10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet flow3xMNPC 1 1200V/25A Features flow1 housing ● 3 phase mixed voltage component topology ● neutral point clamped inverter ● reactive power capability 12 mm ● low inductance layout Target Applications 17 mm Schematic ● solar inverter ● UPS Types ● 10-FY12M3A025SH-M746F08 ● 10-F112M3A025SH-M746F09 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 23 30 A tp limited by Tjmax 75 A Tj≤150°C VCE<=VCES 75 A Half Bridge IGBT (T1,T4,T5,T8,T9,T12) Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 58 88 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 600 V tSC VCC Tj≤150°C VGE=15V Neutral P. FWD (D2,D3,D6,D7,D10,D11) Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Th=80°C Tc=80°C 17 23 A Tc=100°C 150 A Th=80°C 28 43 W 150 °C Surge forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Tc=80°C 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 18 24 A 60 A 60 A 31 47 W ±20 V 6 360 µs V 175 °C 1200 V Neutral P. IGBT (T2,T3,T6,T7,T10,T11) Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpuls Tc=80°C tp limited by Tjmax Tj≤150°C Turn off safe operating area VCE<=VCES Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V Tjmax Half Bridge FWD (D1,D4,D5,D8,D9,D12) Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tc=80°C Tj=Tjmax Surge forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 10 13 A 36 A 26 39 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,2 5,8 6,4 1,7 2,11 2,42 2,4 Half Bridge IGBT (T1,T4,T5,T8,T9,T12) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00085 25 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 120 Rgoff=16 Ω Rgon=16 Ω ±15 350 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr td(off) 0,0024 V 73 74 15 18 166 220 21 116 0,17 0,30 0,37 0,63 ns mWs 1430 f=1MHz 0 Tj=25°C 25 pF 99 85 ±15 960 25 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 155 nC 1,64 K/W Neutral P. FWD (D2,D3,D6,D7,D10,D11) Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current trr Reverse recovered charge Qrr Reverse recovered energy Thermal resistance chip to heatsink per chip copyright Vincotech 600 IRRM Reverse recovery time Peak rate of fall of recovery current 15 Rgon=16 Ω ±15 350 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 15 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,47 1,73 10 16 22 23 33 0,19 0,44 1860 1998 0,03 0,05 2,48 3 2,6 V µA A ns µC A/µs mWs K/W 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,53 1,70 1,9 Neutral P. IGBT (T2,T3,T6,T7,T10,T11) Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 20 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0011 300 Rgoff=16 Ω Rgon=16 Ω ±15 350 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 72 74 14 16 131 157 34 69 0,31 0,39 0,38 0,53 ns mWs 1100 f=1MHz 0 25 15 480 Tj=25°C 71 pF Tj=25°C 120 nC 3,09 K/W 32 20 Thermal grease thickness≤50um λ = 1 W/mK Half Bridge FWD (D1,D4,D5,D8,D9,D12) Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 8 Rgon=16 Ω ±15 350 di(rec)max /dt Erec RthJH 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,18 2,30 2,65 60 21 24 29,9 34,7 0,7 1,5 1972 2214 0,14 0,38 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 3,65 K/W 21511 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -4,5 +4,5 T=25°C 210 mW T=25°C 3,5 mW/K K B-value B(25/50) T=25°C 3884 B-value B(25/100) T=25°C 3964 Vincotech NTC Reference copyright Vincotech % K F 4 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IF (A) IC (A) 25 V CE (V) 50 20 40 15 30 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C 20 5 10 Tj = 25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 0 V GE (V) 12 At tp = 5 1 250 2 3 4 V F (V) 5 µs 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 0,7 E (mWs) 1,0 Eoff High T Eoff High T 0,6 0,8 Eon High T Eon High T 0,5 Eon Low T 0,6 Eoff Low T 0,4 Eon Low T Eoff Low T 0,3 0,4 0,2 0,2 0,1 0,0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 R G ( Ω) 80 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 15 