MA-COM MRF141

Order this document
by MRF141/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RF Power Field-Effect Transistor
MRF141
N–Channel Enhancement–Mode MOSFET
Designed for broadband commercial and military applications at frequencies
to 175 MHz. The high power, high gain and broadband performance of this
device makes possible solid state transmitters for FM broadcast or TV channel
frequency bands.
• Guaranteed Performance at 30 MHz, 28 V:
Output Power — 150 W
Gain — 18 dB (22 dB Typ)
Efficiency — 40%
150 W, 28 V, 175 MHz
N–CHANNEL
BROADBAND
RF POWER MOSFET
D
• Typical Performance at 175 MHz, 50 V:
Output Power — 150 W
Gain — 13 dB
• Low Thermal Resistance
G
• Ruggedness Tested at Rated Output Power
• Nitride Passivated Die for Enhanced Reliability
S
CASE 211–11, STYLE 2
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain–Source Voltage
VDSS
65
Vdc
Drain–Gate Voltage
VDGO
65
Vdc
VGS
± 40
Vdc
Drain Current — Continuous
ID
16
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
300
1.71
Watts
W/°C
Storage Temperature Range
Tstg
– 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Max
Unit
RθJC
0.6
°C/W
Gate–Source Voltage
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 9
1
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)DSS
65
—
—
Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)
IDSS
—
—
5.0
mAdc
Gate–Body Leakage Current (VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)
VGS(th)
1.0
3.0
5.0
Vdc
Drain–Source On–Voltage (VGS = 10 V, ID = 10 A)
VDS(on)
0.1
0.9
1.5
Vdc
gfs
5.0
7.0
—
mhos
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Ciss
—
350
—
pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Coss
—
420
—
pF
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Crss
—
35
—
pF
Gps
16
—
20
10
—
—
dB
η
40
45
—
%
IMD(d3)
IMD(d11)
—
—
– 30
– 60
– 28
—
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA)
ON CHARACTERISTICS (1)
Forward Transconductance (VDS = 10 V, ID = 5.0 A)
DYNAMIC CHARACTERISTICS (1)
FUNCTIONAL TESTS
Common Source Amplifier Power Gain, f = 30; 30.001 MHz
(VDD = 28 V, Pout = 150 W (PEP), IDQ = 250 mA) f = 175 MHz
Drain Efficiency
(VDD = 28 V, Pout = 150 W (PEP), f = 30; 30.001 MHz,
IDQ = 250 mA, ID (Max) = 5.95 A)
Intermodulation Distortion (1)
(VDD = 28 V, Pout = 150 W (PEP), f = 30 MHz,
f2 = 30.001 MHz, IDQ = 250 mA)
dB
ψ
Load Mismatch
(VDD = 28 V, Pout = 150 W (PEP), f1 = 30; 30.001 MHz,
IDQ = 250 mA, VSWR 30:1 at all Phase Angles)
No Degradation in Output Power
CLASS A PERFORMANCE
Intermodulation Distortion (1) and Power Gain
(VDD = 28 V, Pout = 50 W (PEP), f1 = 30 MHz,
f2 = 30.001 MHz, IDQ = 4.0 A)
GPS
IMD(d3)
IMD(d9 – 13)
—
—
—
23
– 50
– 75
—
—
—
dB
NOTE:
1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.
BIAS +
0 – 12 V
–
C11
R4
C5
R1
RF INPUT
R3
D.U.T.
