IRF IRGP4065DPBF

PD - 97101
IRGP4065DPbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
Circuits in PDP Applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for Improved Panel Efficiency
l High Repetitive Peak Current Capability
l Lead Free Package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 70A
IRP max @ TC= 25°C c
TJ max
300
1.75
205
150
C
V
V
A
°C
C
E
G
G
C
E
n-channel
G
G ate
TO-247AC
C
C ollector
E
E m itter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Max.
Units
VGE
Gate-to-Emitter Voltage
±30
V
IC @ TC = 25°C
Continuous Collector Current, VGE @ 15V
70
A
Parameter
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
40
IRP @ TC = 25°C
Repetitive Peak Current c
205
PD @TC = 25°C
Power Dissipation
160
PD @TC = 100°C
Power Dissipation
63
W/°C
°C
W
Linear Derating Factor
1.3
TJ
Operating Junction and
-40 to + 150
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (Diode)
RθCS
RθJA
www.irf.com
Thermal Resistance Junction-to-Case-(each IGBT) d
Thermal Resistance Junction-to-Case-(each Diode) d
Case-to-Sink (flat, greased surface)
Junction-to-Ambient (typical socket mount) d
Weight
Typ.
Max.
Units
–––
1.45
0.24
–––
6.0 (0.21)
0.80
2.5
–––
40
–––
°C/W
g (oz)
1
6/13/06
IRGP4065DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVCES
∆ΒVCES/∆TJ
Collector-to-Emitter Breakdown Voltage
Breakdown Voltage Temp. Coefficient
VCE(on)
Static Collector-to-Emitter Voltage
VGE(th)
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
IGES
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
300
–––
–––
–––
–––
–––
–––
2.6
–––
–––
–––
–––
–––
–––
–––
–––
—
—
—
—
—
—
—
—
Shoot Through Blocking Time
100
310
–––
–––
875
–––
–––
975
–––
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
tst
EPULSE
Energy per Pulse
Conditions
Typ. Max. Units
–––
0.23
1.20
1.35
1.75
2.35
2.00
–––
-11
2.0
50
–––
–––
26
62
20
30
26
170
160
30
28
250
–––
–––
1.40
–––
2.10
–––
–––
5.0
–––
25
–––
100
-100
–––
–––
–––
—
—
—
—
—
—
—
—
–––
Ciss
Coss
Crss
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
–––
–––
–––
–––
2200
110
55
5.0
–––
–––
–––
–––
LE
Internal Emitter Inductance
–––
13
–––
V
V/°C
V
VGE = 0V, ICE = 1 mA
Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 25A
VGE = 15V, ICE = 40A
VGE = 15V, ICE = 70A
VGE = 15V, ICE = 120A
VGE = 15V, ICE = 70A, TJ = 150°C
VCE = VGE, ICE = 500µA
e
e
e
e
V
mV/°C
µA VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
nA VGE = 30V
VGE = -30V
VCE = 25V, ICE = 25A
S
nC VCE = 200V, IC = 25A, VGE = 15V
e
ns
IC = 25A, VCC = 180V
RG = 10Ω, L=200µH, LS= 150nH
TJ = 25°C
ns
IC = 25A, VCC = 180V
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
µJ
pF
nH
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
VCE = 30V
ƒ = 1.0MHz,
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
IF(AV)
IFSM
VF
Average Forward Current at
TC=155°C
Non Repetitive Peak Surge Current
Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Irr
Peak Recovery Current
Notes:
 Half sine wave with duty cycle = 0.25, ton=1µsec.
‚ Rθ is measured at TJ of approximately 90°C.
2
Min.
