10-FY12NMA160SH-M420F 10-PY12NMA160SH

10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
flowMNPC 1
1200V/160A
Features
flow1 12mm housing
● mixed voltage NPC topology
● reactive power capability
● low inductance layout
● Split output
● Common collector neutral connection
12mm solder pin
12mm PressFiT pin
Schematic
Target Applications
● solar inverter
● UPS
● Active frontend
Types
● 10-FY12NMA160SH-M420F
● 10-PY12NMA160SH-M420FY
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Halfbridge IGBT Inverse Diode
Repetitive peak reverse voltage
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp=10ms
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC forward current
Th=80°C
Tc=80°C
14
19
A
14
A
31
47
W
Tjmax
150
°C
VCE
1200
V
116
156
A
640
A
260
394
W
±20
V
10
600
µs
V
175
°C
Th=80°C
Tc=80°C
Halfbridge IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
66
90
A
240
A
67
101
W
Tjmax
150
°C
VCE
600
V
63
83
A
300
A
NP Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
NP IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
Icpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
94
142
W
±20
V
6
360
µs
V
175
°C
600
V
13
18
A
30
A
20
31
W
150
°C
1200
V
36
50
A
120
A
61
92
W
150
°C
630
V
NP Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Halfbridge Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
IF
IFRM
Ptot
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tjmax
DC link Capacitor
Max.DC voltage
copyright Vincotech
VMAX
Tc=25°C
2
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
7
Tj=25°C
Tj=125°C
Min
Unit
Typ
Max
1,97
1,65
3,4
Halfbridge IGBT Inverse Diode
Forward voltage
Vf
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
1
V
2,24
K/W
1,48
Halfbridge IGBT
Gate emitter threshold voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(ON)
Rise time
Turn-off delay time
Fall time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,004
160
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5,8
6,5
1
2,02
2,37
2,5
1
2400
none
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
tr
td(OFF)
5
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
V
V
mA
nA
Ω
133
135
20
23
225
276
38
64
1,80
3,18
2,52
4,03
ns
mWs
9320
f=1MHz
0
Tj=25°C
25
600
pF
520
15
960
160
740
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,37
K/W
0,24
*additional value stands for built-in capacitor
NP Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Rgon=4 Ω
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright Vincotech
120
Thermal grease
thickness≤50um
λ = 1 W/mK
4
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,4
1,47
1,29
127
151
40
81
3,02
7,13
12386
3767
0,31
1,01
2
V
A
ns
µC
A/µs
mWs
1,05
K/W
0,69
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
NP IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0016
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5
5,8
6,5
1,05
1,58
1,8
1,85
0,0052
1200
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
103
103
16,8
19,2
158
179
44
64
1,06
1,52
2,48
3,32
ns
µWs
6280
f=1MHz
15
480
100
Tj=25°C
400
pF
186
Tj=25°C
nC
620
Thermal grease
thickness≤50um
λ = 1 W/mK
1,01
K/W
0,67
NP Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Coupled thermal resistance inverter transistor-diode
RthJC
15
Tj=25°C
Tj=125°C
1,00
Thermal grease
thickness≤50um
λ = 1 W/mK
1,61
1,57
2,15
V
3,43
K/W
2,27
Halfbridge Diode
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
60
1200
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
100
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,50
2,47
2,11
3,40
200
107
142
51
69
6,24
12,71
5985
2890
1,71
3,61
Thermal grease
thickness≤50um
λ = 1 W/mK
1,15
DC+ to Neutral and DC- to Neutral
100
V
µA
A
ns
µC
A/µs
mWs
K/W
0,76
DC link Capacitor
C value
C
nF
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Power dissipation constant
T=25°C
Ω
22000
T=25°C
R100=1486 Ω
-5
+5
%
T=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
K
B
Module Properties
Thermal resistance, case to heatsink
RthCH
per module
λPaste=1W/(m·K)/λgrease=1W/(m·K)
Module stray inductance
LsCE
V23990-P-M107-*-31
Rcc'1+EE'
Tc=25°C, per switch
Chip module lead resistance, terminals -chip
Mounting torque
M
Weight
G
copyright Vincotech
Screw M4 - mounting according to valid application note
Flow1-4TY-P-*-HI for PressFiT, V23990-P-M101-*-31 for SolderPin
tbd.
nH
tbd.
