10-F112M3A025SH-M746F09 10-FY12M3A025SH

10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
flow3xMNPC 1
1200V/25A
Features
flow1 housing
● 3 phase mixed voltage component topology
● neutral point clamped inverter
● reactive power capability
12 mm
● low inductance layout
Target Applications
17 mm
Schematic
● solar inverter
● UPS
Types
● 10-FY12M3A025SH-M746F08
● 10-F112M3A025SH-M746F09
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
23
30
A
tp limited by Tjmax
75
A
Tj≤150°C
VCE<=VCES
75
A
Half Bridge IGBT (T1,T4,T5,T8,T9,T12)
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
58
88
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
600
V
tSC
VCC
Tj≤150°C
VGE=15V
Neutral P. FWD (D2,D3,D6,D7,D10,D11)
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Th=80°C
Tc=80°C
17
23
A
Tc=100°C
150
A
Th=80°C
28
43
W
150
°C
Surge forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Tc=80°C
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
18
24
A
60
A
60
A
31
47
W
±20
V
6
360
µs
V
175
°C
1200
V
Neutral P. IGBT (T2,T3,T6,T7,T10,T11)
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpuls
Tc=80°C
tp limited by Tjmax
Tj≤150°C
Turn off safe operating area
VCE<=VCES
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
Half Bridge FWD (D1,D4,D5,D8,D9,D12)
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Surge forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
10
13
A
36
A
26
39
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,2
5,8
6,4
1,7
2,11
2,42
2,4
Half Bridge IGBT (T1,T4,T5,T8,T9,T12)
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,00085
25
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
120
Rgoff=16 Ω
Rgon=16 Ω
±15
350
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
td(off)
0,0024
V
73
74
15
18
166
220
21
116
0,17
0,30
0,37
0,63
ns
mWs
1430
f=1MHz
0
Tj=25°C
25
pF
99
85
±15
960
25
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
155
nC
1,64
K/W
Neutral P. FWD (D2,D3,D6,D7,D10,D11)
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
trr
Reverse recovered charge
Qrr
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
600
IRRM
Reverse recovery time
Peak rate of fall of recovery current
15
Rgon=16 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,47
1,73
10
16
22
23
33
0,19
0,44
1860
1998
0,03
0,05
2,48
3
2,6
V
µA
A
ns
µC
A/µs
mWs
K/W
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,53
1,70
1,9
Neutral P. IGBT (T2,T3,T6,T7,T10,T11)
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
20
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0011
300
Rgoff=16 Ω
Rgon=16 Ω
±15
350
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
72
74
14
16
131
157
34
69
0,31
0,39
0,38
0,53
ns
mWs
1100
f=1MHz
0
25
15
480
Tj=25°C
71
pF
Tj=25°C
120
nC
3,09
K/W
32
20
Thermal grease
thickness≤50um
λ = 1 W/mK
Half Bridge FWD (D1,D4,D5,D8,D9,D12)
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
8
Rgon=16 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,18
2,30
2,65
60
21
24
29,9
34,7
0,7
1,5
1972
2214
0,14
0,38
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,65
K/W
21511
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-4,5
+4,5
T=25°C
210
mW
T=25°C
3,5
mW/K
K
B-value
B(25/50)
T=25°C
3884
B-value
B(25/100)
T=25°C
3964
Vincotech NTC Reference
copyright Vincotech
%
K
F
4
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
80
IC (A)
IC (A)
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IF (A)
IC (A)
25
V CE (V)
50
20
40
15
30
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
20
5
10
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
0
V GE (V) 12
At
tp =
5
1
250
2
3
4
V F (V)
5
µs
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
0,7
E (mWs)
1,0
Eoff High T
Eoff High T
0,6
0,8
Eon High T
Eon High T
0,5
Eon Low T
0,6
Eoff Low T
0,4
Eon Low T
Eoff Low T
0,3
0,4
0,2
0,2
0,1
0,0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
16
32
48
64
R G ( Ω)
80
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
15
