V23990-P629-L63-PM Maximum Ratings

V23990-P629-L63-PM
flow BOOST 0
1200V/50A
Features
flow 0 12mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
● Antiparallel IGBT protection diode with high current
Target Applications
● solar inverter
Schematic
Types
● V23990-P629-L63
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
38
45
A
220
A
200
A2s
47
71
W
Tjmax
150
°C
VCES
1200
V
43
57
A
160
A
145
220
W
±20
V
D7-D10
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
10
µs
600
V
175
°C
Revision: 1
V23990-P629-L63-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
28
34
A
138
A
95
As
78
A
D1,D2,D3,D4,D5,D6 *
Peak Repetitive Reverse Voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
Th=80°C
Tj=Tjmax
Tc=80°C
tp=10ms
I2t-value
Tj=25°C
2
It
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
81
Tc=80°C
123
2
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
2
Revision: 1
V23990-P629-L63-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,14
1,10
0,92
0,80
0,009
0,012
1,9
D7-D10
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
25
1500
V
V
Ω
0,05
mA
Thermal resistance chip to heatsink per chip
RthJH
Phase-Change
Material
1,49
K/W
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
tickness≤ 50um
λ= 1 W/K
1,73
K/W
Gate emitter threshold voltage
VGE(th)
VGE=VCE
Collector-emitter saturation voltage
VCE(sat)
T1,T2
Collector-emitter cut-off
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
50
15
ICES
Gate-emitter leakage current
0,00025
0
1200
20
0
tr
tf
3,5
5,5
7,5
1,5
3,16
3,42
2,5
1
250
250
Rgoff=4 Ω
Rgon=4 Ω
700
15
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
4
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
24
23
9
11
178
208
11
39
0,467
0,550
0,934
1,760
ns
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Phase-Change
Material
0,65
K/W
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
tickness≤ 50um
λ= 1 W/K
0,43
K/W
mWs
3200
f=1MHz
25
0
Tj=25°C
370
pF
125
600
15
40
Tj=25°C
220
330
nC
D1,D2,D3,D4,D5,D6 *
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
1200
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
15
Rgon=4 Ω
15
700
di(rec)max
/dt
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,43
1,69
2
150
17
15
9
9
0,24
0,21
0,093
0,074
6570
5559
V
µA
A
ns
µC
mWs
A/µs
Thermal resistance chip to heatsink per chip
RthJH
Phase-Change
Material
1,17
K/W
Thermal resistance chip to case per chip
RthJH
Thermal grease
tickness≤ 50um
λ= 1 W/K
1,36
K/W
copyright Vincotech
3
Revision: 1
V23990-P629-L63-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=25°C
T=25°C
Power dissipation constant
Ω
21511
-4,5
+4,5
%
210
mW
T=25°C
3,5
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3884
K
B-value
B(25/100) Tol. ±3%
T=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
4
Revision: 1
V23990-P629-L63-PM
T1, T2
T1, T2
T1, T2
120
120
IC (A)
Figure 2
Typical output characteristics
ID = f(VDS)
IC(A)
Figure 1
Typical output characteristics
ID = f(VDS)
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGS from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1, T2
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
V CE (V)
250
µs
126
°C
7 V to 17 V in steps of 1 V
T1, T2
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
ID (A)
50
5
40
40
30
30
20
20
10
10
0
0
0
At
tp =
VDS =
2
100
10
copyright Vincotech
4
µs
V
6
Tj =
8
25/125
V GS (V)
10
0
At
tp =
°C
5
1
250
2
µs
3
Tj =
4
25/125
V F (V)
5
°C
Revision: 1
V23990-P629-L63-PM
T1, T2
T1, T2
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
T1, T2
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
5
E (mWs)
E (mWs)
5
4
4
3
3
Eoff High T
2
Eoff High T
2
Eon High T
Eoff Low T
Eon
Low T
Eon High T
Eoff Low T
Eon Low T
1
1
0
0
0
20
40
60
80
0
I C (A)
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
ID =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
D1, D2, D3, D4, D5, D6
D1, D2, D3, D4, D5, D6