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,08 E (mWs) 0,08 Erec High T 0,06 0,06 0,04 0,04 Erec High T Erec Low T 0,02 0,02 Erec Low T 0 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 16 32 48 64 R G ( Ω) 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 15 A 6 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff tdon tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 R G ( Ω) 80 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 15 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,1 t rr(ms) 0,04 trr High T trr High T 0,08 0,03 trr Low T 0,06 0,02 0,04 trr Low T 0,01 0,02 0,00 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 350 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω 7 16 25/125 350 15 ±15 32 48 64 R gon ( Ω) 80 °C V A V 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr (µC) 0,7 Qrr (µC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr High T 0,6 0,6 0,5 0,5 0,4 Qrr High T 0,4 0,3 0,3 Qrr Low T 0,2 0,2 0,1 0,1 Qrr Low T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 350 ±15 16 10 15 20 25 30 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 350 15 ±15 32 48 64 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 30 80 R gon ( Ω) IrrM (A) IrrM (A) 50 25 40 IRRM High T 20 30 IRRM Low T 15 20 10 10 IRRM High T 5 IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 350 ±15 16 copyright Vincotech 10 15 20 25 IC(A) 30 °C V V Ω 8 0 16 At Tj = VR = IF = VGE = 25/125 350 15 ±15 32 48 64 R gon ( Ω) 80 °C V A V 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 3000 5000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIo/dt T 2500 dIrec/dt T dI0/dt T 4000 2000 3000 1500 2000 1000 1000 500 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 350 ±15 16 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 16 25/125 350 15 ±15 32 48 64 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 80 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 10-5 1021 At D= RthJH = tp / T 1,64 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 R (C/W) 0,20 0,61 0,53 0,21 0,09 R (C/W) 0,08 0,16 1,07 0,61 0,31 0,25 9 100 t p (s) 1021 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 2,48 IGBT thermal model values Tau (s) 7,2E-01 1,3E-01 4,6E-02 9,8E-03 1,3E-03 10-2 Tau (s) 4,1E+00 5,7E-01 7,9E-02 2,0E-02 4,7E-03 9,2E-04 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 40 IC (A) Ptot (W) 125 100 30 75 20 50 10 25 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 Ptot (W) IF (A) 75 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 10 50 150 100 150 T h ( o C) 200 °C 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Half Bridge Half Bridge IGBT & Neutral Point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 20 IC (A) VGE (V) 103 18 240V 102 16 960V 100uS 10mS 10 14 1mS 12 100mS 1 10 DC 8 100 6 4 10-1 2 0 100 At D= Th = VGE = Tj = 101 102 10 3 0 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 11 25 0 50 75 100 125 150 175 Q g (nC) A 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Neutral Point Neutral Point IGBT & Half Bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 126 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 20 V CE (V) IC (A) IF (A) 30 25 15 20 10 15 Tj = 25°C 10 5 Tj = Tjmax-25°C Tj = Tjmax-25°C 5 Tj = 25°C 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 0 V GE (V) 12 0 At tp = µs V 12 1 250 2 3 4 V F (V) 5 µs 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Neutral Point Neutral Point IGBT & Half Bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 1 E (mWs) 1 Eoff High T 0,8 Eon High T Eon Low T 0,8 Eon High T Eon Low T 0,6 0,6 Eoff High T Eoff Low T 0,4 0,4 0,2 0,2 Eoff Low T 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 R G( Ω ) 80 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V IC = 15 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) 0,6 E (mWs) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec High T 0,6 0,5 0,5 0,4 0,4 0,3 0,3 Erec High T Erec Low T 0,2 0,2 0,1 0,1 Erec Low T 