IRF IRG7S319UPBF

PD - 97155
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
IRG7S319UPbF
Key Parameters
VCE min
VCE(ON) typ. @ IC = 20A
IRP max @ TC= 25°C
TJ max
330
1.26
170
150
V
V
A
°C
C
G
G
E
D2Pak
IRG7S319UPbF
E
n-channel
G
Gate
C
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Max.
Units
±30
V
45
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
20
IRP @ TC = 25°C
Repetitive Peak Current
170
PD @TC = 25°C
Power Dissipation
PD @TC = 100°C
Power Dissipation
c
A
96
W
38
Linear Derating Factor
0.77
TJ
Operating Junction and
-40 to + 150
TSTG
Storage Temperature Range
W/°C
°C
300
Soldering Temperature for 10 seconds
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case
d
Typ.
Max.
Units
–––
1.3
°C/W
1
10/2/09
IRG7S319UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Conditions
Min. Typ. Max. Units
V VGE = 0V, ICE = 250μA
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 20A
BVCES
Collector-to-Emitter Breakdown Voltage
330
–––
–––
ΔΒVCES/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.38
–––
–––
1.26
1.43
–––
1.34
–––
1.65
–––
–––
2.02
–––
VGE = 15V, ICE
–––
2.79
–––
VGE = 15V, ICE
–––
1.39
–––
VGE = 15V, ICE = 25A, TJ = 150°C
VCE(on)
Static Collector-to-Emitter Voltage
V
VGE(th)
Gate Threshold Voltage
2.2
–––
4.7
ΔVGE(th)/ΔTJ
ICES
Gate Threshold Voltage Coefficient
–––
-8.8
––– mV/°C
Collector-to-Emitter Leakage Current
–––
1.0
20
50
200
125
–––
IGES
V
VCE = 330V, VGE = 0V, TJ = 125°C
–––
VCE = 330V, VGE = 0V, TJ = 150°C
nA
VGE = 30V
–––
–––
100
–––
–––
-100
gfe
Forward Transconductance
–––
55
–––
S
Qg
Total Gate Charge
–––
38
–––
nC
Qgc
Gate-to-Collector Charge
–––
13
–––
td(on)
Turn-On delay time
–––
16
–––
tr
Rise time
–––
22
–––
td(off)
Turn-Off delay time
–––
81
–––
tf
Fall time
–––
105
–––
td(on)
Turn-On delay time
–––
16
–––
tr
Rise time
–––
25
–––
td(off)
Turn-Off delay time
–––
95
–––
tf
Fall time
–––
203
–––
tst
Shoot Through Blocking Time
100
–––
–––
–––
854
–––
–––
Human Body Model
ESD
Machine Model
Cies
Input Capacitance
–––
Coes
Output Capacitance
–––
VCE = VGE, ICE = 1.3mA
e
VCE = 330V, VGE = 0V
Gate-to-Emitter Reverse Leakage
Energy per Pulse
VGE = 15V, ICE
μA
Gate-to-Emitter Forward Leakage
EPULSE
e
e
= 45A e
= 70A e
= 120A e
VGE = 15V, ICE = 25A
1083
–––
56
–––
VGE = -30V
VCE = 25V, ICE = 25A
e
VCE = 200V, IC = 25A, VGE = 15V
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200μH
TJ = 25°C
IC = 25A, VCC = 196V
ns
RG = 10Ω, L=200μH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40μF, VGE = 15V
μJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40μF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 1C
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
1098 –––
pF
VCE = 30V
Cres
Reverse Transfer Capacitance
–––
32
–––
ƒ = 1.0MHz
LC
Internal Collector Inductance
–––
4.5
–––
Between lead,
LE
Internal Emitter Inductance
–––
7.5
–––
nH
6mm (0.25in.)
from package
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.05, ton=2μsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRG7S319UPbF
200
200
VGE = 18V
VGE = 15V
VGE = 12V
120
160
VGE = 10V
VGE = 8.0V
VGE = 6.0V
80
0
6
8
VGE = 6.0V
80
0
4
VGE = 10V
VGE = 8.0V
40
2
VGE = 12V
120
40
0
VGE = 18V
VGE = 15V
ICE (A)
ICE (A)
160
0
10
2
4
6
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
200
200
160
160
VGE = 18V
VGE = 15V
ICE (A)
ICE (A)
VGE = 18V
VGE = 12V
VGE = 10V
80
VGE = 8.0V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
120
80
VGE = 6.0V
40
40
0
0
0
2
4
6
10
VCE (V)
VCE (V)
120
8
8
0
10
2
4
6
8
10
VCE (V)
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
200
10
160
8
120
6
VCE (V)
ICE (A)
IC = 25A
T J = 25°C
T J = 150°C
80
TJ = 25°C
TJ = 150°C
4
2
40
0
0
2
4
6
8
10
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
12
0
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG7S319UPbF
200
40
160
Repetitive Peak Current (A)
50
IC (A)
30
20
10
120
80
ton= 2μs
Duty cycle = 0.05
Half Sine Wave
40
0
0
0
25
50
75
100
125
25
150
50
Fig 7. Maximum Collector Current vs. Case Temperature
125
150
1400
VCC = 240V
L = 220nH
C = 0.4μF
1300
L = 220nH
C = variable
100°C
Energy per Pulse (μJ)
1000
Energy per Pulse (μJ)
100
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1100
900
800
25°C
700
600
1200
100°C
1100
1000
25°C
900
800
700
500
160
170
180
190
200
210
220
200
230
Fig 9. Typical EPULSE vs. Collector Current
1200
220
230
240
250
260
270
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage
100
VCC = 240V
L = 220nH
t = 1μs half sine
1000
210
VCC, Collector-to-Supply Voltage (V)
IC, Peak Collector Current (A)
100 μs
C= 0.4μF
10 μs
10
800
IC (A)
Energy per Pulse (μJ)
75
Case Temperature (°C)
TC (°C)
C= 0.3μF
1ms
1
600
C= 0.2μF
0.1
400
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
V CE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG7S319UPbF
20
1000
VGE, Gate-to-Source Voltage (V)
Capacitance (pF)
10000
Cies
100
Coes
Cres
VDS = 240V
VDS = 200V
16
VDS = 60V
12
8
4
0
10
0
ID= 25A
100
0
200
10
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
20
30
40
QG Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Thermal Response ( ZthJC )
10
1
D = 0.50
0.20
0.1
0.10
τJ
0.05
0.01
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
Ci= τi/Ri
Ci= τi/Ri
τ2
R3
R3
τ3
Ri (°C/W)
τC
τ
τ3
τι (sec)
0.459659 0.000349
0.55727 0.001537
0.283959 0.00944
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG7S319UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16a. tst and EPULSE Test Circuit
VCE
Fig 16b. tst Test Waveforms
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG7S319UPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS S EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
AS S EMBLY
LOT CODE
OR
INT ERNAT IONAL
RECT IF IER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
F 530S
DAT E CODE
P = DES IGNAT ES LEAD - F REE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = AS SEMBLY S IT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRG7S319UPbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/2009
8
www.irf.com