MA-COM MRF151G

Order this document
by MRF151G/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RF Power Field-Effect Transistor
MRF151G
N–Channel Enhancement–Mode MOSFET
Designed for broadband commercial and military applications at frequencies
to 175 MHz. The high power, high gain and broadband performance of this
device makes possible solid state transmitters for FM broadcast or TV channel
frequency bands.
• Guaranteed Performance at 175 MHz, 50 V:
Output Power — 300 W
Gain — 14 dB (16 dB Typ)
Efficiency — 50%
300 W, 50 V, 175 MHz
N–CHANNEL
BROADBAND
RF POWER MOSFET
• Low Thermal Resistance — 0.35°C/W
• Ruggedness Tested at Rated Output Power
• Nitride Passivated Die for Enhanced Reliability
D
G
S
(FLANGE)
G
CASE 375–04, STYLE 2
D
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain–Source Voltage
VDSS
125
Vdc
Drain–Gate Voltage
VDGO
125
Vdc
VGS
± 40
Vdc
Drain Current — Continuous
ID
40
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
500
2.85
Watts
W/°C
Storage Temperature Range
Tstg
– 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Max
Unit
RθJC
0.35
°C/W
Gate–Source Voltage
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 9
1
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)DSS
125
—
—
Vdc
Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0)
IDSS
—
—
5.0
mAdc
Gate–Body Leakage Current (VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA)
VGS(th)
1.0
3.0
5.0
Vdc
Drain–Source On–Voltage (VGS = 10 V, ID = 10 A)
VDS(on)
1.0
3.0
5.0
Vdc
gfs
5.0
7.0
—
mhos
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Ciss
—
350
—
pF
Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Coss
—
220
—
pF
Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz)
Crss
—
15
—
pF
Gps
14
16
—
dB
Drain Efficiency
(VDD = 50 V, Pout = 300 W, f = 175 MHz, ID (Max) = 11 A)
η
50
55
—
%
Load Mismatch
(VDD = 50 V, Pout = 300 W, IDQ = 500 mA,
VSWR 5:1 at all Phase Angles)
ψ
OFF CHARACTERISTICS (Each Side)
Drain–Source Breakdown Voltage (VGS = 0, ID = 100 mA)
ON CHARACTERISTICS (Each Side)
Forward Transconductance (VDS = 10 V, ID = 5.0 A)
DYNAMIC CHARACTERISTICS (Each Side)
FUNCTIONAL TESTS
Common Source Amplifier Power Gain
(VDD = 50 V, Pout = 300 W, IDQ = 500 mA, f = 175 MHz)
No Degradation in Output Power
R1
L2
+
C4
BIAS 0 – 6 V
C5
C9
+
C10
50 V
C11
–
–
L1
R2
C1
INPUT
T2
D.U.T.
OUTPUT
C12
T1
C6
C2
C3
C7
R1 — 100 Ohms, 1/2 W
R2 — 1.0 kOhm, 1/2 W
C1 — Arco 424
C2 — Arco 404
C3, C4, C7, C8, C9 — 1000 pF Chip
C5, C10 — 0.1 µF Chip
C6 — 330 pF Chip
C11 — 0.47 µF Ceramic Chip, Kemet 1215 or
C11 — Equivalent (100 V)
C12 — Arco 422
L1 — 10 Turns AWG #18 Enameled Wire,
L1 — Close Wound, 1/4″ I.D.
L2 — Ferrite Beads of Suitable Material for
L2 — 1.5 – 2.0 µH Total Inductance
T1 — 9:1 RF Transformer. Can be made of 15 – 18 Ohms
T1 — Semirigid Co–Ax, 62 – 90 Mils O.D.
T2 — 1:4 RF Transformer. Can be made of 16 – 18 Ohms
T2 — Semirigid Co–Ax, 70–90 Mils O.D.
Board Material — 0.062″ Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, εr = 5.0
NOTE: For stability, the input transformer T1 must be loaded
NOTE: with ferrite toroids or beads to increase the common
NOTE: mode inductance. For operation below 100 MHz. The
NOTE: same is required for the output transformer.
Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or
Equivalent.
See Figure 6 for construction details of T1 and T2.
