10-FY12M3A040SH-M749F08 10-F112M3A040SH

10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
flow3xMNPC 1
1200V/40A
Features
flow1 housing
● 3 phase mixed voltage component topology
● neutral point clamped inverter
● reactive power capability
12 mm
● low inductance layout
Target Applications
17 mm
Schematic
● solar inverter
● UPS
Types
● 10-FY12M3A040SH-M749F08
● 10-F112M3A040SH-M749F09
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
31
41
A
120
A
75
114
W
120
A
10
800
µs
V
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
Th=80°C
Tc=80°C
Power dissipation per IGBT
Ptot
Tj=Tjmax
Turn off safe operating area
IC
Tj≤150°C
Short circuit ratings
tSC
VCC
Tj≤150°C
VGE=15V
Gate-emitter peak voltage
VGE
±20
A
Tjmax
175
°C
VRRM
600
V
18
26
A
300
A
30
45
W
150
°C
Maximum Junction Temperature
V CE<=VCES
Neutral Point FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Surge forward current
IFSM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
23
29
A
90
A
37
56
W
±20
V
6
360
µs
90
A
175
°C
1200
V
12
14
A
65
A
28
43
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tj=Tjmax
Tc=80°C
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 600V
Tvj max= 150°C
Tjmax
V
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Surge forward current
IFSM
10 ms, sin 180°
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
T j = 150 °C
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
DC voltage
t=2s
2
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,2
5,8
6,4
1,7
1,96
2,29
2,4
Half Bridge IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
40
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
0,005
120
Rgoff=8 Ω
Rgon=8 Ω
±15
350
28
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,0015
70
72
13
15
166
217
45
79
0,31
0,52
0,67
1,16
ns
mWs
2300
f=1MHz
0
25
±15
960
Tj=25°C
150
pF
135
40
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
185
nC
1,27
K/W
Neutral Point FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
600
IRRM
trr
Qrr
Rgoff=8 Ω
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
copyright Vincotech
30
Thermal grease
thickness≤50um
λ = 1 W/mK
350
28
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,28
1,74
100
500
32
41
18
40
0,32
0,92
8818
3866
0,03
0,12
2,34
3
2,5
V
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
0,002
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Unit
Min
Typ
Max
5
5,80
6,5
1,1
1,52
1,70
1,9
Neutral Point IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
Collector-emitter saturation voltage
VCE(sat)
Collector-emitter cut-off incl diode
ICES
15
Gate-emitter leakage current
IGES
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
0,0016
300
600
Rgoff=16 Ω
Rgon=16 Ω
±15
350
28
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
td(off)
Turn-off energy loss per pulse
Thermal resistance chip to heatsink per chip
30
V
105
105
11
16
164
187
74
91
0,49
0,66
0,76
0,98
ns
mWs
1630
f=1MHz
0
Tj=25°C
25
108
pF
50
15
480
30
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
167
nC
2,56
K/W
Half Bridge FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
15
1200
IRRM
trr
Qrr
Rgoff=16 Ω
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
350
28
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,28
2,39
2,71
60
41
44
44
110
1,47
2,73
5094
3534
0,35
0,71
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,36
K/W
21511
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
-4,5
+4,5
210
mW
Tj=25°C
3,5
mW/K
K
B-value
B(25/50)
Tj=25°C
3884
B-value
B(25/100)
Tj=25°C
3964
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
4
%
Tj=25°C
K
F
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
180
IC (A)
IC (A)
180
150
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
5
IF (A)
IC (A)
125
40
100
30
75
20
50
10
25
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
5
1
250
2
3
V F (V)
4
µs
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,0
E (mWs)
E (mWs)
2,0
Eoff High T
1,5
1,5
Eoff High T
Eoff Low T
Eon High T
Eon High T
1,0
1,0
