Order this document by MRF151G/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line RF Power Field-Effect Transistor MRF151G N–Channel Enhancement–Mode MOSFET Designed for broadband commercial and military applications at frequencies to 175 MHz. The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands. • Guaranteed Performance at 175 MHz, 50 V: Output Power — 300 W Gain — 14 dB (16 dB Typ) Efficiency — 50% 300 W, 50 V, 175 MHz N–CHANNEL BROADBAND RF POWER MOSFET • Low Thermal Resistance — 0.35°C/W • Ruggedness Tested at Rated Output Power • Nitride Passivated Die for Enhanced Reliability D G S (FLANGE) G CASE 375–04, STYLE 2 D MAXIMUM RATINGS Rating Symbol Value Unit Drain–Source Voltage VDSS 125 Vdc Drain–Gate Voltage VDGO 125 Vdc VGS ± 40 Vdc Drain Current — Continuous ID 40 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 500 2.85 Watts W/°C Storage Temperature Range Tstg – 65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Max Unit RθJC 0.35 °C/W Gate–Source Voltage THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 9 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit V(BR)DSS 125 — — Vdc Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0) IDSS — — 5.0 mAdc Gate–Body Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 1.0 µAdc Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) VGS(th) 1.0 3.0 5.0 Vdc Drain–Source On–Voltage (VGS = 10 V, ID = 10 A) VDS(on) 1.0 3.0 5.0 Vdc gfs 5.0 7.0 — mhos Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Ciss — 350 — pF Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Coss — 220 — pF Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) Crss — 15 — pF Gps 14 16 — dB Drain Efficiency (VDD = 50 V, Pout = 300 W, f = 175 MHz, ID (Max) = 11 A) η 50 55 — % Load Mismatch (VDD = 50 V, Pout = 300 W, IDQ = 500 mA, VSWR 5:1 at all Phase Angles) ψ OFF CHARACTERISTICS (Each Side) Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA) ON CHARACTERISTICS (Each Side) Forward Transconductance (VDS = 10 V, ID = 5.0 A) DYNAMIC CHARACTERISTICS (Each Side) FUNCTIONAL TESTS Common Source Amplifier Power Gain (VDD = 50 V, Pout = 300 W, IDQ = 500 mA, f = 175 MHz) No Degradation in Output Power R1 L2 + C4 BIAS 0 – 6 V C5 C9 + C10 50 V C11 – – L1 R2 C1 INPUT T2 D.U.T. OUTPUT C12 T1 C6 C2 C3 C7 R1 — 100 Ohms, 1/2 W R2 — 1.0 kOhm, 1/2 W C1 — Arco 424 C2 — Arco 404 C3, C4, C7, C8, C9 — 1000 pF Chip C5, C10 — 0.1 µF Chip C6 — 330 pF Chip C11 — 0.47 µF Ceramic Chip, Kemet 1215 or C11 — Equivalent (100 V) C12 — Arco 422 L1 — 10 Turns AWG #18 Enameled Wire, L1 — Close Wound, 1/4″ I.D. L2 — Ferrite Beads of Suitable Material for L2 — 1.5 – 2.0 µH Total Inductance T1 — 9:1 RF Transformer. Can be made of 15 – 18 Ohms T1 — Semirigid Co–Ax, 62 – 90 Mils O.D. T2 — 1:4 RF Transformer. Can be made of 16 – 18 Ohms T2 — Semirigid Co–Ax, 70–90 Mils O.D. Board Material — 0.062″ Fiberglass (G10), 1 oz. Copper Clad, 2 Sides, εr = 5.0 NOTE: For stability, the input transformer T1 must be loaded NOTE: with ferrite toroids or beads to increase the common NOTE: mode inductance. For operation below 100 MHz. The NOTE: same is required for the output transformer. Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or Equivalent. See Figure 6 for construction details of T1 and T2. Figure 1. 175 MHz Test Circuit REV 9 2 C8 TYPICAL CHARACTERISTICS 2000 500 Ciss 200 Coss 100 1000 50 Crss 20 0 VDS = 30 V f T, UNITY GAIN FREQUENCY (MHz) C, CAPACITANCE (pF) 1000 0 10 20 30 40 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) 0 50 Figure 2. Capacitance versus Drain–Source Voltage* 15 V 0 2 4 8 12 6 10 14 ID, DRAIN CURRENT (AMPS) 16 18 20 Figure 3. Common Source Unity Gain Frequency versus Drain Current* 1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9 – 25 100 ID = 5 A I D, DRAIN CURRENT (AMPS) VGS , DRAIN-SOURCE VOLTAGE (NORMALIZED) *Data shown applies to each half of MRF151G. 4A 2A 1A TC = 