouraged to and responsible for qualifying product to
their own use and their own application environments,
especially where particular features are critical to operational
performance or safety. Please contact your IR representative if
you have specific design or use requirements or for further
information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/11
www.irf.com
7