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,08
E (mWs)
0,08
Erec High T
0,06
0,06
0,04
0,04
Erec High T
Erec Low T
0,02
0,02
Erec Low T
0
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
16
32
48
64
R G ( Ω)
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
15
A
6
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
tdon
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
16
32
48
64
R G ( Ω)
80
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
15
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,1
t rr(ms)
0,04
trr High T
trr High T
0,08
0,03
trr Low T
0,06
0,02
0,04
trr Low T
0,01
0,02
0,00
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
350
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
16
25/125
350
15
±15
32
48
64
R gon ( Ω)
80
°C
V
A
V
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr (µC)
0,7
Qrr (µC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr High T
0,6
0,6
0,5
0,5
0,4
Qrr High T
0,4
0,3
0,3
Qrr Low T
0,2
0,2
0,1
0,1
Qrr Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
350
±15
16
10
15
20
25
30
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
350
15
±15
32
48
64
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
30
80
R gon ( Ω)
IrrM (A)
IrrM (A)
50
25
40
IRRM High T
20
30
IRRM Low T
15
20
10
10
IRRM High T
5
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
350
±15
16
copyright Vincotech
10
15
20
25
IC(A)
30
°C
V
V
Ω
8
0
16
At
Tj =
VR =
IF =
VGE =
25/125
350
15
±15
32
48
64
R gon ( Ω)
80
°C
V
A
V
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
3000
5000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
2500
dIrec/dt T
dI0/dt T
4000
2000
3000
1500
2000
1000
1000
500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/125
350
±15
16
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
16
25/125
350
15
±15
32
48
64
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
80
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10-5
1021
At
D=
RthJH =
tp / T
1,64
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
R (C/W)
0,20
0,61
0,53
0,21
0,09
R (C/W)
0,08
0,16
1,07
0,61
0,31
0,25
9
100
t p (s)
1021
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
2,48
IGBT thermal model values
Tau (s)
7,2E-01
1,3E-01
4,6E-02
9,8E-03
1,3E-03
10-2
Tau (s)
4,1E+00
5,7E-01
7,9E-02
2,0E-02
4,7E-03
9,2E-04
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
IC (A)
Ptot (W)
125
100
30
75
20
50
10
25
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
Ptot (W)
IF (A)
75
25
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
10
50
150
100
150
T h ( o C)
200
°C
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Half Bridge
Half Bridge IGBT & Neutral Point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
20
IC (A)
VGE (V)
103
18
240V
102
16
960V
100uS
10mS
10
14
1mS
12
100mS
1
10
DC
8
100
6
4
10-1
2
0
100
At
D=
Th =
VGE =
Tj =
101
102
10
3
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
11
25
0
50
75
100
125
150
175
Q g (nC)
A
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Neutral Point
Neutral Point IGBT & Half Bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
126
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
20
V CE (V)
IC (A)
IF (A)
30
25
15
20
10
15
Tj = 25°C
10
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
5
Tj = 25°C
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
0
V GE (V) 12
0
At
tp =
µs
V
12
1
250
2
3
4
V F (V)
5
µs
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Neutral Point
Neutral Point IGBT & Half Bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
1
E (mWs)
1
Eoff High T
0,8
Eon High T
Eon Low T
0,8
Eon High T
Eon Low T
0,6
0,6
Eoff High T
Eoff Low T
0,4
0,4
0,2
0,2
Eoff Low T
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
16
32
48
64
R G( Ω )
80
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
IC =
15
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
0,6
E (mWs)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Erec High T
0,6