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 16 32 48 64 RG (Ω ) 80 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V IC = 15 A 13 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Neutral Point Neutral Point IGBT & Half Bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdon tdoff 0,1 0,1 tdon tf tf tr tr 0,01 0,01 0,001 0,001 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 126 °C VCE = 350 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 10 20 30 40 50 60 R G( Ω ) 70 With an inductive load at Tj = 126 °C VCE = 350 V VGE = ±15 V IC = 15 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 trr High T t rr(ms) t rr(ms) 0,05 0,04 0,4 trr High T 0,03 0,3 trr Low T 0,02 0,2 0,01 0,1 trr Low T 0,00 0,0 0 At Tj = VCE = VGE = Rgon = 5 25/126 350 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω 14 16 25/126 350 15 ±15 32 48 64 R gon ( Ω) 80 °C V A V 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Neutral Point Neutral Point IGBT & Half Bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (µC) 2 Qrr (µC) 2,5 Qrr High T Qrr High T 2,0 1,5 1,5 Qrr Low T 1 1,0 Qrr Low T 0,5 0,5 0 0,0 0 At At Tj = VCE = VGE = Rgon = 5 25/126 350 ±15 16 10 15 20 25 0 30 I C (A) At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/126 350 15 ±15 32 48 64 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 80 IrrM (A) IrrM (A) 40 80 IRRM High T 30 60 IRRM Low T 20 40 10 20 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/126 350 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 °C V V Ω 15 0 16 At Tj = VR = IF = VGE = 25/126 350 15 ±15 32 48 64 R gon ( Ω) 80 °C V A V 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Neutral Point Neutral Point IGBT & Half Bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 direc / dt (A/ms) 3500 direc / dt (A/ms) dIrec/dt T di0/dt T 3000 dIrec/dt T dI0/dt T 6000 2500 2000 4000 1500 1000 2000 500 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/126 350 ±15 16 10 15 20 25 0 I C (A) 30 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/126 350 15 ±15 32 48 64 R gon ( Ω) 80 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 16 -2 10-5 At D= RthJH = 10-4 tp / T 3,09 10-3 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 1021 K/W -2 10-5 10-4 10-3 At D= RthJH = tp / T 3,65 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,09 0,37 1,74 0,36 0,25 0,24 R (C/W) 0,15 0,58 1,42 0,77 0,72 Tau (s) 1,8E+00 2,7E-01 6,9E-02 1,4E-02 3,4E-03 4,1E-04 copyright Vincotech 16 10-2 10-1 100 t p (s) 1021 Tau (s) 1,2E+00 1,7E-01 4,8E-02 9,0E-03 1,8E-03 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Neutral Point Neutral Point IGBT & Half Bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 30 IC (A) Ptot (W) 60 25 45 20 30 15 10 15 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 20 Ptot (W) IF (A) 60 45 15 30 10 15 5 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 18 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Switching Definitions Half Bridge General conditions = 125 °C Tj Rgon = 16 Ω Rgoff = 16 Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % % IC VCE 200 100 VGE 90% IC 150 75 VGE VCE 50 100 VCE 90% VGE tEoff tdon 50 25 IC 1% VGE 10% VCE 3% IC 10% 0 0 tEon -50 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 350 15 0,22 0,69 0,4 0,6 time (us) 2,9 0,8 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Half Bridge IGBT Figure 3 3,05 -15 15 350 15 0,07 0,20 3,1 3,15 time(us) 3,2 V V V A µs µs Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 % 2,95 fitted 250 % VCE IC IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 IC10% -25 0,05 0,1 VC (100%) = IC (100%) = tf = copyright Vincotech 0,15 0,2 350 15 0,12 V A µs IC 10% 0 tf 0 0,25 0,3 -50 3,04 0,35 time (us) VC (100%) = IC (100%) = tr = 19 3,06 3,08 350 15 0,02 3,1 time(us) 3,12 V A µs 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Switching Definitions Half Bridge Half Bridge IGBT Figure 5 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % % Poff 100 Eoff 150 Pon 75 Eon 100 50 50 25 