10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 flow3xMNPC 1 1200V/40A Features flow1 housing ● 3 phase mixed voltage component topology ● neutral point clamped inverter ● reactive power capability 12 mm ● low inductance layout Target Applications 17 mm Schematic ● solar inverter ● UPS Types ● 10-FY12M3A040SH-M749F08 ● 10-F112M3A040SH-M749F09 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 31 41 A 120 A 75 114 W 120 A 10 800 µs V Half Bridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax Th=80°C Tc=80°C Power dissipation per IGBT Ptot Tj=Tjmax Turn off safe operating area IC Tj≤150°C Short circuit ratings tSC VCC Tj≤150°C VGE=15V Gate-emitter peak voltage VGE ±20 A Tjmax 175 °C VRRM 600 V 18 26 A 300 A 30 45 W 150 °C Maximum Junction Temperature V CE<=VCES Neutral Point FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Surge forward current IFSM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 23 29 A 90 A 37 56 W ±20 V 6 360 µs 90 A 175 °C 1200 V 12 14 A 65 A 28 43 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Neutral Point IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tj=Tjmax Tc=80°C Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 600V Tvj max= 150°C Tjmax V Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Surge forward current IFSM 10 ms, sin 180° Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C T j = 150 °C Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis DC voltage t=2s 2 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,2 5,8 6,4 1,7 1,96 2,29 2,4 Half Bridge IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 40 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH 0,005 120 Rgoff=8 Ω Rgon=8 Ω ±15 350 28 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0015 70 72 13 15 166 217 45 79 0,31 0,52 0,67 1,16 ns mWs 2300 f=1MHz 0 25 ±15 960 Tj=25°C 150 pF 135 40 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 185 nC 1,27 K/W Neutral Point FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 600 IRRM trr Qrr Rgoff=8 Ω ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright Vincotech 30 Thermal grease thickness≤50um λ = 1 W/mK 350 28 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,28 1,74 100 500 32 41 18 40 0,32 0,92 8818 3866 0,03 0,12 2,34 3 2,5 V µA A ns µC A/µs mWs K/W Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj 0,002 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Unit Min Typ Max 5 5,80 6,5 1,1 1,52 1,70 1,9 Neutral Point IGBT Gate emitter threshold voltage VGE(th) VCE=VGE Collector-emitter saturation voltage VCE(sat) Collector-emitter cut-off incl diode ICES 15 Gate-emitter leakage current IGES 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH 0,0016 300 600 Rgoff=16 Ω Rgon=16 Ω ±15 350 28 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr td(off) Turn-off energy loss per pulse Thermal resistance chip to heatsink per chip 30 V 105 105 11 16 164 187 74 91 0,49 0,66 0,76 0,98 ns mWs 1630 f=1MHz 0 Tj=25°C 25 108 pF 50 15 480 30 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 167 nC 2,56 K/W Half Bridge FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 15 1200 IRRM trr Qrr Rgoff=16 Ω ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 350 28 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,28 2,39 2,71 60 41 44 44 110 1,47 2,73 5094 3534 0,35 0,71 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 3,36 K/W 21511 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant -4,5 +4,5 210 mW Tj=25°C 3,5 mW/K K B-value B(25/50) Tj=25°C 3884 B-value B(25/100) Tj=25°C 3964 Vincotech NTC Reference copyright Vincotech Tj=25°C 4 % Tj=25°C K F Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 180 IC (A) IC (A) 180 150 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 5 IF (A) IC (A) 125 40 100 30 75 20 50 10 25 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 5 1 250 2 3 V F (V) 4 µs Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,0 E (mWs) E (mWs) 2,0 Eoff High T 1,5 1,5 Eoff High T Eoff Low T Eon High T Eon High T 1,0 1,0 Eoff Low T Eon Low T 0,5 