C8
C7
C6
T2
C4
+
+
L1
L2
C9
–
C10
28 V
–
RF
OUTPUT
C2
T1
C3
R2
C2, C5, C6, C7, C8, C9 — 0.1 µF Ceramic Chip or
Monolythic with Short Leads
C3 — Arco 469
C4 — 820 pF Unencapsulated Mica or Dipped Mica
with Short Leads
C10 — 10 µF/100 V Electrolytic
C11 — 1 µF, 50 V, Tantalum
C12 — 330 pF, Dipped Mica (Short leads)
C12
L1 — VK200/4B Ferrite Choke or Equivalent, 3.0 µH
L2 — Ferrite Bead(s), 2.0 µH
R1, R2 — 51 Ω/1.0 W Carbon
R3 — 1.0 Ω/1.0 W Carbon or Parallel Two 2 Ω, 1/2 W Resistors
R4 — 1 kΩ/1/2 W Carbon
T1 — 16:1 Broadband Transformer
T2 — 1:25 Broadband Transformer
Board Material — 0.062″ Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, er = 5
Figure 1. 30 MHz Test Circuit (Class AB)
REV 9
2
TYPICAL CHARACTERISTICS
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
I D, DRAIN CURRENT (AMPS)
100
10
TC = 25°C
1
10
VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS)
1
100
1.04
1.03
1.02
1.01
1
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
– 25
Figure 2. DC Safe Operating Area
ID = 5 A
4A
2A
1A
0.5 A
0.25 A
0
100
200
0
f T, UNITY GAIN FREQUENCY (MHz)
C, CAPACITANCE (pF)
VDS = 20 V
10 V
1000
Coss
Ciss
200
Crss
0
0
2
4
6
8
10
12
14
ID, DRAIN CURRENT (AMPS)
16
18
20
0
20
5
10
15
Pout , OUTPUT POWER (WATTS)
300
25
20
VDD = 28 V
IDQ = 250 mA
Pout = 150 W
15
10
200
f = 175 MHz
VDD = 28 V
IDQ = 250 mA
100
00
5
10
15
2
10
100
200
20
25
300
200
f = 30 MHz
VDD = 28 V
IDQ = 250 mA
100
REV 9
25
Figure 5. Capacitance versus
Drain–Source Voltage
30
5
20
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
Figure 4. Common Source Unity Gain Frequency
versus Drain Current
3
75
Figure 3. Gate–Source Voltage versus
Case Temperature
2000
GPS , POWER GAIN (dB)
25
50
TC, CASE TEMPERATURE (°C)
0
0
1
2
3
4
f, FREQUENCY (MHz)
Pin, INPUT POWER (WATTS)
Figure 6. Power Gain versus Frequency
Figure 7. Output Power versus Input Power
5
TYPICAL CHARACTERISTICS
280
320
f = 30 MHz
IDQ = 250 mA
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
320
240
Pin = 4 W
200
160
2W
120
1W
80
240
200
Pin = 20 W
160
120
14 W
80
8W
40
40
14
16
18
20
22
24
26
0
12
28
14
16
22
24
26
Figure 8. Output Power versus Supply Voltage
Figure 9. Output Power versus Supply Voltage
25
d3
35
d5
45
IDQ = 250 mA
55
VDD = 28, f = 30 MHz, TONE SEPARATION = 1 kHz
25
d3
35
45
d5
0
20
40
60
IDQ = 500 mA
80
100
120
140
160
Pout, OUTPUT POWER (WATTS)
Figure 10. IMD versus Pout (PEP)
REV 9
20
SUPPLY VOLTAGE (VOLTS)
55
4
18
SUPPLY VOLTAGE (VOLTS)
IMD, INTERMODULATION DISTORTION (dB)
0
12
f = 175 MHz
IDQ = 250 mA
280
180
200
28
Zo = 10 Ω
VDD = 28 V
IDQ = 250 mA
Pout = 150 W PEP
ZOL* = Conjugate of the optimum load impedance
ZOL* = into which the device output operates at a
ZOL* = given output power, voltage and frequency.
