INTERSIL HUF75639S3R4851

HUF75639S3R4851
TM
Data Sheet
April 2000
File Number
4854
56A, 115V, 0.025 Ohm, N-Channel
UltraFET Power MOSFET
This N-Channel power MOSFETs is manufactured using the
innovative UltraFET™ process. This advanced process
technology achieves the lowest possible on-resistance per
silicon area, resulting in outstanding performance. This
device is capable of withstanding high energy in the
avalanche mode and the diode exhibits very low reverse
recovery time and stored charge. It was designed for use in
applications where power efficiency is important, such as
switching regulators, switching converters, motor drivers,
relay drivers, low-voltage bus switches, and power
management in portable and battery-operated products.
Features
• 56A, 115V
• Simulation Models
- Temperature Compensated PSPICETM and SABER©
Electrical Models
- Spice and Saber Thermal Impedance Models
- www.Intersil.com
• Peak Current vs Pulse Width Curve
Formerly developmental type TA75639.‘
• UIS Rating Curve
Ordering Information
PART NUMBER
HUF75639S3R4851
PACKAGE
TO-262AA
BRAND
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
R4851
NOTE: When ordering, use the entire part number.
Packaging
JEDEC TO-262AA
Symbol
SOURCE
DRAIN
GATE
D
G
S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
HUF75639S3R4851
UNITS
115
115
±20
V
V
V
56
Figure 4
Figures 6, 14, 15
200
1.35
-55 to 175
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
PSPICE® is a registered trademark of MicroSim Corporation. | SABER™ is a trademark of Analogy, Inc.
UltraFET® is a registered trademark of Intersil Corporation.
HUF75639S3R4851
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
115
-
-
V
VDS = 95V, VGS = 0V
-
-
1
µA
VDS = 90V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
BVDSS
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 56A, VGS = 10V (Figure 9)
-
0.021
0.025
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
0.74
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-262
-
-
62
oC/W
tON
VDD = 50V, ID ≅ 56A,
RL = 0.89Ω, VGS = 10V,
RGS = 5.1Ω
-
-
110
ns
-
15
-
ns
tr
-
60
-
ns
td(OFF)
-
20
-
ns
tf
-
25
-
ns
tOFF
-
-
70
ns
-
110
130
nC
-
57
75
nC
-
3.7
4.5
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
VDD = 50V,
ID ≅ 56A,
RL = 0.89Ω
Ig(REF) = 1.0mA
(Figure 13)
Gate to Source Gate Charge
Qgs
-
9.8
-
nC
Reverse Transfer Capacitance
Qgd
-
24
-
nC
-
2000
-
pF
-
500
-
pF
-
65
-
pF
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
MIN
TYP
MAX
UNITS
ISD = 56A
-
-
1.25
V
trr
ISD = 56A, dISD/dt = 100A/µs
-
-
110
ns
QRR
ISD = 56A, dISD/dt = 100A/µs
-
-
320
nC
VSD
Reverse Recovery Time
Reverse Recovered Charge
2
TEST CONDITIONS
HUF75639S3R4851
Typical Performance Curves
60
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
0.2
50
40
30
20
10
0
0
0
25
50
75
100
125
150
25
175
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
IDM , PEAK CURRENT (A)
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
100
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10-5
10-4
10-3
10-2
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
3
10-1
100
101
HUF75639S3R4851
Typical Performance Curves
(Continued)
300
1000
IAS, AVALANCHE CURRENT (A)
ID , DRAIN CURRENT (A)
TJ = MAX RATED
TC = 25oC
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
VDSS(MAX) = 115V
10
100
100
STARTING TJ = 25οC
STARTING TJ = 150οC
10
0.001
1
1
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
200
0.01
0.1
1
tAV, TIME IN AVALANCHE (ms)
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
100
100
80
VGS = 20V
VGS = 10V
VGS = 7V
60
40
VGS = 5V
20
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
1
2
3
4
5
6
40
20
