V23990-K239-F-PM Maximum Ratings

V23990-K239-F-PM
MiniSKiiP® 2 PACK
1200V/50A
MiniSKiiP® 2 housing
Features
● Solder less interconnection
● Designed for motor drives up to 7 kW
● Temperature sensor
● Standard (6.5mm) and thin (2.8mm) lids,16mm housing
● Optional with pre-applied thermal grease
Schematic
Target Applications
● Industrial Motor Drives
● Power Generation
● UPS
Types
● V23990-K239-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
52
52
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
150
A
129
196
W
20
V
10
600
µs
V
Tjmax
150
°C
VRRM
1200
V
34
45
A
67
A
66
100
W
150
°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2.1
V23990-K239-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+125
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Stage
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2.1
V23990-K239-F-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,4
1,67
1,89
0,25
2,5
600
2,1
T1,T2,T3,T4,T5,T6
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Collector-emitter cut-off current incl. Diode
Rise time
Turn-off delay time
Fall time
0,001
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=18 Ω
Rgon=18 Ω
±15
300
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
4
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
70
22
ns
492
211
5,48
mWs
5,42
3720
f=1MHz
50
0
192
Tj=25°C
pF
164
960
±15
50
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
310
nC
0,55
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
45
Rgoff=18 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
45
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,51
1,53
1,77
A
89
ns
444
µC
12,11
A/µs
2700
mWs
4,90
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Tj=25°C
R100=1670 Ω
Tc=100°C
-3
3
%
1670,313
Ω
A-value
B(25/50)
Tol. %
Tj=25°C
7,635*10-3
1/K
B-value
B(25/100)
Tol. %
Tj=25°C
1,731*10-5
1/K²
R100
Tc=100°C
P
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
3
E
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
180
IC (A)
IC (A)
180
160
160
140
140
120
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
90
IF (A)
IC (A)
50
75
40
60
30
45
20
30
10
15
0
0
0
2
4
6
8
10
V GE (V)
0,0
12
At
Tj =
tp =
VCE =
0,5
1,0
1,5
2,0
2,5
V F (V)
3,0
At
25/125
250
10
copyright Vincotech
°C
µs
V
tp =
4
250
µs
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
12
E (mWs)
E (mWs)
Eon High T
10
Eon High T
8
Eoff High T
8
6
Eoff High T
6
4
4
2
2
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
Rgon =
18
Ω
Rgoff =
18
Ω
20
30
40
RG(Ω)
50
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
IC =
50
A
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
8
6
E (mWs)
E (mWs)
10
Erec
7
Tj = Tjmax -25°C
5
Tj = Tjmax -25°C
6
Erec
4
5
3
4
3
2
2
1
1
0
0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
18
Ω
copyright Vincotech
10
20
30
40
RG(Ω)
50
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
5
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdoff
tf
tf
0,10
tdon
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
18
Ω
Rgoff =
18
Ω
10
20
30
40
RG(Ω )
50
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,7
t rr( µs)
0,7
trr
0,6
trr
0,6
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,5
0,5
0,4
0,4
0,3
0,3
0,2
0,2
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
20
125
600
±15
18
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
10
125
600
50
±15
20
30
40
R g on ( Ω )
50
°C
V
A
V
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
14
Qrr( µC)
20
Qrr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
12
Qrr
16
10
12
8
6
8
4
4
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
125
600
±15
18
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
125
600
50
±15
20
30
R g on ( Ω)
50
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
150
IrrM (A)
120
40
IRRM
Tj = Tjmax - 25°C
100
120
Tj = Tjmax -25°C
80
90
60
IRRM
60
40
30
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
125
600
±15
18
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
10
125
600
50
±15
20
30
40
R gon ( Ω )
50
°C
V
A
V
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
3500
5000
direc / dt (A/ µs)
direc / dt (A/µ s)
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
3000
dIrec/dt
dI0/dt
4000
2500
dIrec/dtHigh T
3000
2000
1500
di0/dtHigh T
2000
di0/dtHigh T
dIrec/dtHigh T
1000
1000