Eoff Low T
Eon Low T
0,5
0,5
0,0
0,0
Eon Low T
0
15
30
45
60
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G ( Ω)
40
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
A
28
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,15
E (mWs)
0,20
Erec High T
0,12
0,15
0,09
0,10
Erec High T
0,06
0,05
0,03
Erec Low T
Erec Low T
0
0,00
0
15
30
45
I C (A)
0
60
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
10
20
30
R G ( Ω)
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
28
A
6
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
tdon
tf
0,10
0,10
tf
tdon
tr
tr
0,01
0,01
0,00
0,00
0
15
30
45
I C (A)
0
60
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G ( Ω)
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
28
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,10
t rr(ms)
0,05
trr High T
0,04
0,08
0,03
0,06
0,02
trr High T
0,04
trr Low T
trr Low T
0,02
0,01
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
350
±15
8
copyright Vincotech
30
45
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
10
25/125
350
28
±15
20
30
R gon ( Ω)
40
°C
V
A
V
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,2
Qrr (mC)
Qrr (mC)
1,5
Qrr High T
1,2
0,9
Qrr High T
0,9
0,6
0,6
Qrr Low T
0,3
0,3
Qrr Low T
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
15
30
45
60
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
8
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
25/125
350
28
±15
20
30
40
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
60
IrrM (A)
60
R gon ( Ω)
IRRM High T
50
50
40
40
IRRM Low T
30
30
20
20
IRRM High T
10
10
0
IRRM Low T
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
350
±15
8
copyright Vincotech
30
45
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
10
25/125
350
28
±15
20
30
R gon ( Ω)
40
°C
V
A
V
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
15000
direc / dt (A/ms)
12000
dIrec/dt T
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dt T
dIrec/dt T
dI0/dt T
12000
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
350
±15
8
30
45
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
28
±15
20
30
40
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
1012
10
tp / T
1,27
K/W
10-5
10-4
At
D=
RthJH =
2,34
10-3
R (C/W)
0,18
0,64
0,30
0,10
0,06
R (C/W)
0,11
0,36
1,41
0,28
0,19
9
100
t p (s)
101
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
8,2E-01
1,3E-01
4,8E-02
9,3E-03
8,0E-04
10-2
Tau (s)
2,4E+00
3,0E-01
6,5E-02
1,1E-02
1,6E-03
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
240
IC (A)
Ptot (W)
75
200
60
160
45
120
30
80
15
40
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
10
50
150
100
150
T h ( o C)
200
°C
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Buck
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
16
VGE (V)
4
IC (A)
10
IGBT
Figure 26
Gate voltage vs Gate charge
14
240V
103
12
100uS
10mS
100mS
960V
1mS
10
102
8
DC
101
6
4
100
2
0
10
0
100
At
D=
10
1
10
2
V CE (V)
10
0
3
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
Tj =
50
40
100
150
Q g (nC)
200
A
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
100
ICMAX
VCEMAX
60
Ic CHIP
Ic MODULE
80
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
ºC
DC link minus=DC link plus
Switching mode :
copyright Vincotech
3 level switching
11
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Boost
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
80
IF (A)
IC (A)
50
5
40
60
Tj = 25°C
30
40
Tj = Tjmax-25°C
20
Tj = Tjmax-25°C
20
10
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V) 12
0
At
tp =
µs
V
12
1
250
2
3
4
V F (V)
5
µs
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Boost
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,0
E (mWs)
E (mWs)
2,0
Eon High T
Eoff High T
Eon Low T
1,5
1,5
Eon High T
Eoff Low T
Eon Low T
1,0
Eoff High T
1,0
Eoff Low T
0,5
0,5
0,0
0,0
0
15
30
45
0
60
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
Ω
16
Rgoff =
16
Ω
20
40
60
R G( Ω )
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