Typ. Max. Units
–––
–––
8.0
A
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
1.0
0.83
–––
27
40
30
106
2.2
5.3
100
1.25
1.0
35
–––
–––
–––
–––
–––
–––
A
V
ns
nC
A
Conditions
TJ = 155°C, PW = 6.0ms half sine wave
IF = 8A
IF = 8A, TJ = 125°C
IF = 1A, di/dt = -50A/µs, VR =30V
TJ = 25°C
TJ = 125°C
IF = 8A
TJ = 25°C
di/dt = 200A/µs
TJ = 125°C
VR = 200V
TJ = 25°C
TJ = 125°C
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
www.irf.com
IRGP4065DPbF
200
200
TOP
160
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
120
BOTTOM
TOP
ICE (A)
ICE (A)
160
80
120
BOTTOM
80
40
40
0
0
0
2
4
6
8
10
12
14
16
0
2
4
6
VCE (V)
8
10
12
14
16
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
360
280
TOP
200
TOP
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
240
BOTTOM
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
320
280
BOTTOM
240
160
ICE (A)
ICE (A)
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
120
200
160
120
80
80
40
40
0
0
0
2
4
6
8
10
12
14
0
16
2
4
Fig 3. Typical Output Characteristics @ 125°C
8
10
12
14
16
Fig 4. Typical Output Characteristics @ 150°C
600
20
IC = 25A
500
15
400
TJ = 25°C
TJ = 150°C
300
VCE (V)
ICE, Collector-to-Emitter Current (A)
6
VCE (V)
VCE (V)
T J = 25°C
T J = 150°C
10
200
5
100
0
0
0
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGP4065DPbF
80
220
Repetitive Peak Current (A)
IC, Collector Current (A)
60
50
40
30
20
180
160
140
120
100
80
60
40
10
20
0
0
0
25
50
75
100
125
150
25
T C, Case Temperature (°C)
75
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000
V CC = 240V
L = 220nH
C = 0.4µF
900
L = 220nH
C = variable
100°C
Energy per Pulse (µJ)
900
800
25°C
700
600
500
100°C
800
700
25°C
600
500
400
300
200
400
160
170
180
190
200
210
220
150 160 170 180 190 200 210 220 230 240
230
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
1400
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
V CC = 240V
L = 220nH
t = 1µs half sine
1200
C= 0.4µF
1000
10µsec
100
800
IC (A)
Energy per Pulse (µJ)
50
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Energy per Pulse (µJ)
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
200
70
C= 0.3µF
600
100µsec
10
1msec
C= 0.2µF
400
200
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGP4065DPbF
100000
VGE, Gate-to-Emitter Voltage (V)
IC = 25A
Coes = Cce + Cgc
10000
Capacitance (pF)
25
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd , C ce SHORTED
Cres = C gc
Cies
1000
100
Coes
Cres
20
VCE = 240V
VCE = 200V
VCE = 150V
15
10
5
0
10
0
50
100
150
200
250
0
300
10
20
30
40
50
60
70
80
Q G, Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
R1
R1
0.05
τJ
0.02
0.01
0.01
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
τC
τ
τ3
Ci= τi/Ri
Ci τi/Ri
1E-005
0.0001
0.382
0.001707
0.271
0.014532
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W) τi (sec)
0.146
0.000131
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
thJC
(°C/W)
10
Thermal Impedance Z
1
D = 0.50
D = 0.20
D = 0.10
D = 0.05
D = 0.02
D = 0.01
PDM
t1
0.1
t2
Single Pulse
(Thermal Resistance)
0.01
0.00001
Notes:
1. Duty factor D = t1/ t2
.
2. Peak Tj = Pdm x ZthJC + Tc
0.0001
0.001
0.01
0.1
t1, Rectangular Pulse Duration (Seconds)
1
.
10
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
5
IRGP4065DPbF
100
If = 8A, Tj = 125˚C
trr ( ns )
IF, Instantaneous Forward Current (A)
100
10
Tj = 125°C
Tj = 25°C
If = 8A, Tj = 25˚C
1
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
10
100
VFM, Forward Voltage Drop (V)
1000
di F /dt (A/µs )
Fig. 18 - Typical Reverse Recovery vs. di F /dt
Fig. 17 - Typical Forward Voltage Drop Characteristics
Qrr ( nC )
1000
If = 8A, Tj = 125˚C
100
If = 8A, Tj = 25˚C
Fig.20 - Switching Loss Circuit
A
RG
C
DRIVER
L
10
100
1000
di F /dt (A/µs )
VCC
Fig. 19- Typical Stored Charge vs. di F /dt
VCE
B
RG
Ipulse
DUT
Energy
IC Current
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
PULSE A
L
0
PULSE B
VCC
DUT
1K
tST
Fig 21c. EPULSE Test Waveforms
6
Fig. 22 - Gate Charge Circuit (turn-off)
www.irf.com
IRGP4065DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30
WIT H ASS EMBLY
LOT CODE 5657
AS SEMBLED ON WW 35, 2001
IN T HE ASS EMBLY LINE "H"
Note: "P" in as sembly line pos ition
indicates "Lead-Free"
INT ERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
IRFPE30
56
135H
57
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
Data and specifications subject to change without notice.
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational
performance or safety. Please contact your IR representative if
you have specific design or use requirements or for further
information.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/06
www.irf.com
7