Figure 1. 175 MHz Test Circuit
REV 9
2
C8
TYPICAL CHARACTERISTICS
2000
500
Ciss
200
Coss
100
1000
50
Crss
20
0
VDS = 30 V
f T, UNITY GAIN FREQUENCY (MHz)
C, CAPACITANCE (pF)
1000
0
10
20
30
40
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
0
50
Figure 2. Capacitance versus
Drain–Source Voltage*
15 V
0
2
4
8
12
6
10
14
ID, DRAIN CURRENT (AMPS)
16
18
20
Figure 3. Common Source Unity Gain Frequency
versus Drain Current*
1.04
1.03
1.02
1.01
1
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
– 25
100
ID = 5 A
I D, DRAIN CURRENT (AMPS)
VGS , DRAIN-SOURCE VOLTAGE (NORMALIZED)
*Data shown applies to each half of MRF151G.
4A
2A
1A
TC = 25°C
10
250 mA
0
100 mA
25
50
75
TC, CASE TEMPERATURE (°C)
100
1
2
20
VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS)
Figure 4. Gate–Source Voltage versus
Case Temperature*
HIGH IMPEDANCE
WINDINGS
CENTER
TAP
Figure 5. DC Safe Operating Area
9:1
IMPEDANCE
RATIO
CENTER
TAP
4:1
IMPEDANCE
RATIO
Figure 6. RF Transformer
REV 9
3
CONNECTIONS
TO LOW IMPEDANCE
WINDINGS
200
TYPICAL CHARACTERISTICS
350
300
200 MHz
25
GPS, POWER GAIN (dB)
Pout , OUTPUT POWER (WATTS)
30
175 MHz
f = 150 MHz
250
200
150
VDD = 50 V
IDQ = 2 x 250 mA
100
20
15
VDD = 50 V
IDQ = 2 x 250 mA
Pout = 150 W
10
50
0
0
5
Pin, INPUT POWER (WATTS)
5
10
2
Figure 7. Output Power versus Input Power
5
10
30
f, FREQUENCY (MHz)
Figure 8. Power Gain versus Frequency
f = 175 MHz
150
125
100
INPUT, Zin
(GATE TO GATE)
Zo = 10 Ω
30
125 150
f = 175 MHz
100
30
OUTPUT, ZOL*
(DRAIN TO DRAIN)
ZOL* = Conjugate of the optimum load impedance
ZOL* = into which the device output operates at a
ZOL* = given output power, voltage and frequency.
Figure 9. Input and Output Impedance
REV 9
4
100
200
NOTE: S–Parameter data represents measurements taken from one chip only.
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A)
S11
f
MHz
|S11|
30
0.877
40
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
|S21|
φ
|S12|
φ
|S22|
–174
10.10
77
0.008
19
0.707
–169
0.886
–175
7.47
69
0.009
24
0.715
–172
50
0.895
–175
5.76
63
0.008
33
0.756
–171
60
0.902
–176
4.73
58
0.009
39
0.764
–171
70
0.912
–176
3.86
52
0.009
46
0.784
–172
80
0.918
–177
3.19
48
0.010
54
0.802
–171
90
0.925
–177
2.69
45
0.011
62
0.808
–171
100
0.932
–177
2.34
40
0.013
67
0.850
–173
φ
110
0.936
–178
2.06
37
0.014
72
0.865
–175
120
0.942
–178
1.77
35
0.015
76
0.875
–173
130
0.946
–179
1.55
32
0.017
77
0.874
–172
140
0.950
–179
1.39
30
0.019
77
0.884
–174
150
0.954
–180
1.23
27
0.021
78
0.909
–175
160
0.957
–180
1.13
24
0.023
79
0.911
–176
170
0.960
180
1.01
22
0.024
82
0.904
–177
180
0.962
179
0.90
20
0.026
82
0.931
–176
190
0.964
179
0.84
19
0.028
80
0.929
–178
200
0.967
179
0.75
18
0.030
79
0.922
–179
210
0.967
178
0.71
16
0.032
80
0.937
–180
220
0.969
178
0.67
14
0.035
82
0.949
180
230
0.971
178
0.60
12
0.038
81
0.950
179
240
0.970
177
0.57
12
0.037
80
0.950
179
250
0.972
177
0.51
12
0.039
80
0.935
179
260
0.973
177
0.47
11
0.041
79
0.954
178
270
0.972
176
0.45
9
0.044
80
0.953
176
280
0.974
176
0.41
9
0.046
80
0.965
175
290
0.974
176
0.40
6
0.046
79
0.944
175
300
0.975
176
0.39
10
0.048
82
0.929
176
310
0.976
175
0.36
9
0.049
82
0.943
176
320
0.974
175
0.33
7
0.053
78
0.954
173
330
0.975
174
0.31
4
0.056
78
0.935
172
340
0.976
174
0.30
10
0.056
77
0.948
172
350
0.975
174
0.29
7
0.058
80
0.950
174
360
0.977
174
0.28
8
0.059
79
0.978
172
370
0.976
173
0.26
8
0.061
76