30
15
100
7.5
Zin
4
30
2
150
100
2
f = 175 MHz
ZOL* f = 175 MHz
Figure 11. Input and Output Impedances
RFC1
+ 28 V
+
BIAS
0 – 12 V
C10
L4
R1
–
C11
+
C5
C4
R3
C1
DUT
L3
C9
L2
L1
RF INPUT
C2
C3
R2
C1, C2, C8 — Arco 463 or equivalent
C3 — 25 pF, Unelco
C4 — 0.1 µF, Ceramic
C5 — 1.0 µF, 15 WV Tantalum
C6 — 25 pF, Unelco J101
C7 — 25 pF, Unelco J101
C9 — Arco 262 or equivalent
C10 — 0.05 µF, Ceramic
C11 — 15 µF, 35 WV Electrolytic
C6
L1 — 3/4″, #18 AWG into Hairpin
L2 — Printed Line, 0.200″ x 0.500″
L3 — 7/8″, #16 AWG into Hairpin
L4 — 2 Turns, #16 AWG, 5/16 ID
RFC1 — 5.6 µH, Molded Choke
RFC2 — VK200–4B
R1 — 150 Ω, 1.0 W Carbon
R2 — 10 kΩ, 1/2 W Carbon
R3 — 120 Ω, 1/2 W Carbon
Figure 12. 175 MHz Test Circuit (Class AB)
REV 9
5
C7
C8
RF
OUTPUT
Table 1. Common Source S–Parameters (VDS = 24 V, ID = 5 A)
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
30
0.916
40
0.919
50
|S21|
φ
|S12|
φ
|S22|
–177
4.23
83
0.008
32
0.876
–177
–178
3.23
76
0.009
39
0.885
178
0.922
–178
2.55
72
0.010
45
0.914
–180
60
0.923
–179
2.14
68
0.010
46
0.893
179
70
0.927
–179
1.77
63
0.011
48
0.878
179
80
0.929
–179
1.48
61
0.013
53
0.864
180
90
0.931
–180
1.28
60
0.015
61
0.850
180
100
0.934
–180
1.15
55
0.016
66
0.893
178
110
0.935
180
1.05
53
0.016
69
0.913
177
120
0.939
180
0.91
51
0.017
69
0.930
180
130
0.941
179
0.82
48
0.019
67
0.916
–180
140
0.943
179
0.76
46
0.022
68
0.926
179
150
0.946
179
0.67
42
0.024
70
0.940
177
160
0.946
179
0.63
40
0.025
73
0.915
178
170
0.948
178
0.57
39
0.024
78
0.891
178
180
0.949
178
0.52
37
0.026
75
0.906
178
190
0.950
178
0.49
37
0.028
74
0.899
176
200
0.950
177
0.45
35
0.030
78
0.915
176
210
0.938
177
0.43
31
0.043
108
0.966
174
220
0.958
178
0.39
33
0.029
61
0.972
175
230
0.961
177
0.36
27
0.038
77
1.033
174
240
0.960
177
0.36
28
0.036
76
0.943
174
250
0.961
176
0.32
30
0.038
77
0.912
175
260
0.962
176
0.30
31
0.040
76
0.918
174
270
0.961
176
0.27
30
0.044
77
0.933
171
280
0.963
176
0.26
30
0.045
79
0.943
172
290
0.964
175
0.25
25
0.045
78
0.940
172
300
0.965
175
0.26
27
0.047
77
0.930
172
310
0.966
175
0.25
27
0.051
78
0.977
172
320
0.964
175
0.24
26
0.053
75
0.947
171
330
0.966
174
0.22
21
0.056
75
0.946
170
340
0.967
174
0.23
26
0.056
75
0.944
170
350
0.967
174
0.22
24
0.058
78
0.946
171
360
0.965
174
0.21
28
0.062
74
0.956
171
370
0.966
174
0.20
28
0.048
61
0.968
170
380
0.968
173
0.20
27
0.053
74
0.931
168
390
0.970
173
0.18
31
0.063
74
0.962
168
400
0.970
173
0.17
26
0.071
79
0.965
172
410
0.970
172
0.17
29
0.076
78
0.982
169
420
0.971
172
0.17
30
0.076
76
0.956
167
430
0.970
172
0.15
29
0.070
76
0.912
165
440
0.970
171
0.13
32
0.074
76
0.933
167
REV 9
6
φ
φ
Table 1. Common Source S–Parameters (VDS = 24 V, ID = 5 A) continued
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
φ
|S21|
φ
|S12|
φ
|S22|
φ
450
0.970
171
0.15
31
0.081
76
0.967