25oC
-55oC
0
0
7
VDS , DRAIN TO SOURCE VOLTAGE (V)
1.5
3.0
4.5
6.0
7.5
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 8. TRANSFER CHARACTERISTICS
3.0
1.2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.5 V
GS = 10V, ID = 56A
NORMALIZED GATE
VGS = VDS, ID = 250µA
2.0
1.5
1.0
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
175oC
60
0
0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
80
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
VGS = 6V
1.0
0.8
0.5
0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
200
0.6
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
HUF75639S3R4851
Typical Performance Curves
(Continued)
3000
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
ID = 250µA
2500
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.1
1.0
2000
CISS
1500
1000
COSS
500
CRSS
0.9
-80
0
-40
0
40
80
120
160
200
0
10
TJ , JUNCTION TEMPERATURE (oC)
20
30
40
50
60
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
10
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 56A
ID = 37A
ID = 18A
2
VDD = 50V
0
0
10
20
30
40
50
60
Qg, GATE CHARGE (nC)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
-
VGS
VDS
IAS
VDD
VDD
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
5
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
HUF75639S3R4851
Test Circuits and Waveforms
(Continued)
VGS = 20V
VDS
VDD
RL
Qg(TOT)
VDS
VGS
Qg(10)
+
-
VDD
VGS = 10V
VGS
DUT
VGS = 2V
IG(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORM
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
6
10%
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
HUF75639S3R4851
PSPICE Electrical Model
SUBCKT R4851 2 1 3 ;
rev 19 Oct. 99
CA 12 8 2.8e-9
CB 15 14 2.65e-9
CIN 6 8 1.9e-9
LDRAIN
DPLCAP
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
10
DBREAK
+
RSLC2
5
51
ESLC
11
-
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
RLGATE 1 9 10
RLDRAIN 2 5 20
RLSOURCE 3 7 4.69
+
17
EBREAK 18
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.3e-2
RGATE 9 20 0.7
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 4.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 126
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
LDRAIN 2 5 2e-9
LGATE 1 9 1e-9
LSOURCE 3 7 0.47e-9
DRAIN
2
5
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
IT
14
+
+
-
+
8
22
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*115),4))}
.MODEL DBODYMOD D (IS = 1.4e-12 RS = 3.3e-3 XTI = 4.7 TRS1 = 2e-3 TRS2 = 0.1e-5 CJO = 3.3e-9 TT = 6.1e-8 M = 0.7)
.MODEL DBREAKMOD D (RS = 3.5e-1 TRS1 = 1e-3 TRS2 = 1e-6)
.MODEL DPLCAPMOD D (CJO = 2.2e-9 IS = 1e-30 N = 10 M = 0.95 vj = 1.0)
.MODEL MMEDMOD NMOS (VTO = 3.5 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Rg = 0.7)
.MODEL MSTROMOD NMOS (VTO = 3.97 KP = 56.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO =3.11 KP = 0.085 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 0.8e-3 TC2 = 1e-6)
.MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 1.75e-5)
.MODEL RSLCMOD RES (TC1 = 2.8e-3 TC2 = 14e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -2.0e-3 TC2 = -1.75e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0.05e-9)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -6.0 VOFF = -3.5)
VON = -3.5 VOFF = -6.0)
VON = -2.5 VOFF = 4.95)
VON = 4.95 VOFF = -2.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
HUF75639S3R4851
SABER Electrical Model
nom temp=25 deg c 115v Ultrafet
REV 19 Oct. 99
template r4851 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is=1.4e-12, xti=4.7, cjo=33e-10,tt=6.1e-8, m=0.7)
d..model dbreakmod = ()
d..model dplcapmod = (cjo=22e-10,is=1e-30,n=10,m=0.95, vj=1.0)