0.981
170
380
0.976
173
0.26
7
0.065
75
0.944
171
390
0.977
173
0.24
10
0.066
76
0.960
171
400
0.976
172
0.23
7
0.068
80
0.955
173
410
0.976
172
0.22
9
0.071
77
0.999
170
420
0.977
172
0.21
9
0.071
76
0.962
168
REV 9
5
φ
Table 1. Common Source S–Parameters (VDS = 50 V, ID = 2 A) continued
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
φ
|S21|
φ
|S12|
φ
|S22|
φ
430
0.976
171
0.19
10
0.073
76
0.950
168
440
0.976
171
0.20
12
0.075
75
0.953
168
450
0.978
171
0.19
10
0.080
77
0.982
168
460
0.978
170
0.18
13
0.082
74
0.990
165
470
0.978
170
0.18
10
0.081
77
0.953
168
480
0.974
170
0.18
13
0.085
78
0.944
167
490
0.973
169
0.17
13
0.086
75
0.966
165
500
0.972
169
0.17
14
0.089
73
0.980
165
Table 2. Common Source S–Parameters (VDS = 50 V, ID = 0.38 A)
S11
f
MHz
|S11|
30
0.834
40
0.869
50
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
|S21|
φ
|S12|
φ
|S22|
–168
9.70
74
0.014
–10
0.747
–162
–169
6.47
62
0.013
–19
0.731
–159
0.883
–170
5.13
55
0.012
–24
0.754
–161
60
0.892
–171
4.03
51
0.011
–24
0.823
–164
70
0.901
–172
3.39
50
0.010
–20
0.912
–167
80
0.911
–173
2.80
47
0.009
–16
0.996
–168
90
0.924
–173
2.39
42
0.008
–14
1.100
–167
100
0.935
–174
1.99
35
0.006
–15
1.100
–167
110
0.945
–174
1.67
29
0.005
–17
1.070
–169
120
0.953
–175
1.36
25
0.004
–10
0.988
–167
130
0.958
–175
1.14
23
0.004
4
0.934
–169
140
0.962
–176
1.01
23
0.004
26
0.935
–170
150
0.964
–177
0.93
24
0.004
45
0.983
–172
160
0.966
–177
0.85
24
0.004
58
1.080
–173
170
0.969
–178
0.79
21
0.005
61
1.170
–173
180
0.972
–178
0.74
17
0.006
57
1.250
–173
190
0.975
–178
0.65
10
0.007
56
1.210
–174
200
0.977
–179
0.56
8
0.008
63
1.110
–174
210
0.979
–179
0.50
7
0.008
72
1.010
–174
220
0.980
–179
0.44
9
0.008
81
0.958
–172
230
0.980
–180
0.41
9
0.009
79
1.020
–175
240
0.981
180
0.38
12
0.009
74
1.020
–178
250
0.982
180
0.38
11
0.011
74
1.060
–176
260
0.983
179
0.34
8
0.014
76
1.180
–179
270
0.984
179
0.34
4
0.014
80
1.220
–180
280
0.984
179
0.30
3
0.013
79
1.180
–179
290
0.984
178
0.27
–4
0.012
73
1.040
–177
300
0.984
178
0.25
0
0.014
69
0.996
–178
310
0.984
178
0.24
4
0.017
74
0.951
–178
320
0.985
177
0.23
7
0.019
83
0.964
179
330
0.985
177
0.20
3
0.019
90
1.060
180
REV 9
6
φ
φ
Table 2. Common Source S–Parameters (VDS = 50 V, ID = 0.38 A) continued
S11
S21
S12
S22
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
f
MHz
|S11|
φ
|S21|
340
0.986
177
0.22
350
0.986
177
0.20
360
0.986
176
370
0.985
380
|S12|
φ
|S22|
7
0.017
87
1.100
179
5
0.017
76
1.140
–180
0.19
–2
0.021
67
1.160
180
176
0.17
–3
0.024
69
1.100
180
0.985
176
0.16
–3
0.024
77
1.070
–180
390
0.985
176
0.15
0
0.021
85
0.993
–180
400
0.985
175
0.14
3
0.018
85
0.962
–180
410
0.985
175
0.14
2
0.021
72
1.040
179
420
0.986
175
0.13
5
0.027
68
1.060
177
430
0.986
174
0.13
4
0.031
73
1.100
177
440
0.986
174
0.13
0
0.030
81
1.140
177
450
0.985
174
0.13
–1
0.025
87
1.110
178
460
0.984
174
0.11
–2
0.022
68
1.090
176
470
0.984
174
0.10
–1
0.025
59
1.020
177
480
0.985
173
0.10
3
0.034
66
0.993
179
490
0.986
173
0.10
1
0.038
79
1.020
178
500
0.986
173
0.10
6
0.035
93
1.010
177
REV 9
7
φ
φ
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between the terminals. The metal anode gate structure determines the capacitors from gate–to–drain (Cgd), and gate–
to–source (C gs ). The PN junction formed during the
fabrication of the RF MOSFET results in a junction capacitance from drain–to–source (Cds).