25°C 10 250 mA 0 100 mA 25 50 75 TC, CASE TEMPERATURE (°C) 100 1 2 20 VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS) Figure 4. Gate–Source Voltage versus Case Temperature* HIGH IMPEDANCE WINDINGS CENTER TAP Figure 5. DC Safe Operating Area 9:1 IMPEDANCE RATIO CENTER TAP 4:1 IMPEDANCE RATIO Figure 6. RF Transformer REV 9 3 CONNECTIONS TO LOW IMPEDANCE WINDINGS 200 TYPICAL CHARACTERISTICS 350 300 200 MHz 25 GPS, POWER GAIN (dB) Pout , OUTPUT POWER (WATTS) 30 175 MHz f = 150 MHz 250 200 150 VDD = 50 V IDQ = 2 x 250 mA 100 20 15 VDD = 50 V IDQ = 2 x 250 mA Pout = 150 W 10 50 0 0 5 Pin, INPUT POWER (WATTS) 5 10 2 Figure 7. Output Power versus Input Power 5 10 30 f, FREQUENCY (MHz) Figure 8. Power Gain versus Frequency f = 175 MHz 150 125 100 INPUT, Zin (GATE TO GATE) Zo = 10 Ω 30 125 150 f = 175 MHz 100 30 OUTPUT, ZOL* (DRAIN TO DRAIN) ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency. Figure 9. Input and Output Impedance REV 9 4 100 200 NOTE: S–Parameter data represents measurements taken from one chip only. Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) S11 f MHz |S11| 30 0.877 40 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ |S21| φ |S12| φ |S22| –174 10.10 77 0.008 19 0.707 –169 0.886 –175 7.47 69 0.009 24 0.715 –172 50 0.895 –175 5.76 63 0.008 33 0.756 –171 60 0.902 –176 4.73 58 0.009 39 0.764 –171 70 0.912 –176 3.86 52 0.009 46 0.784 –172 80 0.918 –177 3.19 48 0.010 54 0.802 –171 90 0.925 –177 2.69 45 0.011 62 0.808 –171 100 0.932 –177 2.34 40 0.013 67 0.850 –173 φ 110 0.936 –178 2.06 37 0.014 72 0.865 –175 120 0.942 –178 1.77 35 0.015 76 0.875 –173 130 0.946 –179 1.55 32 0.017 77 0.874 –172 140 0.950 –179 1.39 30 0.019 77 0.884 –174 150 0.954 –180 1.23 27 0.021 78 0.909 –175 160 0.957 –180 1.13 24 0.023 79 0.911 –176 170 0.960 180 1.01 22 0.024 82 0.904 –177 180 0.962 179 0.90 20 0.026 82 0.931 –176 190 0.964 179 0.84 19 0.028 80 0.929 –178 200 0.967 179 0.75 18 0.030 79 0.922 –179 210 0.967 178 0.71 16 0.032 80 0.937 –180 220 0.969 178 0.67 14 0.035 82 0.949 180 230 0.971 178 0.60 12 0.038 81 0.950 179 240 0.970 177 0.57 12 0.037 80 0.950 179 250 0.972 177 0.51 12 0.039 80 0.935 179 260 0.973 177 0.47 11 0.041 79 0.954 178 270 0.972 176 0.45 9 0.044 80 0.953 176 280 0.974 176 0.41 9 0.046 80 0.965 175 290 0.974 176 0.40 6 0.046 79 0.944 175 300 0.975 176 0.39 10 0.048 82 0.929 176 310 0.976 175 0.36 9 0.049 82 0.943 176 320 0.974 175 0.33 7 0.053 78 0.954 173 330 0.975 174 0.31 4 0.056 78 0.935 172 340 0.976 174 0.30 10 0.056 77 0.948 172 350 0.975 174 0.29 7 0.058 80 0.950 174 360 0.977 174 0.28 8 0.059 79 0.978 172 370 0.976 173 0.26 8 0.061 76 0.981 170 380 0.976 173 0.26 7 0.065 75 0.944 171 390 0.977 173 0.24 10 0.066 76 0.960 171 400 0.976 172 0.23 7 0.068 80 0.955 173 410 0.976 172 0.22 9 0.071 77 0.999 170 420 0.977 172 0.21 9 0.071 76 0.962 168 REV 9 5 φ Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) continued S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| φ |S21| φ |S12| φ |S22| φ 430 0.976 171 0.19 10 0.073 76 0.950 168 440 0.976 171 0.20 12 0.075 75 0.953 168 450 0.978 171 0.19 10 0.080 77 0.982 168 460 0.978 170 0.18 13 0.082 74 0.990 165 470 0.978 170 0.18 10 0.081 77 0.953 168 480 0.974 170 0.18 13 0.085 78 0.944 167 490 0.973 169 0.17 13 0.086 75 0.966 165 500 0.972 169 0.17 14 0.089 73 0.980 165 Table 2. Common Source S–Parameters (VDS = 50 V, ID = 0.38 A) S11 f MHz |S11| 30 0.834 40 0.869 50 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ |S21| φ |S12| φ |S22| –168 9.70 74 0.014 –10 0.747 –162 –169 6.47 62 0.013 –19 0.731 –159 0.883 –170 5.13 55 0.012 –24 0.754 –161 60 0.892 –171 4.03 51 0.011 –24 0.823 –164 70 0.901 –172 3.39 50 0.010 –20 0.912 –167 80 0.911 –173 2.80 47 0.009 –16 0.996 –168 90 0.924 –173 2.39 42 0.008 –14 1.100 –167 100 0.935 –174 1.99 35 0.006 –15 1.100 –167 110 0.945 –174 1.67 29 0.005 –17 1.070 –169 120 0.953 –175 1.36 25 0.004 –10 0.988 –167 130 0.958 –175 1.14 23 0.004 4 0.934 –169 140 0.962 –176 1.01 23 0.004 26 0.935 –170 150 0.964 –177 0.93 24 0.004 45 0.983 –172 160 0.966 –177 0.85 24 0.004 58 1.080 –173 170 0.969 –178 0.79 21 0.005 61 1.170 –173 180 0.972 –178 0.74 17 0.006 57 1.250 –173 190 0.975 –178 0.65 10 0.007 56 1.210 –174 200 0.977 –179 0.56 8 0.008 63 1.110 –174 210 0.979 –179 0.50 7 0.008 72 1.010 –174 220 0.980 –179 0.44 9 0.008 81 0.958 –172 230 0.980 –180 0.41 9 0.009 79 1.020 –175 240 0.981 180 0.38 12 0.009 74 1.020 –178 250 0.982 180 0.38 11 0.011 74 1.060 –176 260 0.983 179 0.34 8 0.014 76 1.180 –179 270 0.984 179 0.34 4 0.014 80 1.220 –180 280 0.984 179 0.30 3 0.013 79 1.180 –179 290 0.984 178 0.27 –4 0.012 73 1.040 –177 300 0.984 178 0.25 0 0.014 69 0.996 –178 310 0.984 178 0.24 4 0.017 74 0.951 –178 320 0.985 177 0.23 7 0.019 83 0.964 179 330 0.985 177 0.20 3 0.019 90 1.060 180 REV 9 6 φ φ Table 2. Common Source S–Parameters (VDS = 50 V, ID = 0.38 A) continued S11 S21 S12 S22 ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ f MHz |S11| φ |S21| 340 0.986 177 0.22 350 0.986 177 0.20 360 0.986 176 370 0.985 380 |S12| φ |S22| 7 0.017 87 1.100 179 5 0.017 76 1.140 –180 0.19 –2 0.021 67 1.160 180 176 0.17 –3 0.024 69 1.100 180 0.985 176 0.16 –3 0.024 77 1.070 –180 390 0.985 176 0.15 0 0.021 85 0.993 –180 400 0.985 175 0.14 3 0.018 85 0.962 –180 410 0.985 175 0.14 2 0.021 72 1.040 179 420 0.986 175 0.13 5 0.027 68 1.060 177 430 0.986 174 0.13 4 0.031 73 1.100 177 440 0.986 174 0.13 0 0.030 81 1.140 177 450 0.985 174 0.13 –1 0.025 87 1.110 178 460 0.984 174 0.11 –2 0.022 68 1.090 176 470 0.984 174 0.10 –1 0.025 59 1.020 177 480 0.985 173 0.10 3 0.034 66 0.993 179 490 0.986 173 0.10 1 0.038 79 1.020 178 500 0.986 173 0.10 6 0.035 93 1.010 177 REV 9 7 φ φ RF POWER MOSFET CONSIDERATIONS MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate–to–drain (Cgd), and gate– to–source (C gs ). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain–to–source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. DRAIN Cgd GATE Cds Cgs Ciss = Cgd = Cgs Coss = Cgd = Cds Crss = Cgd SOURCE LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain data presented, Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full–on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open–cirREV 9 8 cuited or floating should be avoided. These conditions can result in turn–on of the devices due to voltage build–up on the input capacitor due to leakage currents or pickup. Gate Protection — These devices do not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate–to–source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate–drain capacitance. If the gate–to–source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate–threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron. DESIGN CONSIDERATIONS The MRF151G is an RF Power, MOS, N–channel enhancement mode field–effect transistor (FET) designed for HF and VHF power amplifier applications. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF151G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF151G was characterized at IDQ = 250 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF151G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. PACKAGE DIMENSIONS U G 1 Q RADIUS 2 PL 0.25 (0.010) M T A –B– 3 4 D N J H –T– –A– SEATING PLANE C CASE 375–04 ISSUE D Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 9 9 M DIM A B C D E G H J K N Q R U 5 E B 2 R K M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. INCHES MIN MAX 1.330 1.350 0.370 0.410 0.190 0.230 0.215 0.235 0.050 0.070 0.430 0.440 0.102 0.112 0.004 0.006 0.185 0.215 0.845 0.875 0.060 0.070 0.390 0.410 1.100 BSC STYLE 2: PIN 1. 2. 3. 4. 5. MILLIMETERS MIN MAX 33.79 34.29 9.40 10.41 4.83 5.84 5.47 5.96 1.27 1.77 10.92 11.18 2.59 2.84 0.11 0.15 4.83 5.33 21.46 22.23 1.52 1.78 9.91 10.41 27.94 BSC DRAIN DRAIN GATE GATE SOURCE