Order this document by MRF141/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line RF Power Field-Effect Transistor MRF141 N–Channel Enhancement–Mode MOSFET Designed for broadband commercial and military applications at frequencies to 175 MHz. The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands. • Guaranteed Performance at 30 MHz, 28 V: Output Power — 150 W Gain — 18 dB (22 dB Typ) Efficiency — 40% 150 W, 28 V, 175 MHz N–CHANNEL BROADBAND RF POWER MOSFET D • Typical Performance at 175 MHz, 50 V: Output Power — 150 W Gain — 13 dB • Low Thermal Resistance G • Ruggedness Tested at Rated Output Power • Nitride Passivated Die for Enhanced Reliability S CASE 211–11, STYLE 2 MAXIMUM RATINGS Rating Symbol Value Unit Drain–Source Voltage VDSS 65 Vdc Drain–Gate Voltage VDGO 65 Vdc VGS ± 40 Vdc Drain Current — Continuous ID 16 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 300 1.71 Watts W/°C Storage Temperature Range Tstg – 65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Max Unit RθJC 0.6 °C/W Gate–Source Voltage THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 9 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit V(BR)DSS 65 — — Vdc Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS — — 5.0 mAdc Gate–Body Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 1.0 µAdc Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) VGS(th) 1.0 3.0 5.0 Vdc Drain–Source On–Voltage (VGS = 10 V, ID = 10 A) VDS(on) 0.1 0.9 1.5 Vdc gfs 5.0 7.0 — mhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss — 350 — pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss — 420 — pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss — 35 — pF Gps 16 — 20 10 — — dB η 40 45 — % IMD(d3) IMD(d11) — — – 30 – 60 – 28 — OFF CHARACTERISTICS (1) Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA) ON CHARACTERISTICS (1) Forward Transconductance (VDS = 10 V, ID = 5.0 A) DYNAMIC CHARACTERISTICS (1) FUNCTIONAL TESTS Common Source Amplifier Power Gain, f = 30; 30.001 MHz (VDD = 28 V, Pout = 150 W (PEP), IDQ = 250 mA) f = 175 MHz Drain Efficiency (VDD = 28 V, Pout = 150 W (PEP), f = 30; 30.001 MHz, IDQ = 250 mA, ID (Max) = 5.95 A) Intermodulation Distortion (1) (VDD = 28 V, Pout = 150 W (PEP), f = 30 MHz, f2 = 30.001 MHz, IDQ = 250 mA) dB ψ Load Mismatch (VDD = 28 V, Pout = 150 W (PEP), f1 = 30; 30.001 MHz, IDQ = 250 mA, VSWR 30:1 at all Phase Angles) No Degradation in Output Power CLASS A PERFORMANCE Intermodulation Distortion (1) and Power Gain (VDD = 28 V, Pout = 50 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, IDQ = 4.0 A) GPS IMD(d3) IMD(d9 – 13) — — — 23 – 50 – 75 — — — dB NOTE: 1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone. BIAS + 0 – 12 V – C11 R4 C5 R1 RF INPUT R3 D.U.T. C8 C7 C6 T2 C4 + + L1 L2 C9 – C10 28 V – RF OUTPUT C2 T1 C3 R2 C2, C5, C6, C7, C8, C9 — 0.1 µF Ceramic Chip or Monolythic with Short Leads C3 — Arco 469 C4 — 820 pF Unencapsulated Mica or Dipped Mica with Short Leads C10 — 10 µF/100 V Electrolytic C11 — 1 µF, 50 V, Tantalum C12 — 330 pF, Dipped Mica (Short leads) C12 L1 — VK200/4B Ferrite Choke or Equivalent, 3.0 µH L2 — Ferrite Bead(s), 2.0 µH R1, R2 — 51 Ω/1.0 W Carbon R3 — 1.0 Ω/1.0 W Carbon or Parallel Two 2 Ω, 1/2 W Resistors R4 — 1 kΩ/1/2 W Carbon T1 — 16:1 Broadband Transformer T2 — 1:25 Broadband Transformer Board Material — 0.062″ Fiberglass (G10), 1 oz. Copper Clad, 2 Sides, er = 5 Figure 1. 