These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data
sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The
Ciss can be specified in two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate. In the latter case the numbers are lower.
However, neither method represents the actual operating conditions in RF applications.
DRAIN
Cgd
GATE
Cds
Cgs
Ciss = Cgd = Cgs
Coss = Cgd = Cds
Crss = Cgd
SOURCE
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain data presented, Figure 3 may give the designer additional information
on the capabilities of this device. The graph represents the
small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors.
Since this test is performed at a fast sweep speed, heating of
the device does not occur. Thus, in normal use, the higher
temperatures may degrade these characteristics to some extent.
DRAIN CHARACTERISTICS
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, VDS(on), occurs in the
linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain
current. For MOSFETs, VDS(on) has a positive temperature
coefficient and constitutes an important design consideration
at high temperatures, because it contributes to the power
dissipation within the device.
GATE CHARACTERISTICS
The gate of the MOSFET is a polysilicon material, and is
electrically isolated from the source by a layer of oxide. The
input resistance is very high — on the order of 109 ohms —
resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage
slightly in excess of the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating. Exceeding the rated VGS can result in permanent
damage to the oxide layer in the gate region.
Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open–cirREV 9
8
cuited or floating should be avoided. These conditions can
result in turn–on of the devices due to voltage build–up on
the input capacitor due to leakage currents or pickup.
Gate Protection — These devices do not have an internal
monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended.
Using a resistor to keep the gate–to–source impedance
low also helps damp transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
HANDLING CONSIDERATIONS
When shipping, the devices should be transported only in
antistatic bags or conductive foam. Upon removal from the
packaging, careful handling procedures should be adhered
to. Those handling the devices should wear grounding straps
and devices not in the antistatic packaging should be kept in
metal tote bins. MOSFETs should be handled by the case
and not by the leads, and when testing the device, all leads
should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it
is designed for, soldering should be done with a grounded
iron.
DESIGN CONSIDERATIONS
The MRF151G is an RF Power, MOS, N–channel enhancement mode field–effect transistor (FET) designed for
HF and VHF power amplifier applications.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power MOSFETs include
high gain, low noise, simple bias systems, relative immunity
from thermal runaway, and the ability to withstand severely
mismatched loads without suffering damage. Power output
can be varied over a wide range with a low power dc control
signal.
DC BIAS
The MRF151G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate.
RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF151G was characterized
at IDQ = 250 mA, each side, which is the suggested minimum
value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical
parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate
bias system.
GAIN CONTROL
Power output of the MRF151G may be controlled from its
rated value down to zero (negative gain) by varying the dc
gate voltage. This feature facilitates the design of manual
gain control, AGC/ALC and modulation systems.
PACKAGE DIMENSIONS
U
G
1
Q
RADIUS 2 PL
0.25 (0.010)
M
T A
–B–
3
4
D
N
J
H
–T–
–A–
SEATING
PLANE
C
CASE 375–04
ISSUE D
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 9
9
M
DIM
A
B
C
D
E
G
H
J
K
N
Q
R
U
5
E
B
2
R
K
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
INCHES
MIN
MAX
1.330
1.350
0.370
0.410
0.190
0.230
0.215
0.235
0.050
0.070
0.430
0.440
0.102
0.112
0.004
0.006
0.185
0.215
0.845
0.875
0.060
0.070
0.390
0.410
1.100 BSC
STYLE 2:
PIN 1.
2.
3.
4.
5.
MILLIMETERS
MIN
MAX
33.79
34.29
9.40
10.41
4.83
5.84
5.47
5.96
1.27
1.77
10.92
11.18
2.59
2.84
0.11
0.15
4.83
5.33
21.46
22.23
1.52
1.78
9.91
10.41
27.94 BSC
DRAIN
DRAIN
GATE
GATE
SOURCE