mΩ
2
2,2
42,28
5
K/W
5
Nm
g
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
320
IC (A)
320
240
240
160
160
80
80
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
2
3
4
100
300
IF (A)
Tj = Tjmax-25°C
V CE (V) 5
250
µs
125
°C
7 V to 17 V in steps of 1 V
NP FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
Tj = 25°C
Tj = Tjmax-25°C
250
80
Tj = 25°C
200
60
150
40
100
20
50
0
0
0
At
tp =
VCE =
Tj =
2
250
10
25/150
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
Tj =
µs
V
°C
6
0,5
250
25/150
1
1,5
2
V F (V)
2,5
µs
°C
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
8
6
Eon High T
E (mWs)
E (mWs)
Eoff High T
6
Eon High T
Eon Low T
Eoff Low T
Eoff High T
4
4
Eon Low T
Eoff Low T
2
2
0
0
0
50
I C (A)
150
100
200
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
NP FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
NP FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1,6
E (mWs)
1,6
Erec High T
1,2
1,2
0,8
0,8
Erec Low T
Erec High T
0,4
0,4
0
0
Erec Low T
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
7
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
tdon
tdon
0,10
0,10
tf
tf
tr
tr
0,01
0,01
0,00
0,00
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
NP FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
NP FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,180
t rr(ms)
0,120
trr High T
0,150
trr High T
0,090
0,120
0,060
0,090
trr Low T
0,060
trr Low T
0,030
0,030
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4
copyright Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
NP FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
NP FWD
Figure 14
Typical reverse recovery charge as a
function of JFET turn on gate resistor
Qrr = f(Rgon)
10
12
Qrr (mC)
Qrr (mC)
Qrr High T
10
8
8
6
Qrr High T
6
Qrr Low T
4
4
2
2
Qrr Low T
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
0
40
25/125
350
±15
4
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
NP FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
NP FWD
Figure 16
Typical reverse recovery current as a
function of JFET turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
200
IRRM High T
200
160
IRRM Low T
120
150
80
100
40
50
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4
copyright Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
NP FWD
NP FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of JFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
14000
30000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dtLow T
12000
dI0/dtLow T
dI0/dtHigh T
dIrec/dtLow T
dIrec/dtHigh T
25000
10000
20000
8000
15000
dIo/dtLow T
6000
10000
4000
dIrec/dtHigh T
di0/dtHigh T
5000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4
80
120
I C (A)
160
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
100
±15
8
12
R gon ( Ω)
16
20
°C
V
A
V
NP FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
4
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
-3
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 1
10
tp / T
0,37
-5
At
D=
RthJH =
K/W
10
-4
10
R (C/W)
0,06
0,15
0,12
0,03
0,01
R (C/W)
0,05
0,27
0,55
0,11
0,04
0,03
10
-2
10
-1
10
0
t p (s)
1
101
K/W
FWD thermal model values
copyright Vincotech
10
tp / T
1,05
IGBT thermal model values
Tau (s)
2,4E+00
4,0E-01
1,0E-01
1,3E-02
8,4E-04
-3
Tau (s)
7,4E+00
1,3E+00
2,7E-01
4,0E-02
5,1E-03
6,0E-04
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
180
IC (A)
500
Ptot (W)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
450
150
400
350
120
300
250
90
200
60
150
100
30
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
NP FWD
175
15
100
150
150
120
IF (A)
T h ( o C)
200
°C
V
NP FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
Ptot (W)
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
120
90
90
60
60
30
30
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge
half bridge IGBT and Neutral Point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
IC (A)
VGE (V)
16
10
14
3
240V
10uS
12
100uS
10
960V
1mS
2
10
100mS
101
10mS
8
6
10
DC
0
4
2
10-1
0
At
D=
0
103
102
101
100
Tj =
200
300
400
500
600
700
800
Q g (nC)
At
ID =
VDS=
Tj=
single pulse
80
ºC
V
0
Tjmax
ºC
Th =
VGE =
100
V CE (V)
20
600
25
A
V
ºC
IGBT
Figure 27
Reverse bias safe operating area
200
ICMAX
Ic MODULE
160
Ic CHIP
IC (A)
IC = f(VCE)
120
VCEMAX
80
40
0
0
200
400
600
800
1000
1200
1400
VCE(V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
NP IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
NP IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
60
V CE (V)
Tj = Tjmax-25°C
IF (A)
IC (A)
200
Tj = Tjmax-25°C
50
160
40
Tj = 25°C
120
30
Tj = 25°C
80
20
40
10
0
0
0
At
tp =
VCE =
Tj =
2
250
10
25/150
copyright Vincotech
4
6
8
10
V GE (V) 12
0
At
tp =
Tj =
µs
V
°C
13
1
250
25/150
2
3
V F (V)
4
µs
°C
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
NP IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
6
E (mWs)
E (mWs)
6
Eoff High T
5
5
4
4
Eoff Low T
Eon High T
3
3
Eon Low T
Eoff High T
Eon High T
2
2
Eon Low T
Eoff Low T
1
1
0
0
0
40
80
120
160