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,025
E (mWs)
E (mWs)
0,025
0,02
0,02
0,015
0,015
Erec High T
Erec Low T
Erec Low T
0,01
0,01
Erec High T
0,005
0,005
0
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
copyright Vincotech
4
8
12
16
RG(Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
ID =
40
A
6
Revision: 1
V23990-P629-L63-PM
T1, T2
T1, T2
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
T1, T2
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( ms)
t ( ms)
1
tdoff
tdoff
0,1
0,1
tf
tf
tdon
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
I D (A)
0
80
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
15
V
IC =
40
A
D1, D2, D3, D4, D5, D6
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
D1, D2, D3, D4, D5, D6
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,014
t rr( ms)
t rr( ms)
0,014
0,012
0,012
0,01
0,01
trr High T
trr High T
trr Low T
0,008
0,008
trr Low T
0,006
0,006
0,004
0,004
0,002
0,002
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
7
4
25/125
700
40
15
8
12
16
R Gon (Ω)
20
°C
V
A
V
Revision: 1
V23990-P629-L63-PM
T1, T2
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1, D2, D3, D4, D5, D6
D1, D2, D3, D4, D5, D6
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,2
Qrr ( µC)
Qrr ( µC)
0,2
Qrr Low T
Qrr High T
0,15
0,15
Qrr Low T
0,1
0,1
0,05
0,05
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
Qrr High T
20
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
25/125
700
15
4
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1, D2, D3, D4, D5, D6
4
25/125
700
40
15
8
12
R Gon ( Ω)
20
°C
V
A
V
D1, D2, D3, D4, D5, D6
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
25
IrrM (A)
IrrM (A)
25
16
20
20
15
15
10
10
5
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
80
°C
V
V
Ω
8
0
4
At
Tj =
VR =
IF =
VGS =
25/125
700
40
15
8
12
16
R Gon (Ω)
20
°C
V
A
V
Revision: 1
V23990-P629-L63-PM
T1, T2
D1, D2, D3, D4, D5, D6
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10000
10000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
D1, D2, D3, D4, D5, D6
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
8000
dI0/dt
dIrec/dt
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
T1, T2
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
700
40
15
8
12
20
°C
V
A
V
D1, D2, D3, D4, D5, D6
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
100
R Gon ( Ω)
16
100
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
-2
10
-5
10
At
D=
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10-5
1
10 10
At
D=
tp / T
Phase-Change Material
RthJH =
0,65
K/W
RthJH =
Tau (s)
0,561
0,125
0,010
0,048
0,001
copyright Vincotech
10-3
10-2
RthJH =
FWD thermal model values
Phase-Change Material
Thermal grease
R (C/W)
Tau (s)
0,208
0,561
0,459
0,125
0,094
0,010
-0,004
0,048
0,032
0,001
R (C/W)
0,043
0,101
0,383
0,308
0,233
0,098
9
10-1
t p (s)
100
101
tp / T
Phase-Change Material
RthJH =
1,17
K/W
Thermal grease
K/W
0,79
IGBT thermal model values
Phase-Change Material
R (C/W)
0,173
0,381
0,078
-0,003
0,026
10-4
Tau (s)
9,803
0,815
0,098
0,026
0,005
0,001
R (C/W)
0,050
0,118
0,445
0,358
0,271
0,114
Thermal grease
1,36
K/W
Thermal grease
Tau (s)
9,80
0,82
0,10
0,03
0,01
0,00
Revision: 1
V23990-P629-L63-PM
T1, T2
T1, T2
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1, T2
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
80
IC (A)
Ptot (W)
270
240
70
210
60
180
50
150
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
D1, D2, D3, D4, D5, D6
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
Th ( o C)
200
ºC
V
D1, D2, D3, D4, D5, D6
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
175
150
150
40
125
30
100
75
20
50
10
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
V23990-P629-L63-PM
T1, T2
T1, T2
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
T1, T2
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
16
ID (A)
UGS (V)