167
460
0.970
171
0.15
32
0.090
73
0.982
164
470
0.969
170
0.15
30
0.095
77
0.945
165
480
0.964
170
0.16
34
0.099
80
0.956
165
490
0.960
170
0.15
31
0.107
75
0.947
163
500
0.959
170
0.15
23
0.103
68
0.962
163
Table 2. Common Source S–Parameters (VDS = 28 V, ID = 5 A)
S11
f
MHz
|S11|
30
0.914
40
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
|S21|
φ
|S12|
φ
|S22|
–177
4.60
82
0.007
25
0.874
–176
0.915
–178
3.51
76
0.008
26
0.879
–179
50
0.918
–178
2.76
71
0.009
34
0.888
–179
60
0.920
–178
2.32
67
0.010
45
0.881
179
70
0.924
–179
1.92
62
0.010
56
0.887
179
80
0.927
–179
1.61
60
0.009
62
0.899
–179
90
0.930
–179
1.39
58
0.010
61
0.874
–177
100
0.933
–180
1.23
53
0.012
57
0.875
–179
110
0.934
–180
1.13
51
0.015
63
0.884
179
120
0.938
180
0.98
49
0.017
73
0.926
179
130
0.940
180
0.88
46
0.018
81
0.959
–179
140
0.942
179
0.81
44
0.018
82
0.966
–179
150
0.945
179
0.71
40
0.018
77
0.961
–179
160
0.946
179
0.67
38
0.021
73
0.910
–179
170
0.948
178
0.61
37
0.023
77
0.871
179
180
0.950
178
0.54
35
0.026
78
0.912
178
190
0.950
178
0.52
34
0.029
76
0.959
177
200
0.952
178
0.47
33
0.034
64
0.971
178
210
0.949
177
0.46
28
0.067
17
1.023
–178
220
0.953
178
0.41
31
0.019
94
0.954
177
230
0.959
177
0.38
26
0.037
76
1.014
174
240
0.960
177
0.37
25
0.040
79
0.943
174
250
0.961
177
0.33
27
0.042
84
0.972
175
260
0.962
176
0.30
27
0.041
86
0.969
176
270
0.961
176
0.29
27
0.041
83
0.951
175
280
0.963
176
0.27
27
0.042
80
0.929
174
290
0.964
175
0.26
23
0.045
79
0.930
172
300
0.965
175
0.27
25
0.051
81
0.963
171
310
0.966
175
0.26
24
0.052
83
1.012
173
320
0.965
175
0.25
23
0.053
81
0.984
171
330
0.966
174
0.23
19
0.055
78
0.955
172
340
0.967
174
0.24
25
0.054
76
0.929
171
350
0.967
174
0.22
22
0.057
79
0.917
170
REV 9
7
φ
φ
Table 2. Common Source S–Parameters (VDS = 28 V, ID = 5 A) continued
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
φ
|S21|
φ
|S12|
φ
|S22|
φ
360
0.967
174
0.21
26
0.060
91
0.978
169
370
0.967
174
0.20
26
0.084
89
1.030
167
380
0.969
173
0.20
23
0.081
82
0.994
170
390
0.970
173
0.19
29
0.072
80
0.963
170
400
0.970
173
0.17
25
0.069
80
0.951
172
410
0.970
172
0.17
27
0.072
71
0.985
167
420
0.972
172
0.16
28
0.078
68
0.970
165
430
0.971
172
0.15
27
0.084
70
0.953
165
440
0.971
171
0.13
29
0.086
74
0.949
168
450
0.971
171
0.15
29
0.087
79
0.962
167
460
0.970
171
0.15
32
0.081
72
0.976
164
470
0.969
170
0.15
29
0.079
65
0.969
164
480
0.964
170
0.16
32
0.081
57
0.972
165
490
0.959
170
0.15
29
0.081
54
0.976
165
500
0.958
170
0.15
21
0.086
58
0.953
167
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between the terminals. The metal anode gate structure determines the capacitors from gate–to–drain (Cgd), and gate–
to–source (C gs ). The PN junction formed during the
fabrication of the MOSFET results in a junction capacitance
from drain–to–source (Cds).
