PD - 97155 PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package IRG7S319UPbF Key Parameters VCE min VCE(ON) typ. @ IC = 20A IRP max @ TC= 25°C TJ max 330 1.26 170 150 V V A °C C G G E D2Pak IRG7S319UPbF E n-channel G Gate C C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Max. Units ±30 V 45 IC @ TC = 100°C Continuous Collector, VGE @ 15V 20 IRP @ TC = 25°C Repetitive Peak Current 170 PD @TC = 25°C Power Dissipation PD @TC = 100°C Power Dissipation c A 96 W 38 Linear Derating Factor 0.77 TJ Operating Junction and -40 to + 150 TSTG Storage Temperature Range W/°C °C 300 Soldering Temperature for 10 seconds Thermal Resistance Parameter RθJC www.irf.com Junction-to-Case d Typ. Max. Units ––– 1.3 °C/W 1 10/2/09 IRG7S319UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units V VGE = 0V, ICE = 250μA V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 20A BVCES Collector-to-Emitter Breakdown Voltage 330 ––– ––– ΔΒVCES/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.38 ––– ––– 1.26 1.43 ––– 1.34 ––– 1.65 ––– ––– 2.02 ––– VGE = 15V, ICE ––– 2.79 ––– VGE = 15V, ICE ––– 1.39 ––– VGE = 15V, ICE = 25A, TJ = 150°C VCE(on) Static Collector-to-Emitter Voltage V VGE(th) Gate Threshold Voltage 2.2 ––– 4.7 ΔVGE(th)/ΔTJ ICES Gate Threshold Voltage Coefficient ––– -8.8 ––– mV/°C Collector-to-Emitter Leakage Current ––– 1.0 20 50 200 125 ––– IGES V VCE = 330V, VGE = 0V, TJ = 125°C ––– VCE = 330V, VGE = 0V, TJ = 150°C nA VGE = 30V ––– ––– 100 ––– ––– -100 gfe Forward Transconductance ––– 55 ––– S Qg Total Gate Charge ––– 38 ––– nC Qgc Gate-to-Collector Charge ––– 13 ––– td(on) Turn-On delay time ––– 16 ––– tr Rise time ––– 22 ––– td(off) Turn-Off delay time ––– 81 ––– tf Fall time ––– 105 ––– td(on) Turn-On delay time ––– 16 ––– tr Rise time ––– 25 ––– td(off) Turn-Off delay time ––– 95 ––– tf Fall time ––– 203 ––– tst Shoot Through Blocking Time 100 ––– ––– ––– 854 ––– ––– Human Body Model ESD Machine Model Cies Input Capacitance ––– Coes Output Capacitance ––– VCE = VGE, ICE = 1.3mA e VCE = 330V, VGE = 0V Gate-to-Emitter Reverse Leakage Energy per Pulse VGE = 15V, ICE μA Gate-to-Emitter Forward Leakage EPULSE e e = 45A e = 70A e = 120A e VGE = 15V, ICE = 25A 1083 ––– 56 ––– VGE = -30V VCE = 25V, ICE = 25A e VCE = 200V, IC = 25A, VGE = 15V IC = 25A, VCC = 196V ns RG = 10Ω, L=200μH TJ = 25°C IC = 25A, VCC = 196V ns RG = 10Ω, L=200μH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40μF, VGE = 15V μJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40μF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C Class 1C (Per JEDEC standard JESD22-A114) Class B (Per EIA/JEDEC standard EIA/JESD22-A115) VGE = 0V 1098 ––– pF VCE = 30V Cres Reverse Transfer Capacitance ––– 32 ––– ƒ = 1.0MHz LC Internal Collector Inductance ––– 4.5 ––– Between lead, LE Internal Emitter Inductance ––– 7.5 ––– nH 6mm (0.25in.) from package and center of die contact Notes: Half sine wave with duty cycle = 0.05, ton=2μsec. Rθ is measured at TJ of approximately 90°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRG7S319UPbF 200 200 VGE = 18V VGE = 15V VGE = 12V 120 160 VGE = 10V VGE = 8.0V VGE = 6.0V 80 0 6 8 VGE = 6.0V 80 0 4 VGE = 10V VGE = 8.0V 40 2 VGE = 12V 120 40 0 VGE = 18V VGE = 15V ICE (A) ICE (A) 160 0 10 2 4 6 Fig 1. Typical Output Characteristics @ 25°C Fig 2. Typical Output Characteristics @ 75°C 200 200 160 160 VGE = 18V VGE = 15V ICE (A) ICE (A) VGE = 18V VGE = 12V VGE = 10V 80 VGE = 8.0V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 120 80 VGE = 6.0V 40 40 0 0 0 2 4 6 10 VCE (V) VCE (V) 120 8 8 0 10 2 4 6 8 10 VCE (V) VCE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 200 10 160 8 120 6 VCE (V) ICE (A) IC = 25A T J = 25°C T J = 150°C 80 TJ = 25°C TJ = 150°C 4 2 40 0 0 2 4 6 8 10 VGE (V) Fig 5. Typical Transfer Characteristics www.irf.com 12 0 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRG7S319UPbF 200 40 160 Repetitive Peak Current (A) 50 IC (A) 30 20 10 120 80 ton= 2μs Duty cycle = 0.05 Half Sine Wave 40 0 0 0 25 50 75 100 125 25 150 50 Fig 7. Maximum Collector Current vs. Case Temperature 125 150 1400 VCC = 240V L = 220nH C = 0.4μF 1300 L = 220nH C = variable 100°C Energy per Pulse (μJ) 1000 Energy per Pulse (μJ) 100 Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1100 900 800 25°C 700 600 1200 100°C 1100 1000 25°C 900 800 700 500 160 170 180 190 200 210 220 200 230 Fig 9. Typical EPULSE vs. Collector Current 1200 220 230 240 250 260 270 Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage 100 VCC = 240V L = 220nH t = 1μs half sine 1000 210 VCC, Collector-to-Supply Voltage (V) IC, Peak Collector Current (A) 100 μs C= 0.4μF 10 μs 10 800 IC (A) Energy per Pulse (μJ) 75 Case Temperature (°C) TC (°C) C= 0.3μF 1ms 1 600 C= 0.2μF 0.1 400 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 150 1 10 100 1000 V CE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRG7S319UPbF 20 1000 VGE, Gate-to-Source Voltage (V) Capacitance (pF) 10000 Cies 100 Coes Cres VDS = 240V VDS = 200V 16 VDS = 60V 12 8 4 0 10 0 ID= 25A 100 0 200 10 VCE (V) Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 20 30 40 QG Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Thermal Response ( ZthJC ) 10 1 D = 0.50 0.20 0.1 0.10 τJ 0.05 0.01 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 Ci= τi/Ri Ci= τi/Ri τ2 R3 R3 τ3 Ri (°C/W) τC τ τ3 τι (sec) 0.459659 0.000349 0.55727 0.001537 0.283959 0.00944 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRG7S319UPbF A RG C DRIVER PULSE A L VCC B RG PULSE B Ipulse DUT tST Fig 16a. tst and EPULSE Test Circuit VCE Fig 16b. tst Test Waveforms Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRG7S319UPbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L AS S EMBLY LOT CODE OR INT ERNAT IONAL RECT IF IER LOGO AS SEMBLY LOT CODE PART NUMBER F 530S DAT E CODE P = DES IGNAT ES LEAD - F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS SEMBLY S IT E CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 7 IRG7S319UPbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/2009 8 www.irf.com