V23990-P629-L63-PM flow BOOST 0 1200V/50A Features flow 0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● Antiparallel IGBT protection diode with high current Target Applications ● solar inverter Schematic Types ● V23990-P629-L63 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 38 45 A 220 A 200 A2s 47 71 W Tjmax 150 °C VCES 1200 V 43 57 A 160 A 145 220 W ±20 V D7-D10 Repetitive peak reverse voltage VRRM Forward average current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C T1,T2 Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C 10 µs 600 V 175 °C Revision: 1 V23990-P629-L63-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 28 34 A 138 A 95 As 78 A D1,D2,D3,D4,D5,D6 * Peak Repetitive Reverse Voltage VRRM Forward average current IFAV Surge forward current IFSM Th=80°C Tj=Tjmax Tc=80°C tp=10ms I2t-value Tj=25°C 2 It Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C 81 Tc=80°C 123 2 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 2 Revision: 1 V23990-P629-L63-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,14 1,10 0,92 0,80 0,009 0,012 1,9 D7-D10 Forward voltage VF Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir 25 1500 V V Ω 0,05 mA Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,49 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease tickness≤ 50um λ= 1 W/K 1,73 K/W Gate emitter threshold voltage VGE(th) VGE=VCE Collector-emitter saturation voltage VCE(sat) T1,T2 Collector-emitter cut-off IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 50 15 ICES Gate-emitter leakage current 0,00025 0 1200 20 0 tr tf 3,5 5,5 7,5 1,5 3,16 3,42 2,5 1 250 250 Rgoff=4 Ω Rgon=4 Ω 700 15 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 4 td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 24 23 9 11 178 208 11 39 0,467 0,550 0,934 1,760 ns Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 0,65 K/W Thermal resistance chip to heatsink per chip RthJH Thermal grease tickness≤ 50um λ= 1 W/K 0,43 K/W mWs 3200 f=1MHz 25 0 Tj=25°C 370 pF 125 600 15 40 Tj=25°C 220 330 nC D1,D2,D3,D4,D5,D6 * Forward voltage VF Reverse leakage current Irm Peak recovery current 1200 IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current 15 Rgon=4 Ω 15 700 di(rec)max /dt 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,43 1,69 2 150 17 15 9 9 0,24 0,21 0,093 0,074 6570 5559 V µA A ns µC mWs A/µs Thermal resistance chip to heatsink per chip RthJH Phase-Change Material 1,17 K/W Thermal resistance chip to case per chip RthJH Thermal grease tickness≤ 50um λ= 1 W/K 1,36 K/W copyright Vincotech 3 Revision: 1 V23990-P629-L63-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=25°C T=25°C Power dissipation constant Ω 21511 -4,5 +4,5 % 210 mW T=25°C 3,5 mW/K B-value B(25/50) Tol. ±3% T=25°C 3884 K B-value B(25/100) Tol. ±3% T=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 4 Revision: 1 V23990-P629-L63-PM T1, T2 T1, T2 T1, T2 120 120 IC (A) Figure 2 Typical output characteristics ID = f(VDS) IC(A) Figure 1 Typical output characteristics ID = f(VDS) 90 90 60 60 30 30 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGS from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1, T2 Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 V CE (V) 250 µs 126 °C 7 V to 17 V in steps of 1 V T1, T2 Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IF (A) ID (A) 50 5 40 40 30 30 20 20 10 10 0 0 0 At tp = VDS = 2 100 10 copyright Vincotech 4 µs V 6 Tj = 8 25/125 V GS (V) 10 0 At tp = °C 5 1 250 2 µs 3 Tj = 4 25/125 V F (V) 5 °C Revision: 1 V23990-P629-L63-PM T1, T2 T1, T2 Figure 5 Typical switching energy losses as a function of collector current E = f(ID) T1, T2 Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 5 E (mWs) E (mWs) 5 4 4 3 3 Eoff High T 2 Eoff High T 2 Eon High T Eoff Low T Eon Low T Eon High T Eoff Low T Eon Low T 1 1 0 0 0 20 40 60 80 0 I C (A) With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V ID = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) D1, D2, D3, D4, D5, D6 D1, D2, D3, D4, D5, D6 Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,025 E (mWs) E (mWs) 0,025 0,02 0,02 0,015 0,015 Erec High T Erec Low T Erec Low T 0,01 0,01 Erec High T 0,005 0,005 0 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω copyright Vincotech 4 8 12 16 RG(Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V ID = 40 A 6 Revision: 1 V23990-P629-L63-PM T1, T2 T1, T2 Figure 9 Typical switching times as a function of collector current t = f(ID) T1, T2 Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( ms) t ( ms) 1 tdoff tdoff 0,1 0,1 tf tf tdon tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 I D (A) 0 80 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 15 V IC = 40 A D1, D2, D3, D4, D5, D6 Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) D1, D2, D3, D4, D5, D6 Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,014 t rr( ms) t rr( ms) 0,014 0,012 0,012 0,01 0,01 trr High T trr High T trr Low T 0,008 0,008 trr Low T 0,006 0,006 0,004 0,004 0,002 0,002 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR = IF = VGS = °C V V Ω 7 4 25/125 700 40 15 8 12 16 R Gon (Ω) 20 °C V A V Revision: 1 V23990-P629-L63-PM T1, T2 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1, D2, D3, D4, D5, D6 D1, D2, D3, D4, D5, D6 Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,2 Qrr ( µC) Qrr ( µC) 0,2 Qrr Low T Qrr High T 0,15 0,15 Qrr Low T 0,1 0,1 0,05 0,05 0 0 0 At At Tj = VCE = VGE = Rgon = Qrr High T 20 40 60 I C (A) 80 0 At Tj = VR = IF = VGS = °C V V Ω 25/125 700 15 4 Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1, D2, D3, D4, D5, D6 4 25/125 700 40 15 8 12 R Gon ( Ω) 20 °C V A V D1, D2, D3, D4, D5, D6 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 25 IrrM (A) IrrM (A) 25 16 20 20 15 15 10 10 5 5 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 80 °C V V Ω 8 0 4 At Tj = VR = IF = VGS = 25/125 700 40 15 8 12 16 R Gon (Ω) 20 °C V A V Revision: 1 V23990-P629-L63-PM T1, T2 D1, D2, D3, D4, D5, D6 Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10000 10000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) D1, D2, D3, D4, D5, D6 Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 8000 dI0/dt dIrec/dt 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 40 60 I C (A) 80 0 At Tj = VR = IF = VGS = °C V V Ω T1, T2 Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 700 40 15 8 12 20 °C V A V D1, D2, D3, D4, D5, D6 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 100 R Gon ( Ω) 16 100 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 -2 10 -5 10 At D= -4 10 -3 10 -2 10 -1 10 0 t p (s) 10-5 1 10 10 At D= tp / T Phase-Change Material RthJH = 0,65 K/W RthJH = Tau (s) 0,561 0,125 0,010 0,048 0,001 copyright Vincotech 10-3 10-2 RthJH = FWD thermal model values Phase-Change Material Thermal grease R (C/W) Tau (s) 0,208 0,561 0,459 0,125 0,094 0,010 -0,004 0,048 0,032 0,001 R (C/W) 0,043 0,101 0,383 0,308 0,233 0,098 9 10-1 t p (s) 100 101 tp / T Phase-Change Material RthJH = 1,17 K/W Thermal grease K/W 0,79 IGBT thermal model values Phase-Change Material R (C/W) 0,173 0,381 0,078 -0,003 0,026 10-4 Tau (s) 9,803 0,815 0,098 0,026 0,005 0,001 R (C/W) 0,050 0,118 0,445 0,358 0,271 0,114 Thermal grease 1,36 K/W Thermal grease Tau (s) 9,80 0,82 0,10 0,03 0,01 0,00 Revision: 1 V23990-P629-L63-PM T1, T2 T1, T2 Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1, T2 Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 270 240 70 210 60 180 50 150 40 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = VGS = ºC D1, D2, D3, D4, D5, D6 Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 Th ( o C) 200 ºC V D1, D2, D3, D4, D5, D6 Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 175 150 150 40 125 30 100 75 20 50 10 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 10 50 175 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P629-L63-PM T1, T2 T1, T2 Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) T1, T2 Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 16 ID (A) UGS (V) 1103 14 100uS 102 100mS 10uS 240V 12 960V 10 10mS 1mS 8 101 6 DC 10 4 0 2 0 100 101 At D= Th = VGS = Tj = 103 102 0 V DS (V) 50 At ID = single pulse 80 ºC V 15 Tjmax ºC T1, T2 Figure 27 50 100 150 200 250 Qg (nC) 300 A T1, T2 Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 400 tsc (µS) IC (sc) 17,5 375 350 15 325 300 12,5 275 250 10 225 200 175 7,5 150 125 5 100 75 2,5 50 25 0 0 12 13 14 15 16 17 18 19 V GE (V) 20 12 13 14 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 150 ºC Tj = 25 ºC copyright Vincotech 11 15 16 17 V GE (V) 18 Revision: 1 V23990-P629-L63-PM T1, T2 T1, T2 Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 120 IC MAX Ic CHIP 100 Ic MODULE 80 VCE MAX 60 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tvj ≤ IC MAX= UCE MAX= 150 100 1200 copyright Vincotech ºC A V 12 Revision: 1 V23990-P629-L63-PM D7-D10 D7-D10 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D7-D10 Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 75 1 ZthJC (K/W) IF (A) 10 60 100 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10-1 15 0 0 0,4 At Tj = tp = 0,8 1,2 1,6 V F (V) 10 2 10 -5 10 At D= °C µs 25/125 250 -2 -4 10 -3 D7-D10 -2 10 -1 10 t p (s) 1 10 10 Thermal grease RthJH = 1,73 K/W D7-D10 Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 120 0 tp / T Phase-Change Material RthJH = 1,49 K/W Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 45 100 40 35 80 30 60 25 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P629-L63-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 Revision: 1 V23990-P629-L63-PM Switching Definitions Boost General conditions Tj = 125 °C Rgon = 4Ω Rgoff = 4Ω T1, T2 Figure 1 T1, T2 Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 150 % % tdoff VCE VCE 90% VGE 90% IC 125 100 100 VCE 75 VGE VGE 75 IC 50 tdon tEoff 50 25 IC 1% 25 VGE 10% 0 VCE 3% IC 10% 0 tEon -25 -0,15 -0,05 0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,15 0 15 700 40 0,320 0,468 0,25 0,35 -25 2,95 0,45 0,55 time (us) 3 3,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs T1, T2 Figure 3 0 15 700 40 0,027 0,157 3,1 3,15 3,2 V V V A µs µs T1, T2 Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 150 125 fitted % VCE IC 100 % IC 125 IC 90% VCE 100 75 IC 90% 75 IC 60% tr 50 IC 40% 50 25 25 IC10% -25 0,15 IC 10% tf 0 0,2 0,25 0,3 0 0,35 0,4 -25 2,95 0,45 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 700 40 0,057 VC (100%) = IC (100%) = tr = V A µs 15 3 3,05 700 40 0,017 3,1 time(us) 3,15 V A µs Revision: 1 V23990-P629-L63-PM Switching Definitions Boost T1, T2 Figure 5 T1, T2 Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Eoff 100 Eon Pon 100 Poff 75 75 50 50 25 25 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,2 0,3 28,02 2,43 0,468 0,4 0,5 -25 2,95 0,6 time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 3,05 28,02 1,22 0,1567 3,1 3,15 3,2 time(us) 3,25 kW mJ µs T1, T2 Figure 7 Turn-off Switching Waveforms & definition of trr 125 % Id 100 75 trr 50 25 0 fitted Vd IRRM 10% -25 IRRM 90% IRRM 100% -50 -75 3,02 3,03 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,04 3,05 700 40 -15 0,009 V A A µs 3,06 3,07 time(us) 3,08 16 Revision: 1 V23990-P629-L63-PM Switching Definitions Boost D1, D2, D3, D4, D5, D6 Figure 8 D1, D2, D3, D4, D5, D6 Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 200 % % Erec Qrr 150 150 Id 100 100 tErec tQrr 50 50 Prec 0 0 -50 3 3,02 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,04 40 0,21 0,02 3,06 3,08 time(us) -50 3,03 3,1 Prec (100%) = Erec (100%) = tErec = A µC µs 17 3,04 3,05 28,02 0,07 0,02 3,06 time(us) 3,07 kW mJ µs Revision: 1 V23990-P629-L63-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P629-L63 in DataMatrix as P629L63 in packaging barcode as P629L63 Outline Pinout copyright Vincotech 18 Revision: 1 V23990-P629-L63-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 Revision: 1