28
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
1,0
1,0
E (mWs)
Erec High T
E (mWs)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,8
0,8
Erec Low T
0,6
0,6
Erec High T
0,4
0,4
Erec Low T
0,2
0,2
0,0
0,0
0
15
30
45
I C (A)
0
60
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
20
40
60
RG (Ω )
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
28
A
13
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Boost
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tdon
tdon
0,10
0,10
tf
tf
tr
0,01
0,01
tr
0,00
0,00
0
15
30
45
I C (A)
0
60
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
Ω
16
20
40
60
80
R G( Ω )
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
28
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,30
trr High T
t rr(ms)
trr High T
t rr(ms)
0,12
0,25
0,09
0,20
0,06
0,15
trr Low T
trr Low T
0,10
0,03
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
350
±15
16
copyright Vincotech
30
45
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
15
25/125
350
28
±15
30
45
60
R gon ( Ω)
75
°C
V
A
V
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Boost
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
4
Qrr (mC)
Qrr (mC)
4
Qrr High T
3
3
Qrr High T
Qrr Low T
2
2
Qrr Low T
1
1
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
20
30
40
50
60
I C (A)
°C
V
V
Ω
25/125
350
±15
16
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
15
At
Tj =
VR =
IF =
VGE =
25/125
350
28
±15
30
45
60
75
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
60
IrrM (A)
IrrM (A)
IRRM High T
IRRM Low T
50
80
40
60
30
40
20
IRRM High T
20
IRRM Low T
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
15
25/125
350
±15
16
copyright Vincotech
30
45
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
15
25/125
350
28
±15
30
45
60
R gon ( Ω)
75
°C
V
A
V
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Boost
Neutral Point IGBT and Half Bridge FWD
FWD
6000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
di0/dt T
5000
15000
dIrec/dt T
dI0/dt T
12000
4000
9000
3000
6000
2000
3000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
15
25/125
350
28
±15
30
45
60
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
75
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
2,56
10-3
10-2
10-1
100
t p (s)
2
10101
K/W
10-5
10-4
10-3
At
D=
RthJH =
tp / T
3,36
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,10
0,25
1,64
0,32
0,15
0,11
R (C/W)
0,11
0,25
1,48
0,67
0,50
0,34
Tau (s)
3,0E+00
4,8E-01
7,9E-02
1,9E-02
4,2E-03
5,1E-04
copyright Vincotech
16
10-2
10-1
100
t p (s)
101 2
10
Tau (s)
2,6E+00
3,8E-01
7,2E-02
1,8E-02
3,4E-03
7,0E-04
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Boost
Neutral Point IGBT and Half Bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
120
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
80
200
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
18
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Switching Definitions Neutral Point
General conditions
= 125 °C
Tj
= 16 Ω
Rgon
Rgoff
= 16 Ω
Boost IGBT
Figure 1
Boost IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
300
tdoff
%
%
VCE
IC
250
100
VGE 90%
VCE 90%
200
75
VGE
150
IC
50
tEoff
VCE
100
VGE
tdon
25
50
IC 1%
0
VGE 10%
0
-25
-0,2
IC 10%
VCE 3%
tEon
-50
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
350
28
0,19
0,39
0,4
time (us)
0,6
2,9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Boost IGBT
Figure 3
3,1
-15
15
350
28
0,11
0,26
3,2
3,3
V
V
V
A
µs
µs
Boost IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
300
VCE
fitted
%
%
IC
IC
250
100
IC 90%
200
75
IC 60%
150
50
IC 40%
100
VCE
IC 90%
tr
25
50
IC10%
0
-50
3,05
-25
0
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,1
0,2
350
28
0,09
IC 10%
0
tf
0,3
time (us)
0,4
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
3,1
3,15
350
28
0,02
3,2
time(us)
3,25
V
A
µs
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Switching Definitions Neutral Point
Boost IGBT
Figure 5