1103
14
100uS
102
100mS
10uS
240V
12
960V
10
10mS
1mS
8
101
6
DC
10
4
0
2
0
100
101
At
D=
Th =
VGS =
Tj =
103
102
0
V DS (V)
50
At
ID =
single pulse
80
ºC
V
15
Tjmax
ºC
T1, T2
Figure 27
50
100
150
200
250 Qg (nC) 300
A
T1, T2
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
400
tsc (µS)
IC (sc)
17,5
375
350
15
325
300
12,5
275
250
10
225
200
175
7,5
150
125
5
100
75
2,5
50
25
0
0
12
13
14
15
16
17
18
19
V GE (V)
20
12
13
14
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
150
ºC
Tj =
25
ºC
copyright Vincotech
11
15
16
17
V GE (V)
18
Revision: 1
V23990-P629-L63-PM
T1, T2
T1, T2
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
120
IC MAX
Ic CHIP
100
Ic
MODULE
80
VCE MAX
60
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tvj ≤
IC MAX=
UCE MAX=
150
100
1200
copyright Vincotech
ºC
A
V
12
Revision: 1
V23990-P629-L63-PM
D7-D10
D7-D10
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D7-D10
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
1
ZthJC (K/W)
IF (A)
10
60
100
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10-1
15
0
0
0,4
At
Tj =
tp =
0,8
1,2
1,6
V F (V)
10
2
10
-5
10
At
D=
°C
µs
25/125
250
-2
-4
10
-3
D7-D10
-2
10
-1
10
t p (s)
1
10 10
Thermal grease
RthJH =
1,73
K/W
D7-D10
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
120
0
tp / T
Phase-Change Material
RthJH =
1,49
K/W
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
45
100
40
35
80
30
60
25
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
V23990-P629-L63-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
Revision: 1
V23990-P629-L63-PM
Switching Definitions Boost
General conditions
Tj
= 125 °C
Rgon
= 4Ω
Rgoff
= 4Ω
T1, T2
Figure 1
T1, T2
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
150
%
%
tdoff
VCE
VCE 90%
VGE 90%
IC
125
100
100
VCE
75
VGE
VGE
75
IC
50
tdon
tEoff
50
25
IC 1%
25
VGE 10%
0
VCE 3%
IC 10%
0
tEon
-25
-0,15
-0,05
0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,15
0
15
700
40
0,320
0,468
0,25
0,35
-25
2,95
0,45
0,55
time (us)
3
3,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
T1, T2
Figure 3
0
15
700
40
0,027
0,157
3,1
3,15
3,2
V
V
V
A
µs
µs
T1, T2
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
150
125
fitted
%
VCE
IC
100
%
IC
125
IC 90%
VCE
100
75
IC 90%
75
IC 60%
tr
50
IC 40%
50
25
25
IC10%
-25
0,15
IC 10%
tf
0
0,2
0,25
0,3
0
0,35
0,4
-25
2,95
0,45
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
700
40
0,057
VC (100%) =
IC (100%) =
tr =
V
A
µs
15
3
3,05
700
40
0,017
3,1
time(us)
3,15
V
A
µs
Revision: 1
V23990-P629-L63-PM
Switching Definitions Boost
T1, T2
Figure 5
T1, T2
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Eoff
100
Eon
Pon
100
Poff
75
75
50
50
25
25
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
0,3
28,02
2,43
0,468
0,4
0,5
-25
2,95
0,6
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
3,05
28,02
1,22
0,1567
3,1
3,15
3,2
time(us)
3,25
kW
mJ
µs
T1, T2
Figure 7
Turn-off Switching Waveforms & definition of trr
125
%
Id
100
75
trr
50
25
0
fitted
Vd
IRRM 10%
-25
IRRM 90%
IRRM 100%
-50
-75
3,02
3,03
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,04
3,05
700
40
-15
0,009
V
A
A
µs
3,06
3,07
time(us)
3,08
16
Revision: 1
V23990-P629-L63-PM
Switching Definitions Boost
D1, D2, D3, D4, D5, D6
Figure 8
D1, D2, D3, D4, D5, D6
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
200
%
%
Erec
Qrr
150
150
Id
100
100
tErec
tQrr
50
50
Prec
0
0
-50
3
3,02
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,04
40
0,21
0,02
3,06
3,08
time(us)
-50
3,03
3,1
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
17
3,04
3,05
28,02
0,07
0,02
3,06
time(us)
3,07
kW
mJ
µs
Revision: 1
V23990-P629-L63-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P629-L63
in DataMatrix as
P629L63
in packaging barcode as
P629L63
Outline
Pinout
copyright Vincotech
18
Revision: 1
V23990-P629-L63-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
Revision: 1