0,5 0,0 0,0 Eon Low T 0 15 30 45 60 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 R G ( Ω) 40 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = A 28 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,15 E (mWs) 0,20 Erec High T 0,12 0,15 0,09 0,10 Erec High T 0,06 0,05 0,03 Erec Low T Erec Low T 0 0,00 0 15 30 45 I C (A) 0 60 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 10 20 30 R G ( Ω) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 28 A 6 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff tdon tf 0,10 0,10 tf tdon tr tr 0,01 0,01 0,00 0,00 0 15 30 45 I C (A) 0 60 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 10 20 30 R G ( Ω) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = A 28 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,10 t rr(ms) 0,05 trr High T 0,04 0,08 0,03 0,06 0,02 trr High T 0,04 trr Low T trr Low T 0,02 0,01 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 15 25/125 350 ±15 8 copyright Vincotech 30 45 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 7 10 25/125 350 28 ±15 20 30 R gon ( Ω) 40 °C V A V Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,2 Qrr (mC) Qrr (mC) 1,5 Qrr High T 1,2 0,9 Qrr High T 0,9 0,6 0,6 Qrr Low T 0,3 0,3 Qrr Low T 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 15 30 45 60 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 8 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 25/125 350 28 ±15 20 30 40 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 60 IrrM (A) 60 R gon ( Ω) IRRM High T 50 50 40 40 IRRM Low T 30 30 20 20 IRRM High T 10 10 0 IRRM Low T 0 0 At Tj = VCE = VGE = Rgon = 15 25/125 350 ±15 8 copyright Vincotech 30 45 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 8 10 25/125 350 28 ±15 20 30 R gon ( Ω) 40 °C V A V Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 15000 direc / dt (A/ms) 12000 dIrec/dt T direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dt T dIrec/dt T dI0/dt T 12000 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/125 350 ±15 8 30 45 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 28 ±15 20 30 40 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 -2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 1012 10 tp / T 1,27 K/W 10-5 10-4 At D= RthJH = 2,34 10-3 R (C/W) 0,18 0,64 0,30 0,10 0,06 R (C/W) 0,11 0,36 1,41 0,28 0,19 9 100 t p (s) 101 K/W FWD thermal model values copyright Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 8,2E-01 1,3E-01 4,8E-02 9,3E-03 8,0E-04 10-2 Tau (s) 2,4E+00 3,0E-01 6,5E-02 1,1E-02 1,6E-03 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 240 IC (A) Ptot (W) 75 200 60 160 45 120 30 80 15 40 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 10 50 150 100 150 T h ( o C) 200 °C Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Buck Half Bridge IGBT and Neutral Point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 16 VGE (V) 4 IC (A) 10 IGBT Figure 26 Gate voltage vs Gate charge 14 240V 103 12 100uS 10mS 100mS 960V 1mS 10 102 8 DC 101 6 4 100 2 0 10 0 100 At D= 10 1 10 2 V CE (V) 10 0 3 At IC = single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = Tj = 50 40 100 150 Q g (nC) 200 A IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 100 ICMAX VCEMAX 60 Ic CHIP Ic MODULE 80 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 ºC DC link minus=DC link plus Switching mode : copyright Vincotech 3 level switching 11 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Boost Neutral Point IGBT and Half Bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 80 IF (A) IC (A) 50 5 40 60 Tj = 25°C 30 40 Tj = Tjmax-25°C 20 Tj = Tjmax-25°C 20 10 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 12 1 250 2 3 4 V F (V) 5 µs Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Boost Neutral Point IGBT and Half Bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,0 E (mWs) E (mWs) 2,0 Eon High T Eoff High T Eon Low T 1,5 1,5 Eon High T Eoff Low T Eon Low T 1,0 Eoff High T 1,0 Eoff Low T 0,5 0,5 0,0 0,0 0 15 30 45 0 60 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = Ω 