These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data
sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The
Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate. In the latter case the numbers are lower.
However, neither method represents the actual operating conditions in RF applications.
DRAIN
Cgd
GATE
Cds
Cgs
Ciss = Cgd = Cgs
Coss = Cgd = Cds
Crss = Cgd
SOURCE
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain data presented, Figure 4 may give the designer additional information
on the capabilities of this device. The graph represents the
small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors.
REV 9
8
Since this test is performed at a fast sweep speed, heating of
the device does not occur. Thus, in normal use, the higher
temperatures may degrade these characteristics to some extent.
DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, VDS(on), occurs in the
linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain
current. For MOSFETs, VDS(on) has a positive temperature
coefficient and constitutes an important design consideration
at high temperatures, because it contributes to the power
dissipation within the device.
GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is
electrically isolated from the source by a layer of oxide. The
input resistance is very high — on the order of 109 ohms —
resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage
slightly in excess of the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating. Exceeding the rated VGS can result in permanent
damage to the oxide layer in the gate region.
Gate Termination — The gate of this device is essentially
capacitor. Circuits that leave the gate open–circuited or floating should be avoided. These conditions can result in turn–
on of the device due to voltage build–up on the input
capacitor due to leakage currents or pickup.
Gate Protection — This device does not have an internal
monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended.
Using a resistor to keep the gate–to–source impedance
low also helps damp transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
HANDLING CONSIDERATIONS
When shipping, the devices should be transported only in
antistatic bags or conductive foam. Upon removal from the
packaging, careful handling procedures should be adhered
to. Those handling the devices should wear grounding straps
and devices not in the antistatic packaging should be kept in
metal tote bins. MOSFETs should be handled by the case
and not by the leads, and when testing the device, all leads
should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it
is designed for, soldering should be done with a grounded
iron.
DESIGN CONSIDERATIONS
The MRF141 is an RF Power, MOS, N–channel enhancement mode field–effect transistor (FET) designed for HF and
VHF power amplifier applications.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
REV 9
9
The major advantages of RF power MOSFETs include
high gain, low noise, simple bias systems, relative immunity
from thermal runaway, and the ability to withstand severely
mismatched loads without suffering damage. Power output
can be varied over a wide range with a low power dc control
signal.
DC BIAS
The MRF141 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate.
RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF141 was characterized at
IDQ = 250 mA, each side, which is the suggested minimum
value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical
parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate
bias sytem.
GAIN CONTROL
Power output of the MRF141 may be controlled from its
rated value down to zero (negative gain) by varying the dc
gate voltage. This feature facilitates the design of manual
gain control, AGC/ALC and modulation systems.
PACKAGE DIMENSIONS
A
U
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
M
1
M
Q
DIM
A
B
C
D
E
H
J
K
M
Q
R
U
4
R
2
B
3
D
K
J
H
C
E
SEATING
PLANE
CASE 211–11
ISSUE N
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 9
10
INCHES
MIN
MAX
0.960
0.990
0.465
0.510
0.229
0.275
0.216
0.235
0.084
0.110
0.144
0.178
0.003
0.007
0.435
–––
45 _NOM
0.115
0.130
0.246
0.255
0.720
0.730
STYLE 2:
PIN 1.
2.
3.
4.
SOURCE
GATE
SOURCE
DRAIN
MILLIMETERS
MIN
MAX
24.39
25.14
11.82
12.95
5.82
6.98
5.49
5.96
2.14
2.79
3.66
4.52
0.08
0.17
11.05
–––
45 _NOM
2.93
3.30
6.25
6.47
18.29
18.54