30 MHz Test Circuit (Class AB) REV 9 2 TYPICAL CHARACTERISTICS VGS, GATE-SOURCE VOLTAGE (NORMALIZED) I D, DRAIN CURRENT (AMPS) 100 10 TC = 25°C 1 10 VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS) 1 100 1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9 – 25 Figure 2. DC Safe Operating Area ID = 5 A 4A 2A 1A 0.5 A 0.25 A 0 100 200 0 f T, UNITY GAIN FREQUENCY (MHz) C, CAPACITANCE (pF) VDS = 20 V 10 V 1000 Coss Ciss 200 Crss 0 0 2 4 6 8 10 12 14 ID, DRAIN CURRENT (AMPS) 16 18 20 0 20 5 10 15 Pout , OUTPUT POWER (WATTS) 300 25 20 VDD = 28 V IDQ = 250 mA Pout = 150 W 15 10 200 f = 175 MHz VDD = 28 V IDQ = 250 mA 100 00 5 10 15 2 10 100 200 20 25 300 200 f = 30 MHz VDD = 28 V IDQ = 250 mA 100 REV 9 25 Figure 5. Capacitance versus Drain–Source Voltage 30 5 20 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) Figure 4. Common Source Unity Gain Frequency versus Drain Current 3 75 Figure 3. Gate–Source Voltage versus Case Temperature 2000 GPS , POWER GAIN (dB) 25 50 TC, CASE TEMPERATURE (°C) 0 0 1 2 3 4 f, FREQUENCY (MHz) Pin, INPUT POWER (WATTS) Figure 6. Power Gain versus Frequency Figure 7. Output Power versus Input Power 5 TYPICAL CHARACTERISTICS 280 320 f = 30 MHz IDQ = 250 mA Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 320 240 Pin = 4 W 200 160 2W 120 1W 80 240 200 Pin = 20 W 160 120 14 W 80 8W 40 40 14 16 18 20 22 24 26 0 12 28 14 16 22 24 26 Figure 8. Output Power versus Supply Voltage Figure 9. Output Power versus Supply Voltage 25 d3 35 d5 45 IDQ = 250 mA 55 VDD = 28, f = 30 MHz, TONE SEPARATION = 1 kHz 25 d3 35 45 d5 0 20 40 60 IDQ = 500 mA 80 100 120 140 160 Pout, OUTPUT POWER (WATTS) Figure 10. IMD versus Pout (PEP) REV 9 20 SUPPLY VOLTAGE (VOLTS) 55 4 18 SUPPLY VOLTAGE (VOLTS) IMD, INTERMODULATION DISTORTION (dB) 0 12 f = 175 MHz IDQ = 250 mA 280 180 200 28 Zo = 10 Ω VDD = 28 V IDQ = 250 mA Pout = 150 W PEP ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency. 30 15 100 7.5 Zin 4 30 2 150 100 2 f = 175 MHz ZOL* f = 175 MHz Figure 11. Input and Output Impedances RFC1 + 28 V + BIAS 0 – 12 V C10 L4 R1 – C11 + C5 C4 R3 C1 DUT L3 C9 L2 L1 RF INPUT C2 C3 R2 C1, C2, C8 — Arco 463 or equivalent C3 — 25 pF, Unelco C4 — 0.1 µF, Ceramic C5 — 1.0 µF, 15 WV Tantalum C6 — 25 pF, Unelco J101 C7 — 25 pF, Unelco J101 C9 — Arco 262 or equivalent C10 — 0.05 µF, Ceramic C11 — 15 µF, 35 WV Electrolytic C6 L1 — 3/4″, #18 AWG into Hairpin L2 — Printed Line, 0.200″ x 0.500″ L3 — 7/8″, #16 AWG into Hairpin L4 — 2 Turns, #16 AWG, 5/16 ID RFC1 — 5.6 µH, Molded Choke RFC2 — VK200–4B R1 — 150 Ω, 1.0 W Carbon R2 — 10 kΩ, 1/2 W Carbon R3 — 120 Ω, 1/2 W Carbon Figure 12. 