16 Rgoff = 16 Ω 20 40 60 R G( Ω ) 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 28 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) 1,0 1,0 E (mWs) Erec High T E (mWs) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,8 0,8 Erec Low T 0,6 0,6 Erec High T 0,4 0,4 Erec Low T 0,2 0,2 0,0 0,0 0 15 30 45 I C (A) 0 60 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 20 40 60 RG (Ω ) 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 28 A 13 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Boost Neutral Point IGBT and Half Bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tdon tdon 0,10 0,10 tf tf tr 0,01 0,01 tr 0,00 0,00 0 15 30 45 I C (A) 0 60 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 16 Ω Rgoff = Ω 16 20 40 60 80 R G( Ω ) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 28 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,30 trr High T t rr(ms) trr High T t rr(ms) 0,12 0,25 0,09 0,20 0,06 0,15 trr Low T trr Low T 0,10 0,03 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 15 25/125 350 ±15 16 copyright Vincotech 30 45 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 14 15 25/125 350 28 ±15 30 45 60 R gon ( Ω) 75 °C V A V Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Boost Neutral Point IGBT and Half Bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 4 Qrr (mC) Qrr (mC) 4 Qrr High T 3 3 Qrr High T Qrr Low T 2 2 Qrr Low T 1 1 0 0 0 At At Tj = VCE = VGE = Rgon = 10 20 30 40 50 60 I C (A) °C V V Ω 25/125 350 ±15 16 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 15 At Tj = VR = IF = VGE = 25/125 350 28 ±15 30 45 60 75 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 60 IrrM (A) IrrM (A) IRRM High T IRRM Low T 50 80 40 60 30 40 20 IRRM High T 20 IRRM Low T 10 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/125 350 ±15 16 copyright Vincotech 30 45 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 15 15 25/125 350 28 ±15 30 45 60 R gon ( Ω) 75 °C V A V Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Boost Neutral Point IGBT and Half Bridge FWD FWD 6000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) di0/dt T 5000 15000 dIrec/dt T dI0/dt T 12000 4000 9000 3000 6000 2000 3000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 15 25/125 350 28 ±15 30 45 60 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 75 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 2,56 10-3 10-2 10-1 100 t p (s) 2 10101 K/W 10-5 10-4 10-3 At D= RthJH = tp / T 3,36 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,10 0,25 1,64 0,32 0,15 0,11 R (C/W) 0,11 0,25 1,48 0,67 0,50 0,34 Tau (s) 3,0E+00 4,8E-01 7,9E-02 1,9E-02 4,2E-03 5,1E-04 copyright Vincotech 16 10-2 10-1 100 t p (s) 101 2 10 Tau (s) 2,6E+00 3,8E-01 7,2E-02 1,8E-02 3,4E-03 7,0E-04 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Boost Neutral Point IGBT and Half Bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 120 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 80 200 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 18 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Switching Definitions Neutral Point General conditions = 125 °C Tj = 16 Ω Rgon Rgoff = 16 Ω Boost IGBT Figure 1 Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 300 tdoff % % VCE IC 250 100 VGE 90% VCE 90% 200 75 VGE 150 IC 50 tEoff VCE 100 VGE tdon 25 50 IC 1% 0 VGE 10% 0 -25 -0,2 IC 10% VCE 3% tEon -50 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 350 28 0,19 0,39 0,4 time (us) 0,6 2,9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Boost IGBT Figure 3 3,1 -15 15 350 28 0,11 0,26 3,2 3,3 V V V A µs µs Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 300 VCE fitted % % IC IC 250 100 IC 90% 200 75 IC 60% 150 50 IC 40% 100 VCE IC 90% tr 25 50 IC10% 0 -50 3,05 -25 0 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,2 350 28 0,09 IC 10% 0 tf 0,3 time (us) 0,4 VC (100%) = IC (100%) = tr = V A µs 19 3,1 3,15 350 28 0,02 3,2 time(us) 3,25 V A µs Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Switching Definitions Neutral Point