Boost IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
Pon
%
IC 1%
Eoff
100
150
Poff
75
Eon
100
50
50
25
VGE 10%
VGE 90%
VCE 3%
0
tEon
0
tEoff
-50
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
9,70
0,98
0,39
0,4
time (us)
2,9
0,6
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Boost IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,1
9,70
0,66
0,26
3,2
time(us)
3,3
kW
mJ
µs
Buck FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
3
150
%
15
Id
100
trr
10
50
5
Vd
fitted
0
IRRM 10%
0
-50
-5
-100
-10
IRRM 90%
-150
-15
IRRM 100%
-20
-200
-50
0
50
100
150
200
250
300
3
3,05
3,1
3,15
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
350
28
277
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
350
28
-44
0,11
3,2
3,25
time(us)
3,3
V
A
A
µs
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Switching Definitions Neutral Point
Boost IGBT
Figure 9
Buck FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
Prec
100
Erec
100
Qrr
tQrr
50
tErec
75
0
50
-50
25
-100
0
-150
-25
-200
3
3,2
Id (100%) =
Qrr (100%) =
tQrr =
3,4
3,6
28
2,73
1,00
A
µC
µs
3,8
4
time(us)
3
4,2
3,2
Prec (100%) =
Erec (100%) =
tErec =
3,4
3,6
9,70
0,71
1,00
kW
mJ
µs
3,8
4
4,2
time(us)
Measurement circuits
Figure 11
Neutral Point stage switching measurement circuit
copyright Vincotech
21
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Buck IGBT
Figure 1
Buck IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
IC
%
tdoff
%
VCE
100
200
VGE 90%
VCE 90%
75
150
VGE
IC
50
VCE
100
tEoff
VGE
tdon
25
50
0
0
VGE 10%
tEon
IC 1%
-25
-0,2
VCE 3%
IC 10%
-50
0
0,2
0,4
0,6
0,8
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
350
28
0,22
0,61
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Buck IGBT
Figure 3
3,1
-15
15
350
28
0,07
0,20
3,2
time(us)
3,3
V
V
V
A
µs
µs
Buck IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
125
%
3
Turn-on Switching Waveforms & definition of tr
250
fitted
IC
IC
%
VCE
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
IC 40%
tr
50
25
IC10%
0
-50
3,05
-25
0
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,1
0,2
350
28
0,08
IC 10%
0
tf
0,3
time (us)
0,4
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
3,07
3,09
350
28
0,02
3,11
3,13
time(us)
3,15
V
A
µs
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Switching Definitions Half Bridge
Buck IGBT
Figure 5
Buck IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
%
IC 1%
Poff
100
Eoff
Pon
150
75
Eon
100
50
50
25
VGE 10%
VGE 90%
VCE 3%
0
tEon
0
tEoff
-50
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
9,75
1,16
0,61
0,4
0,6
2,9
time (us) 0,8
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Buck IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,1
9,75
0,52
0,20
3,2
time(us)
3,3
kW
mJ
µs
Boost FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
15
100
Id
10
trr
50
5
Vd
0
fitted
0
IRRM 10%
-5
-50
-10
-100
-15
-20
-50
0
50
100
150
200
250
-150
3,07
300
IRRM 90%
IRRM 100%
3,09
3,11
3,13
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-15
15
350
28
299,41
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
23
350
28
-41
0,04
3,15
time(us)
3,17
V
A
A
µs
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Switching Definitions Half Bridge
Buck IGBT
Figure 9
Boost FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
Qrr
100
100
tQrr
50
75
0
50
-50
25
tErec
Prec
-100
-150
3,04
Id (100%) =
Qrr (100%) =
tQrr =
0
3,08
3,12
28
0,92
0,08
3,16
time(us)
-25
3,05
3,2
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,1
3,15
9,75
0,12
0,08
3,2
time(us)
3,25
kW
mJ
µs
Measurement circuits
Figure 11
Half Bridge stage switching measurement circuit
copyright Vincotech
24
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 17mm housing
Ordering Code
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
in DataMatrix as
M749F08
M749F09
in packaging barcode as
M749F08
M749F09
Outline
Pinout
copyright Vincotech
25
Revision: 3
10-FY12M3A040SH-M749F08
10-F112M3A040SH-M749F09
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
26
Revision: 3