175 MHz Test Circuit (Class AB) REV 9 5 C7 C8 RF OUTPUT Table 1. Common Source S–Parameters (VDS = 24 V, ID = 5 A) S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| 30 0.916 40 0.919 50 |S21| φ |S12| φ |S22| –177 4.23 83 0.008 32 0.876 –177 –178 3.23 76 0.009 39 0.885 178 0.922 –178 2.55 72 0.010 45 0.914 –180 60 0.923 –179 2.14 68 0.010 46 0.893 179 70 0.927 –179 1.77 63 0.011 48 0.878 179 80 0.929 –179 1.48 61 0.013 53 0.864 180 90 0.931 –180 1.28 60 0.015 61 0.850 180 100 0.934 –180 1.15 55 0.016 66 0.893 178 110 0.935 180 1.05 53 0.016 69 0.913 177 120 0.939 180 0.91 51 0.017 69 0.930 180 130 0.941 179 0.82 48 0.019 67 0.916 –180 140 0.943 179 0.76 46 0.022 68 0.926 179 150 0.946 179 0.67 42 0.024 70 0.940 177 160 0.946 179 0.63 40 0.025 73 0.915 178 170 0.948 178 0.57 39 0.024 78 0.891 178 180 0.949 178 0.52 37 0.026 75 0.906 178 190 0.950 178 0.49 37 0.028 74 0.899 176 200 0.950 177 0.45 35 0.030 78 0.915 176 210 0.938 177 0.43 31 0.043 108 0.966 174 220 0.958 178 0.39 33 0.029 61 0.972 175 230 0.961 177 0.36 27 0.038 77 1.033 174 240 0.960 177 0.36 28 0.036 76 0.943 174 250 0.961 176 0.32 30 0.038 77 0.912 175 260 0.962 176 0.30 31 0.040 76 0.918 174 270 0.961 176 0.27 30 0.044 77 0.933 171 280 0.963 176 0.26 30 0.045 79 0.943 172 290 0.964 175 0.25 25 0.045 78 0.940 172 300 0.965 175 0.26 27 0.047 77 0.930 172 310 0.966 175 0.25 27 0.051 78 0.977 172 320 0.964 175 0.24 26 0.053 75 0.947 171 330 0.966 174 0.22 21 0.056 75 0.946 170 340 0.967 174 0.23 26 0.056 75 0.944 170 350 0.967 174 0.22 24 0.058 78 0.946 171 360 0.965 174 0.21 28 0.062 74 0.956 171 370 0.966 174 0.20 28 0.048 61 0.968 170 380 0.968 173 0.20 27 0.053 74 0.931 168 390 0.970 173 0.18 31 0.063 74 0.962 168 400 0.970 173 0.17 26 0.071 79 0.965 172 410 0.970 172 0.17 29 0.076 78 0.982 169 420 0.971 172 0.17 30 0.076 76 0.956 167 430 0.970 172 0.15 29 0.070 76 0.912 165 440 0.970 171 0.13 32 0.074 76 0.933 167 REV 9 6 φ φ Table 1. Common Source S–Parameters (VDS = 24 V, ID = 5 A) continued S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| φ |S21| φ |S12| φ |S22| φ 450 0.970 171 0.15 31 0.081 76 0.967 167 460 0.970 171 0.15 32 0.090 73 0.982 164 470 0.969 170 0.15 30 0.095 77 0.945 165 480 0.964 170 0.16 34 0.099 80 0.956 165 490 0.960 170 0.15 31 0.107 75 0.947 163 500 0.959 170 0.15 23 0.103 68 0.962 163 Table 2. Common Source S–Parameters (VDS = 28 V, ID = 5 A) S11 f MHz |S11| 30 0.914 40 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ |S21| φ |S12| φ |S22| –177 4.60 82 0.007 25 0.874 –176 0.915 –178 3.51 76 0.008 26 0.879 –179 50 0.918 –178 2.76 71 0.009 34 0.888 –179 60 0.920 –178 2.32 67 0.010 45 0.881 179 70 0.924 –179 1.92 62 0.010 56 0.887 179 80 0.927 –179 1.61 60 0.009 62 0.899 –179 90 0.930 –179 1.39 58 0.010 61 0.874 –177 100 0.933 –180 1.23 53 0.012 57 0.875 –179 110 0.934 –180 1.13 51 0.015 63 0.884 179 120 0.938 180 0.98 49 0.017 73 0.926 179 130 0.940 180 0.88 46 0.018 81 0.959 –179 140 0.942 179 0.81 44 0.018 82 0.966 –179 150 0.945 179 0.71 40 0.018 77 0.961 –179 160 0.946 179 0.67 38 0.021 73 0.910 –179 170 0.948 178 0.61 37 0.023 77 0.871 179 180 0.950 178 0.54 35 0.026 78 0.912 178 190 0.950 178 0.52 34 0.029 76 0.959 177 200 0.952 178 0.47 33 0.034 64 0.971 178 210 0.949 177 0.46 28 0.067 17 1.023 –178 220 0.953 178 0.41 31 0.019 94 0.954 177 230 0.959 177 0.38 26 0.037 76 1.014 174 240 0.960 177 0.37 25 0.040 79 0.943 174 250 0.961 177 0.33 27 0.042 84 0.972 175 260 0.962 176 0.30 27 0.041 86 0.969 176 270 0.961 176 0.29 27 0.041 83 0.951 175 280 0.963 176 0.27 27 0.042 80 0.929 174 290 0.964 175 0.26 23 0.045 79 