500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
125
600
±15
18
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
125
600
50
±15
20
30
R gon ( Ω )
50
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
40
10
0
10
-1
10
-2
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,54
K/W
10-4
10-2
10-1
100
t p (s)
10110
tp / T
1,06
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,08
0,22
0,16
0,06
0,03
R (C/W)
0,05
0,08
0,33
0,39
0,16
0,07
Tau (s)
1,8E+00
2,2E-01
6,3E-02
8,4E-03
6,2E-04
copyright Vincotech
10-3
8
Tau (s)
3,4E+01
2,2E+00
3,4E-01
8,5E-02
1,5E-02
1,6E-03
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
300
60
IC (A)
Ptot (W)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
270
50
240
210
40
180
150
30
120
20
90
60
10
30
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
150
150
50
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
150
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
20
IC (A)
VGE (V)
10
10
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
240V
10uS
2
18
16
14
10
960V
12
100uS
1
10
1mS
8
100
10mS
6
100mS
10
4
DC
-1
2
0
0
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
2
10
3
150
225
300
375
450
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
T1,T2,T3,T4,T5,T6 IGBT
Figure 27
75
V CE (V)
50
A
T1,T2,T3,T4,T5,T6 IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
250
IC(sc)
tsc (µS)
16
14
200
12
10
150
8
100
6
4
50
2
0
0
12
13
14
15
16
V GE (V)
17
12
14
16
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
150
ºC
Tj =
150
ºC
copyright Vincotech
10
18
V GE (V)
20
Revision: 2.1
V23990-K239-F-PM
T1,T2,T3,T4,T5,T6 IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
120
Ic MODULE
80
Ic CHIP
IC MAX
100
60
VCE MAX
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
ºC
Switching mode :
3 level switching
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1750
1500
1250
1000
25
50
75
100
125
T (°C)
copyright Vincotech
11
Revision: 2.1
V23990-K239-F-PM
Switching Definitions Output inverter
General conditions
Tj
= 125 °C
Rgon
= 18 Ω
Rgoff
= 18 Ω
Output inverter IGBT
Figure 1
120
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
tdoff
%
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
%
VCE
IC
100
250
VGE 90%
VCE 90%
80
200
VGE
IC
60
150
tEoff
40
VCE
100
VGE
tdon
20
50
VCE 3%
VGE 10%
0
IC 10%
0
IC 1%
-20
-0,2
tEon
-50
0
0,2
0,4
0,6
0,8
2,2
2,4
2,6
2,8
3,0
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
49
0,49
0,77
VGE (-100%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,2
time(us)
-15
15
600
49
0,07
0,40
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
300
fitted
%
%
VCE
IC
100
250
IC 90%
80
200
60
150
IC 60%
40
VCE
100
IC 40%
IC 90%
tr
20
50
IC 10%
0
Ic
0
tf
-20
IC 10%
-50
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
2,5
2,6
2,7
2,8
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
49
0,21
2,9
3,0
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
12
600
49
0,02
V
A
µs
Revision: 2.1
V23990-K239-F-PM
Switching Definitions Output inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
250
%
IC 1%
Poff
100
Pon
%
Eoff
200
80
150
60
Eon
100
40
50
20
VGE 10%
VGE 90%
VCE 3%
tEon
0
0
-20
-0,1
tEoff
-50
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,3
29,68
5,47
0,77
0,5
0,7
time (us)
2,2
0,9
2,4
2,6
2,8
3,0
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
29,68
5,40
0,40
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
-150
IRRM 90%
IRRM 100%
-200
2,5
2,7
2,9
3,1
3,3
3,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
13
600
49
88
0,45
V
A
A
µs
Revision: 2.1
V23990-K239-F-PM
Switching Definitions Output inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
%
Id
Erec
100
100
tQrr
50
80
Qrr
0
60
-50
40
-100
20
-150
0
tErec
Prec
-20
-200
2,2
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
2,6
3,0
49
12,20
1,01
3,4
time(us)
2,4
3,8
2,7
3,0
3,3
3,6
3,9
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
29,68
4,97
1,01
kW
mJ
µs
Revision: 2.1
V23990-K239-F-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
V23990-K238-F-/0A/-PM
V23990-K238-F-/1A/-PM
V23990-K238-F-/0B/-PM
V23990-K238-F-/1B/-PM
in DataMatrix as
in packaging barcode as
K239F
K239F
K239F
K239F
K239-F
K239-F
K239-F
K239-F
Outline
Pinout
copyright Vincotech
15
Revision: 2.1
V23990-K239-F-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
16
Revision: 2.1