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 5,28 0,63 0,69 0,4 0,6 time (us) -50 2,95 0,8 3 3,05 Pon (100%) = Eon (100%) = tEon = kW mJ µs Half Bridge IGBT Figure 7 Gate voltage vs Gate charge (measured) 5,28 0,30 0,20 3,1 3,15 time(us) 3,2 kW mJ µs Neutral Point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % 15 100 Id 10 trr 50 5 Vd 0 fitted 0 IRRM 10% -5 -50 -10 -100 -15 IRRM 90% IRRM 100% -20 -50 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 50 -15 15 350 15 180,95 100 150 Qg (nC) -150 3,06 200 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 3,08 3,1 350 15 -22 0,03 3,12 3,14 time(us) V A A µs 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Switching Definitions Half Bridge Half Bridge IGBT Figure 9 Half Bridge IGBT Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id Qrr 100 Erec 100 tQrr 80 tErec 50 60 0 40 -50 Prec 20 -100 -150 3,06 0 3,08 Id (100%) = Qrr (100%) = tQrr = 3,1 15 0,44 0,07 3,12 3,14 time(us) -20 3,08 3,16 Prec (100%) = Erec (100%) = tErec = A µC µs 3,1 3,12 5,28 0,05 0,07 3,14 time(us) 3,16 kW mJ µs Half Bridge switching measurement circuit Figure 11 Half Bridge stage switching measurement circuit copyright Vincotech 21 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Switching Definitions Neutral Point General conditions = 125 °C Tj Rgon = 16 Ω Rgoff = 16 Ω Neutral Point IGBT Figure 1 125 % Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 % tdoff IC 250 100 VGE 90% 200 IC 75 150 50 VCE VCE 90% 100 tEoff tdon 25 50 IC 1% VGE VCE VGE 10% 0 VGE -25 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 -15 15 350 15 0,16 0,53 V V V A µs µs 0,3 -50 2,95 0,4 time (us) 0,5 tEon 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Neutral Point IGBT Figure 3 VCE 3% IC 10% 0 3,05 -15 15 350 15 0,07 0,18 3,1 3,15 3,2 V V V A µs µs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 300 % fitted % VCE IC 100 Ic 250 Ic 90% 200 75 Ic 60% 150 50 VCE 100 Ic 40% IC 90% tr 25 50 Ic 10% 0 -25 0,0 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,2 350 15 0,069 IC10% 0 tf 0,3 time (us) -50 3,06 0,4 3,08 3,1 3,12 3,14 3,16 time(us) VC (100%) = IC (100%) = tr = V A µs 22 350 15 0,016 V A µs 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Switching Definitions Neutral Point Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Ic 1% Eon Eoff 100 100 75 75 50 50 Pon 25 25 Uge 90% Uge 10% Poff Uce 3% 0 0 tEon tEoff -25 -0,1 0 0,1 0,2 0,3 0,4 -25 2,95 0,5 3 3,05 3,1 3,15 3,2 3,25 time(us) time (us) Poff (100%) = Eoff (100%) = tEoff = 5,26 0,53 0,53 Pon (100%) = Eon (100%) = tEon = kW mJ µs Neutral Point IGBT Figure 7 kW mJ µs Half Bridge FWD Figure 8 Gate voltage vs Gate charge (measured) Uge (V) 5,26 0,30 0,18 Turn-off Switching Waveforms & definition of trr 20 150 % Id 15 100 trr 10 50 5 Ud 0 IRRM 10% 0 -50 -5 fitted -100 -10 IRRM 90% -150 -15 IRRM 100% -200 3,06 -20 -50 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 50 -15 15 350 15 148 100 150 Qg (nC) 200 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 23 3,08 3,1 350 15 -24 0,04 3,12 3,14 3,16 3,18 time(us) V A A µs 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Switching Definitions Neutral Point Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Half Bridge FWD Half Bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec Qrr 100 100 tQint 50 75 0 50 -50 25 -100 0 tErec Prec -25 -150 3 Id (100%) = Qrr (100%) = tQint = 3,3 3,6 15 1,51 1,00 3,9 time(us) 3 4,2 Prec (100%) = Erec (100%) = tErec = A µC µs 3,3 3,6 5,26 0,38 1,00 3,9 time(us) 4,2 kW mJ µs Neutral Point switching measurement circuit Figure 11 Neutral Point stage switching measurement circuit copyright Vincotech 24 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm housing without thermal paste 17mm housing 10-FY12M3A025SH-M746F08 10-F112M3A025SH-M746F09 M746F08 M746F09 M746F08 M746F09 Outline Pinout copyright Vincotech 25 2014.12.18. / Revision: 3 10-F112M3A025SH-M746F09 10-FY12M3A025SH-M746F08 datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 26 2014.12.18. / Revision: 3