200
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
60
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
5
E (mWs)
E (mWs)
Erec High T
4
4
Erec Low T
3
3
2
2
1
1
Erec High T
Erec Low T
0
0
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
60
A
14
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
NP IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdon
tdoff
tdon
0,1
0,1
tf
tr
tf
0,01
0,01
tr
0,001
0,001
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
60
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,12
0,8
t rr(ms)
t rr(ms)
trr High T
0,09
0,6
trr High T
0,06
0,4
trr Low T
0,03
0,2
0,00
0
trr Low T
0
40
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4,0
copyright Vincotech
80
120
160
I C (A)
200
°C
V
V
Ω
15
0
4
At
Tj =
VR =
IF =
VGE =
25/125
350
60
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
Qrr (mC)
18
Qrr (mC)
Qrr High T
15
12
12
Qrr High T
9
Qrr Low T
9
6
6
Qrr Low T
3
3
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
80
40
25/125
350
±15
4,0
120
160
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
60
±15
8
12
16
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
180
20
200
IrrM (A)
IrrM (A)
IRRM High T
150
160
IRRM Low T
120
120
90
80
60
IIRRM
RRMHigh
Low T
40
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4,0
copyright Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
4
25/125
350
60
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT and half bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
18000
direc / dt (A/ms)
10000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
15000
dIo/dtLow T
12000
di0/dtHigh T
6000
9000
4000
dIrec/dtLow T
6000
dIrec/dtHigh T
2000
3000
dIrec/dtHigh T
dI
/dtLow
Low T
dIrec
/dt
dI
00/dt
High T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4,0
80
120
I C (A)
160
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
NP IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
60
±15
8
12
R gon ( Ω)
16
20
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
4
10
-5
At
D=
RthJH =
10
-4
tp / T
1,01
10
-3
10
-2
10
-1
10
0
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-3
10
-1
1
10 10
K/W
-3
10-5
10-4
10-3
At
D=
RthJH =
tp / T
1,15
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,05
0,16
0,52
0,18
0,07
R (C/W)
0,05
0,13
0,59
0,22
0,10
Tau (s)
6,49
1,27
0,25
0,07
0,01
copyright Vincotech
17
10-2
10-1
100
t p (s)
101 10
Tau (s)
4,90
0,82
0,18
0,05
0,01
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
NP IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
180
150
80
120
60
90
40
60
20
30
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
70
Ptot (W)
IF (A)
140
120
60
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
150
100
150
Th ( o C)
200
ºC
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Neutral Point IGBT
neutral point IGBT
NP IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
125
Ic MODULE
75
Ic CHIP
ICMAX
100
VCEMAX
50
25
0
0
100
200
300
400
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
500
600
VCE(V)
700
19
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
NP IGBT Inverse Diode
NP Inverse Diode
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
NP Inverse Diode
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
101
ZthJC (K/W)
IF (A)
Tj = 25°C
40
Tj = Tjmax-25°C
100
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
0
0
At
tp =
0,5
1
1,5
2
2,5
VF (V)
10-2
3
10-5
At
D=
RthJH =
µs
250
NP Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
tp / T
3,43
10-2
10-1
100
t p (s)
10110
K/W
NP Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
25
Ptot (W)
IF (A)
50
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
10-4
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
20
50
150
100
150
Th ( o C)
200
ºC
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Half bridge Inverse Diode
Halfbridge IGBT Inverse Diode
Figure 1
Typical FWD forward current as
a function of forward voltage
IF= f(VF)
Halfbridge IGBT Inverse Diode
Figure 2
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
24
IF (A)
101
ZthJC (K/W)
Tj = Tjmax-25°C
20
Tj = 25°C
16
100
12
8
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
4
0
0
At
tp =
0,5
1
1,5
2
2,5
3
VF (V) 3,5
10-5
At
D=
RthJH =
µs
250
Halfbridge IGBT Inverse Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
100
t p (s)
10110
tp / T
2,235
K/W
Halfbridge IGBT Inverse Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
70
10-1
60
20
50
15
40
30
10
20
5
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
21
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
copyright Vincotech
50
75
100
T (°C)
125
22
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Switching Definitions half bridge
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
half bridge IGBT
Figure 1
half bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
125
tdoff
%
%
250
100
IC
VGE 90%
200
75
IC
150
VCE
50
VCE 90%
tEoff
100
IC 1%
VCE
25
VGE
tdon
50
VGE
0
-25
-0,1
0
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,3
-15
15
700