Boost IGBT Figure 5 Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % Pon % IC 1% Eoff 100 150 Poff 75 Eon 100 50 50 25 VGE 10% VGE 90% VCE 3% 0 tEon 0 tEoff -50 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 9,70 0,98 0,39 0,4 time (us) 2,9 0,6 Pon (100%) = Eon (100%) = tEon = kW mJ µs Boost IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,1 9,70 0,66 0,26 3,2 time(us) 3,3 kW mJ µs Buck FWD Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 3 150 % 15 Id 100 trr 10 50 5 Vd fitted 0 IRRM 10% 0 -50 -5 -100 -10 IRRM 90% -150 -15 IRRM 100% -20 -200 -50 0 50 100 150 200 250 300 3 3,05 3,1 3,15 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 350 28 277 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 350 28 -44 0,11 3,2 3,25 time(us) 3,3 V A A µs Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Switching Definitions Neutral Point Boost IGBT Figure 9 Buck FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Id Prec 100 Erec 100 Qrr tQrr 50 tErec 75 0 50 -50 25 -100 0 -150 -25 -200 3 3,2 Id (100%) = Qrr (100%) = tQrr = 3,4 3,6 28 2,73 1,00 A µC µs 3,8 4 time(us) 3 4,2 3,2 Prec (100%) = Erec (100%) = tErec = 3,4 3,6 9,70 0,71 1,00 kW mJ µs 3,8 4 4,2 time(us) Measurement circuits Figure 11 Neutral Point stage switching measurement circuit copyright Vincotech 21 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Switching Definitions Half Bridge General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω Buck IGBT Figure 1 Buck IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 IC % tdoff % VCE 100 200 VGE 90% VCE 90% 75 150 VGE IC 50 VCE 100 tEoff VGE tdon 25 50 0 0 VGE 10% tEon IC 1% -25 -0,2 VCE 3% IC 10% -50 0 0,2 0,4 0,6 0,8 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 350 28 0,22 0,61 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Buck IGBT Figure 3 3,1 -15 15 350 28 0,07 0,20 3,2 time(us) 3,3 V V V A µs µs Buck IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 125 % 3 Turn-on Switching Waveforms & definition of tr 250 fitted IC IC % VCE 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 IC10% 0 -50 3,05 -25 0 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,2 350 28 0,08 IC 10% 0 tf 0,3 time (us) 0,4 VC (100%) = IC (100%) = tr = V A µs 22 3,07 3,09 350 28 0,02 3,11 3,13 time(us) 3,15 V A µs Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Switching Definitions Half Bridge Buck IGBT Figure 5 Buck IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % % IC 1% Poff 100 Eoff Pon 150 75 Eon 100 50 50 25 VGE 10% VGE 90% VCE 3% 0 tEon 0 tEoff -50 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 9,75 1,16 0,61 0,4 0,6 2,9 time (us) 0,8 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Buck IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,1 9,75 0,52 0,20 3,2 time(us) 3,3 kW mJ µs Boost FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % 15 100 Id 10 trr 50 5 Vd 0 fitted 0 IRRM 10% -5 -50 -10 -100 -15 -20 -50 0 50 100 150 200 250 -150 3,07 300 IRRM 90% IRRM 100% 3,09 3,11 3,13 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 350 28 299,41 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 23 350 28 -41 0,04 3,15 time(us) 3,17 V A A µs Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Switching Definitions Half Bridge Buck IGBT Figure 9 Boost FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec Qrr 100 100 tQrr 50 75 0 50 -50 25 tErec Prec -100 -150 3,04 Id (100%) = Qrr (100%) = tQrr = 0 3,08 3,12 28 0,92 0,08 3,16 time(us) -25 3,05 3,2 Prec (100%) = Erec (100%) = tErec = A µC µs 3,1 3,15 9,75 0,12 0,08 3,2 time(us) 3,25 kW mJ µs Measurement circuits Figure 11 Half Bridge stage switching measurement circuit copyright Vincotech 24 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 17mm housing Ordering Code 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 in DataMatrix as M749F08 M749F09 in packaging barcode as M749F08 M749F09 Outline Pinout copyright Vincotech 25 Revision: 3 10-FY12M3A040SH-M749F08 10-F112M3A040SH-M749F09 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 26 Revision: 3