0.930 172 300 0.965 175 0.27 25 0.051 81 0.963 171 310 0.966 175 0.26 24 0.052 83 1.012 173 320 0.965 175 0.25 23 0.053 81 0.984 171 330 0.966 174 0.23 19 0.055 78 0.955 172 340 0.967 174 0.24 25 0.054 76 0.929 171 350 0.967 174 0.22 22 0.057 79 0.917 170 REV 9 7 φ φ Table 2. Common Source S–Parameters (VDS = 28 V, ID = 5 A) continued S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| φ |S21| φ |S12| φ |S22| φ 360 0.967 174 0.21 26 0.060 91 0.978 169 370 0.967 174 0.20 26 0.084 89 1.030 167 380 0.969 173 0.20 23 0.081 82 0.994 170 390 0.970 173 0.19 29 0.072 80 0.963 170 400 0.970 173 0.17 25 0.069 80 0.951 172 410 0.970 172 0.17 27 0.072 71 0.985 167 420 0.972 172 0.16 28 0.078 68 0.970 165 430 0.971 172 0.15 27 0.084 70 0.953 165 440 0.971 171 0.13 29 0.086 74 0.949 168 450 0.971 171 0.15 29 0.087 79 0.962 167 460 0.970 171 0.15 32 0.081 72 0.976 164 470 0.969 170 0.15 29 0.079 65 0.969 164 480 0.964 170 0.16 32 0.081 57 0.972 165 490 0.959 170 0.15 29 0.081 54 0.976 165 500 0.958 170 0.15 21 0.086 58 0.953 167 RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate–to–drain (Cgd), and gate– to–source (C gs ). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain–to–source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. DRAIN Cgd GATE Cds Cgs Ciss = Cgd = Cgs Coss = Cgd = Cds Crss = Cgd SOURCE LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain data presented, Figure 4 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. REV 9 8 Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gate of this device is essentially capacitor. Circuits that leave the gate open–circuited or floating should be avoided. These conditions can result in turn– on of the device due to voltage build–up on the input capacitor due to leakage currents or pickup. Gate Protection — This device does not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate–to–source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate–drain capacitance. If the gate–to–source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate–threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron. DESIGN CONSIDERATIONS The MRF141 is an RF Power, MOS, N–channel enhancement mode field–effect transistor (FET) designed for HF and VHF power amplifier applications. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. REV 9 9 The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF141 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF141 was characterized at IDQ = 250 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem. GAIN CONTROL Power output of the MRF141 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. PACKAGE DIMENSIONS A U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. M 1 M Q DIM A B C D E H J K M Q R U 4 R 2 B 3 D K J H C E SEATING PLANE CASE 211–11 ISSUE N Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 9 10 INCHES MIN MAX 0.960 0.990 0.465 0.510 0.229 0.275 0.216 0.235 0.084 0.110 0.144 0.178 0.003 0.007 0.435 ––– 45 _NOM 0.115 0.130 0.246 0.255 0.720 0.730 STYLE 2: PIN 1. 2. 3. 4. SOURCE GATE SOURCE DRAIN MILLIMETERS MIN MAX 24.39 25.14 11.82 12.95 5.82 6.98 5.49 5.96 2.14 2.79 3.66 4.52 0.08 0.17 11.05 ––– 45 _NOM 2.93 3.30 6.25 6.47 18.29 18.54