m..model mmedmod = (type=_n,vto=3.5,kp=4.8,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=3.97,kp=56.5,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=3.11,kp=0.085,is=1e-30, tox=1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.0,voff=-3.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-6.0)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2.5,voff=4.95)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=4.95,voff=-2.5)
LDRAIN
DPLCAP
10
LGATE
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
RDBREAK
RSLC2
72
ISCL
RDRAIN
6
8
EVTHRES
+ 19 8
EVTEMP
RGATE +
18 22
9
20
21
71
11
16
MWEAK
DBODY
6
EBREAK
+
17
18
MMED
MSTRO
RLGATE
CIN
i.it n8 n17 = 1
RDBODY
DBREAK
50
+
GATE
1
RLDRAIN
RSLC1
51
ESG
c.ca n12 n8 = 28.5e-10
c.cb n15 n14 = 26.5e-10
c.cin n6 n8 = 19e-10
DRAIN
2
5
-
8
LSOURCE
SOURCE
3
7
RSOURCE
l.ldrain n2 n5 = 2.0e-9
l.lgate n1 n9 = 1e-9
l.lsource n3 n7 = 4.69e-10
RLSOURCE
S1A
12
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
13
8
14
13
S1B
CA
res.rbreak n17 n18 = 1, tc1=0.8e-3,tc2=-1e-6
res.rdbody n71 n5 = 3.3e-3, tc1=2.0e-3, tc2=0.1e-5
res.rdbreak n72 n5 = 3.5e-1, tc1=1e-3, tc2=1e-6
res.rdrain n50 n16 = 13e-3, tc1=1e-2,tc2=1.75e-5
res.rgate n9 n20 = 0.7
res.rldrain n2 n5 = 20
res.rlgate n1 n9 = 10
res.rlsource n3 n7 = 4.69
res.rslc1 n5 n51 = 1e-6, tc1=2.8e-3,tc2=14e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 4.5e-3, tc1=0,tc2=0
res.rvtemp n18 n19 = 1, tc1=-2.75e-3,tc2=0.05e-9
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1.75e-5
S2A
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/115))** 4))
}
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 126
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
8
RBREAK
15
VBAT
5
8
EDS
-
+
8
22
RVTHRES
HUF75639S3R4851
Spice Thermal Model
TH
REV 19 Oct 1999
JUNCTION
R4851
CTHERM1 TH 6 5.0e-3
CTHERM2 6 5 1.9e-2
CTHERM3 5 4 7.95e-3
CTHERM4 4 3 9.0e-3
CTHERM5 3 2 2.95e-2
CTHERM6 2 TL 12.55
RTHERM1
CTHERM1
6
RTHERM1 TH 6 5.04e-3
RTHERM2 6 5 1.25e-2
RTHERM3 5 4 3.54e-2
RTHERM4 4 3 1.98e-1
RTHERM5 3 2 2.99e-1
RTHERM6 2 TL 3.97e-2
RTHERM2
CTHERM2
5
Saber Thermal Model
RTHERM3
CTHERM3
Saber thermal model R4851
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 5.0e-3
ctherm.ctherm2 6 5 = 1.9e-2
ctherm.ctherm3 5 4 = 7.95e-3
ctherm.ctherm4 4 3 = 9.0e-3
ctherm.ctherm5 3 2 = 2.95e-2
ctherm.ctherm6 2 tl = 12.55
4
RTHERM4
CTHERM4
3
rtherm.rtherm1 th 6 = 5.04e-3
rtherm.rtherm2 6 5 = 1.25e-2
rtherm.rtherm3 5 4 = 3.54e-2
rtherm.rtherm4 4 3 = 1.98e-1
rtherm.rtherm5 3 2 = 2.99e-1
rtherm.rtherm6 2 tl = 3.97e-2
}
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
TL
9
CASE
HUF75639S3R4851
TO-262AA
3 LEAD JEDEC TO-262AA PLASTIC PACKAGE
fq
E
INCHES
A
15o
A1
H1
TERM. 4
D
L1
b1
MIN
MAX
MIN
MAX
c
A
0.170
0.180
4.32
4.57
-
0.048
0.052
1.22
1.32
3, 4
b
0.030
0.034
0.77
0.86
3, 4
b1
0.045
0.055
1.15
1.39
3, 4
c
0.018
0.022
0.46
0.55
3, 4
D
0.405
0.425
10.29
10.79
-
E
0.395
0.405
10.04
10.28
e1
L
H1
60o
2
1
3
e
J1
e1
NOTES
A1
e
b
MILLIMETERS
SYMBOL
0.100 TYP
0.200 BSC
0.045
0.055
-
2.54 TYP
5
5.08 BSC
5
1.15
1.39
-
J1
0.095
0.105
2.42
2.66
6
L
0.530
0.550
13.47
13.97
-
L1
0.110
0.130
2.80
3.30
2
NOTES:
1. These dimensions are within allowable dimensions of Rev. A of
JEDEC TO-262AA outline dated 6-90.
2. Solder finish uncontrolled in this area.
3. Dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder plating.
5. Position of lead to be measured 0.250 inches (6.35mm) from
bottom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from
bottom of dimension D.
7. Controlling dimension: Inch.
8. Revision 5 dated 7-97.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
10
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029