0,5
0,5
0,4
0,4
0,3
0,3
Erec High T
Erec Low T
0,2
0,2
0,1
0,1
Erec Low T
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
16
32
48
64
RG (Ω )
80
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
IC =
15
A
13
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Neutral Point
Neutral Point IGBT & Half Bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdon
tdoff
0,1
0,1
tdon
tf
tf
tr
tr
0,01
0,01
0,001
0,001
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
10
20
30
40
50
60
R G( Ω )
70
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
±15
V
IC =
15
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
trr High T
t rr(ms)
t rr(ms)
0,05
0,04
0,4
trr High T
0,03
0,3
trr Low T
0,02
0,2
0,01
0,1
trr Low T
0,00
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/126
350
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
16
25/126
350
15
±15
32
48
64
R gon ( Ω)
80
°C
V
A
V
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Neutral Point
Neutral Point IGBT & Half Bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (µC)
2
Qrr (µC)
2,5
Qrr High T
Qrr High T
2,0
1,5
1,5
Qrr Low T
1
1,0
Qrr Low T
0,5
0,5
0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
5
25/126
350
±15
16
10
15
20
25
0
30
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/126
350
15
±15
32
48
64
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
80
IrrM (A)
IrrM (A)
40
80
IRRM High T
30
60
IRRM Low T
20
40
10
20
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/126
350
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
°C
V
V
Ω
15
0
16
At
Tj =
VR =
IF =
VGE =
25/126
350
15
±15
32
48
64
R gon ( Ω)
80
°C
V
A
V
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Neutral Point
Neutral Point IGBT & Half Bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
direc / dt (A/ms)
3500
direc / dt (A/ms)
dIrec/dt T
di0/dt T
3000
dIrec/dt T
dI0/dt T
6000
2500
2000
4000
1500
1000
2000
500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
25/126
350
±15
16
10
15
20
25
0
I C (A) 30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/126
350
15
±15
32
48
64
R gon ( Ω) 80
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
16
-2
10-5
At
D=
RthJH =
10-4
tp / T
3,09
10-3
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
1021
K/W
-2
10-5
10-4
10-3
At
D=
RthJH =
tp / T
3,65
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,09
0,37
1,74
0,36
0,25
0,24
R (C/W)
0,15
0,58
1,42
0,77
0,72
Tau (s)
1,8E+00
2,7E-01
6,9E-02
1,4E-02
3,4E-03
4,1E-04
copyright Vincotech
16
10-2
10-1
100
t p (s)
1021
Tau (s)
1,2E+00
1,7E-01
4,8E-02
9,0E-03
1,8E-03
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Neutral Point
Neutral Point IGBT & Half Bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
30
IC (A)
Ptot (W)
60
25
45
20
30
15
10
15
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
20
Ptot (W)
IF (A)
60
45
15
30
10
15
5
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
18
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
Rgon
= 16 Ω
Rgoff
= 16 Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
%
IC
VCE
200
100
VGE 90%
IC
150
75
VGE
VCE
50
100
VCE 90%
VGE
tEoff
tdon
50
25
IC 1%
VGE 10%
VCE 3%
IC 10%
0
0
tEon
-50
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
350
15
0,22
0,69
0,4
0,6
time (us)
2,9
0,8
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 3
3,05
-15
15
350
15
0,07
0,20
3,1
3,15
time(us)
3,2
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
%
2,95
fitted
250
%
VCE
IC
IC
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
IC 40%
tr
50
25
IC10%
-25
0,05
0,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,15
0,2
350
15
0,12
V
A
µs
IC 10%
0
tf
0
0,25
0,3
-50
3,04
0,35
time (us)
VC (100%) =
IC (100%) =
tr =
19
3,06
3,08
350
15
0,02
3,1
time(us)
3,12
V
A
µs
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 5
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
%
%
Poff
100
Eoff
150
Pon
75
Eon
100
50
50
25
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
