V23990-K239-F-PM MiniSKiiP® 2 PACK 1200V/50A MiniSKiiP® 2 housing Features ● Solder less interconnection ● Designed for motor drives up to 7 kW ● Temperature sensor ● Standard (6.5mm) and thin (2.8mm) lids,16mm housing ● Optional with pre-applied thermal grease Schematic Target Applications ● Industrial Motor Drives ● Power Generation ● UPS Types ● V23990-K239-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 52 52 A tp limited by Tjmax 150 A VCE ≤ 1200V, Tj ≤ Top max 150 A 129 196 W 20 V 10 600 µs V Tjmax 150 °C VRRM 1200 V 34 45 A 67 A 66 100 W 150 °C T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2.1 V23990-K239-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+125 °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Stage copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2.1 V23990-K239-F-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,4 1,67 1,89 0,25 2,5 600 2,1 T1,T2,T3,T4,T5,T6 VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Collector-emitter cut-off current incl. Diode Rise time Turn-off delay time Fall time 0,001 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Rgoff=18 Ω Rgon=18 Ω ±15 300 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 4 tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 70 22 ns 492 211 5,48 mWs 5,42 3720 f=1MHz 50 0 192 Tj=25°C pF 164 960 ±15 50 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 310 nC 0,55 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 45 Rgoff=18 Ω ±15 300 di(rec)max /dt Erec RthJH 45 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,51 1,53 1,77 A 89 ns 444 µC 12,11 A/µs 2700 mWs 4,90 Thermal grease thickness≤50um λ = 1 W/mK V 1 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Tj=25°C R100=1670 Ω Tc=100°C -3 3 % 1670,313 Ω A-value B(25/50) Tol. % Tj=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % Tj=25°C 1,731*10-5 1/K² R100 Tc=100°C P Vincotech NTC Reference copyright Vincotech Tj=25°C 3 E Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) 180 IC (A) IC (A) 180 160 160 140 140 120 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 90 IF (A) IC (A) 50 75 40 60 30 45 20 30 10 15 0 0 0 2 4 6 8 10 V GE (V) 0,0 12 At Tj = tp = VCE = 0,5 1,0 1,5 2,0 2,5 V F (V) 3,0 At 25/125 250 10 copyright Vincotech °C µs V tp = 4 250 µs Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 12 E (mWs) E (mWs) Eon High T 10 Eon High T 8 Eoff High T 8 6 Eoff High T 6 4 4 2 2 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V Rgon = 18 Ω Rgoff = 18 Ω 20 30 40 RG(Ω) 50 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 8 6 E (mWs) E (mWs) 10 Erec 7 Tj = Tjmax -25°C 5 Tj = Tjmax -25°C 6 Erec 4 5 3 4 3 2 2 1 1 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 18 Ω copyright Vincotech 10 20 30 40 RG(Ω) 50 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 50 A 5 Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdoff tf tf 0,10 tdon 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 18 Ω Rgoff = 18 Ω 10 20 30 40 RG(Ω ) 50 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,7 t rr( µs) 0,7 trr 0,6 trr 0,6 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,5 0,5 0,4 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 20 125 600 ±15 18 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 6 10 125 600 50 ±15 20 30 40 R g on ( Ω ) 50 °C V A V Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 14 Qrr( µC) 20 Qrr Tj = Tjmax -25°C Tj = Tjmax -25°C 12 Qrr 16 10 12 8 6 8 4 4 2 0 0 0 At At Tj = VCE = VGE = Rgon = 20 125 600 ±15 18 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 10 125 600 50 ±15 20 30 R g on ( Ω) 50 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 150 IrrM (A) 120 40 IRRM Tj = Tjmax - 25°C 100 120 Tj = Tjmax -25°C 80 90 60 IRRM 60 40 30 20 0 0 0 At Tj = VCE = VGE = Rgon = 20 125 600 ±15 18 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 7 10 125 600 50 ±15 20 30 40 R gon ( Ω ) 50 °C V A V Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 3500 5000 direc / dt (A/ µs) direc / dt (A/µ s) D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 3000 dIrec/dt dI0/dt 4000 2500 dIrec/dtHigh T 3000 2000 1500 di0/dtHigh T 2000 di0/dtHigh T dIrec/dtHigh T 1000 1000 500 0 0 0 At Tj = VCE = VGE = Rgon = 20 125 600 ±15 18 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 125 600 50 ±15 20 30 R gon ( Ω ) 50 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 40 10 0 10 -1 10 -2 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 0,54 K/W 10-4 10-2 10-1 100 t p (s) 10110 tp / T 1,06 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,08 0,22 0,16 0,06 0,03 R (C/W) 0,05 0,08 0,33 0,39 0,16 0,07 Tau (s) 1,8E+00 2,2E-01 6,3E-02 8,4E-03 6,2E-04 copyright Vincotech 10-3 8 Tau (s) 3,4E+01 2,2E+00 3,4E-01 8,5E-02 1,5E-02 1,6E-03 Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) 300 60 IC (A) Ptot (W) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 270 50 240 210 40 180 150 30 120 20 90 60 10 30 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 150 150 50 120 40 90 30 60 20 30 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 150 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 20 IC (A) VGE (V) 10 10 T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge 240V 10uS 2 18 16 14 10 960V 12 100uS 1 10 1mS 8 100 10mS 6 100mS 10 4 DC -1 2 0 0 10 0 At D= Th = VGE = Tj = 10 1 10 2 10 3 150 225 300 375 450 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC T1,T2,T3,T4,T5,T6 IGBT Figure 27 75 V CE (V) 50 A T1,T2,T3,T4,T5,T6 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 250 IC(sc) tsc (µS) 16 14 200 12 10 150 8 100 6 4 50 2 0 0 12 13 14 15 16 V GE (V) 17 12 14 16 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 150 ºC Tj = 150 ºC copyright Vincotech 10 18 V GE (V) 20 Revision: 2.1 V23990-K239-F-PM T1,T2,T3,T4,T5,T6 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 120 Ic MODULE 80 Ic CHIP IC MAX 100 60 VCE MAX 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 ºC Switching mode : 3 level switching Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1750 1500 1250 1000 25 50 75 100 125 T (°C) copyright Vincotech 11 Revision: 2.1 V23990-K239-F-PM Switching Definitions Output inverter General conditions Tj = 125 °C Rgon = 18 Ω Rgoff = 18 Ω Output inverter IGBT Figure 1 120 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 tdoff % Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) % VCE IC 100 250 VGE 90% VCE 90% 80 200 VGE IC 60 150 tEoff 40 VCE 100 VGE tdon 20 50 VCE 3% VGE 10% 0 IC 10% 0 IC 1% -20 -0,2 tEon -50 0 0,2 0,4 0,6 0,8 2,2 2,4 2,6 2,8 3,0 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 49 0,49 0,77 VGE (-100%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,2 time(us) -15 15 600 49 0,07 0,40 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 300 fitted % % VCE IC 100 250 IC 90% 80 200 60 150 IC 60% 40 VCE 100 IC 40% IC 90% tr 20 50 IC 10% 0 Ic 0 tf -20 IC 10% -50 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 2,5 2,6 2,7 2,8 VC (100%) = IC (100%) = tf = copyright Vincotech 600 49 0,21 2,9 3,0 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 12 600 49 0,02 V A µs Revision: 2.1 V23990-K239-F-PM Switching Definitions Output inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 250 % IC 1% Poff 100 Pon % Eoff 200 80 150 60 Eon 100 40 50 20 VGE 10% VGE 90% VCE 3% tEon 0 0 -20 -0,1 tEoff -50 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,3 29,68 5,47 0,77 0,5 0,7 time (us) 2,2 0,9 2,4 2,6 2,8 3,0 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 29,68 5,40 0,40 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 -100 -150 IRRM 90% IRRM 100% -200 2,5 2,7 2,9 3,1 3,3 3,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 13 600 49 88 0,45 V A A µs Revision: 2.1 V23990-K239-F-PM Switching Definitions Output inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 % % Id Erec 100 100 tQrr 50 80 Qrr 0 60 -50 40 -100 20 -150 0 tErec Prec -20 -200 2,2 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 2,6 3,0 49 12,20 1,01 3,4 time(us) 2,4 3,8 2,7 3,0 3,3 3,6 3,9 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 14 29,68 4,97 1,01 kW mJ µs Revision: 2.1 V23990-K239-F-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code V23990-K238-F-/0A/-PM V23990-K238-F-/1A/-PM V23990-K238-F-/0B/-PM V23990-K238-F-/1B/-PM in DataMatrix as in packaging barcode as K239F K239F K239F K239F K239-F K239-F K239-F K239-F Outline Pinout copyright Vincotech 15 Revision: 2.1 V23990-K239-F-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 16 Revision: 2.1