5,28
0,63
0,69
0,4
0,6 time (us)
-50
2,95
0,8
3
3,05
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Half Bridge IGBT
Figure 7
Gate voltage vs Gate charge (measured)
5,28
0,30
0,20
3,1
3,15
time(us)
3,2
kW
mJ
µs
Neutral Point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
15
100
Id
10
trr
50
5
Vd
0
fitted
0
IRRM 10%
-5
-50
-10
-100
-15
IRRM 90%
IRRM 100%
-20
-50
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
50
-15
15
350
15
180,95
100
150
Qg (nC)
-150
3,06
200
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
3,08
3,1
350
15
-22
0,03
3,12
3,14
time(us)
V
A
A
µs
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 9
Half Bridge IGBT
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
Qrr
100
Erec
100
tQrr
80
tErec
50
60
0
40
-50
Prec
20
-100
-150
3,06
0
3,08
Id (100%) =
Qrr (100%) =
tQrr =
3,1
15
0,44
0,07
3,12
3,14
time(us)
-20
3,08
3,16
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,1
3,12
5,28
0,05
0,07
3,14
time(us)
3,16
kW
mJ
µs
Half Bridge switching measurement circuit
Figure 11
Half Bridge stage switching measurement circuit
copyright Vincotech
21
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Switching Definitions Neutral Point
General conditions
= 125 °C
Tj
Rgon
= 16 Ω
Rgoff
= 16 Ω
Neutral Point IGBT
Figure 1
125
%
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
%
tdoff
IC
250
100
VGE 90%
200
IC
75
150
50
VCE
VCE 90%
100
tEoff
tdon
25
50
IC 1%
VGE
VCE
VGE 10%
0
VGE
-25
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
-15
15
350
15
0,16
0,53
V
V
V
A
µs
µs
0,3
-50
2,95
0,4 time (us) 0,5
tEon
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Neutral Point IGBT
Figure 3
VCE 3%
IC 10%
0
3,05
-15
15
350
15
0,07
0,18
3,1
3,15
3,2
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
300
%
fitted
%
VCE
IC
100
Ic
250
Ic 90%
200
75
Ic 60%
150
50
VCE
100
Ic 40%
IC 90%
tr
25
50
Ic 10%
0
-25
0,0
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,1
0,2
350
15
0,069
IC10%
0
tf
0,3
time (us)
-50
3,06
0,4
3,08
3,1
3,12
3,14
3,16
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
350
15
0,016
V
A
µs
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Switching Definitions Neutral Point
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Ic 1%
Eon
Eoff
100
100
75
75
50
50
Pon
25
25
Uge 90%
Uge 10%
Poff
Uce 3%
0
0
tEon
tEoff
-25
-0,1
0
0,1
0,2
0,3
0,4
-25
2,95
0,5
3
3,05
3,1
3,15
3,2
3,25
time(us)
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
5,26
0,53
0,53
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Neutral Point IGBT
Figure 7
kW
mJ
µs
Half Bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
Uge (V)
5,26
0,30
0,18
Turn-off Switching Waveforms & definition of trr
20
150
%
Id
15
100
trr
10
50
5
Ud
0
IRRM 10%
0
-50
-5
fitted
-100
-10
IRRM 90%
-150
-15
IRRM 100%
-200
3,06
-20
-50
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
50
-15
15
350
15
148
100
150
Qg (nC)
200
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
23
3,08
3,1
350
15
-24
0,04
3,12
3,14
3,16
3,18
time(us)
V
A
A
µs
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Switching Definitions Neutral Point
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Half Bridge FWD
Half Bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
Qrr
100
100
tQint
50
75
0
50
-50
25
-100
0
tErec
Prec
-25
-150
3
Id (100%) =
Qrr (100%) =
tQint =
3,3
3,6
15
1,51
1,00
3,9
time(us)
3
4,2
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,3
3,6
5,26
0,38
1,00
3,9
time(us)
4,2
kW
mJ
µs
Neutral Point switching measurement circuit
Figure 11
Neutral Point stage switching measurement circuit
copyright Vincotech
24
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
without thermal paste 17mm housing
10-FY12M3A025SH-M746F08
10-F112M3A025SH-M746F09
M746F08
M746F09
M746F08
M746F09
Outline
Pinout
copyright Vincotech
25
2014.12.18. / Revision: 3
10-F112M3A025SH-M746F09
10-FY12M3A025SH-M746F08
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
26
2014.12.18. / Revision: 3