100
0,28
0,66
0,4
0,5
-50
2,85
0,6
0,7
time (us)
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
half bridge IGBT
Figure 3
VCE5%
IC10%
tEon
VGE10%
0
3,05
3,15
-15
15
700
100
0,14
0,27
V
V
V
A
µs
µs
3,25
3,35 time(us)3,45
half bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
130
300
fitted
%
%
250
IC
Ic
100
IC 90%
200
70
150
IC 60%
VCE
100
40
IC90%
IC 40%
VCE
50
10
IC10%
-20
0,14
IC10%
0
tf
tr
-50
0,18
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,22
700
100
0,06
0,26
0,3
0,34
time (us)
0,38
3,1
3,15
3,2
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
23
700
100
0,02
V
A
µs
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Switching Definitions half bridge
half bridge IGBT
Figure 5
half bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
%
Eoff
100
Eon
100
80
80
60
60
40
40
Pon
20
20
VGE90%
Poff
VGE10%
VCE3%
0
0
tEoff
tEon
IC 1%
-20
-0,1
-20
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,3
70,22
4,03
0,66
0,4
0,5
0,6
2,9
0,7
time (us) 0,8
2,95
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
half bridge IGBT
Figure 7
3,05
3,1
3,15
70,22
3,18
0,27
3,2
3,25
3,35
3,4
3,45
time(us)
kW
mJ
µs
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
Uge (V)
Gate voltage vs Gate charge (measured)
3,3
%
Id
80
trr
10
40
Vd
0
fitted
0
IRRM10%
-40
-80
-10
-120
IRRM90%
IRRM100%
-160
-20
-200
-200
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
200
400
-15
15
700
100
1140,19
600
800
1000
1200
Qg (nC)
3,1
3,14
3,18
3,22
3,26
3,3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
700
100
-151
0,08
V
A
A
µs
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Switching Definitions half bridge
neutral point FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
%
100
neutral point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
%
Qrr
Id
Erec
100
tQrr
50
tErec
0
50
Prec
-50
-100
0
-150
-50
-200
3,1
3,15
Id (100%) =
Qrr (100%) =
tQrr =
3,2
100
7,13
0,16
3,25
3,3 time(us)
3,1
3,35
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,15
3,2
70,22
1,01
0,16
3,25
3,3
3,35
time(us)
kW
mJ
µs
half bridge switching measurement circuit
half bridge IGBT
Figure 11
copyright Vincotech
25
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Switching Definitions neutral point IGBT
General conditions
=
Tj
#REF!
= 4Ω
Rgon
Rgoff
= 4Ω
neutral point IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
%
tdoff
%
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
200
100
IC
VGE
150
75
VCE
50
IC 1%
100
tEoff
VGE
25
50
0
0
-25
-0,2
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
0,3
tEon
-50
2,85
0,4
0,5
time (us)
2,95
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
#REF!
#REF!
#REF!
#REF!
#REF!
#REF!
VCE
neutral point IGBT
Figure 3
3,05
3,15
#REF!
#REF!
#REF!
100
#REF!
#N/A
V
V
V
A
µs
µs
3,25
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,35
3,45
time(us)
Turn-on Switching Waveforms & definition of tr
125
250
%
%
100
Ic
200
75
150
VCE
50
100
25
50
tr
VCE
IC
0
-25
0,03
0
tf
0,06
0,09
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,12
700
100
0,064
0,15
0,18
0,21
0,24
-50
2,95
0,27 0,30
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
26
3
3,05
700
100
0,019
3,1
3,15
3,2
3,25
3,3
time(us)
V
A
µs
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Switching Definitions neutral point IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
130
130
%
%
Eon
100
100
Eoff
70
70
40
40
Poff
10
10
-20
-0,2
Pon
tEoff
Ic 1%
tEon
-20
-0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0
0,1
69,93
3,32
0,44
0,2
0,3
0,4
0,5
0,6
time (us)
2,8
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
neutral point IGBT
Figure 7
2,9
3,1
69,9279
1,52
0,18
3,2
3,3
kW
mJ
µs
half bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
3,4
3,5
time(us)
Turn-off Switching Waveforms & definition of trr
20
Uge (V)
150
%
100
Id
10
50
0
0
fitted
Ud
-50
-10
-100
-20
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
-150
2,95
200
Qg (nC)
-15
15
700
100
950,59
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
27
3,05
3,1
700
100
-142
0,07
3,15
3,2
3,25
3,3
3,35
3,4
time(us)
V
A
A
µs
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Switching Definitions neutral point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
half bridge FWD
120
%
150
%
Qrr
Id
half bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
100
Erec
80
tErec
100
60
40
50
20
Prec
0
0
2,85
3
3,15
Id (100%) =
Qrr (100%) =
tQint =
3,3
3,45
100
12,71
1,00
3,6
3,75
3,9
4,05
-20
2,95
4,2 4,35
time(us)
3,1
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,25
3,4
69,93
3,61
1,00
3,55
3,7
3,85
4
4,15
4,3
time(us)
kW
mJ
µs
neutral point IGBT switching measurement circuit
neutral point IGBT
Figure 11
copyright Vincotech
28
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 12mm housing with PressFiT
with phase change thermal paste 12mm housing
with phase change thermal paste 12mm housing with PressFiT
Ordering Code
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
10-FY12NMA160SH-M420F-/3/
10-PY12NMA160SH-M420FY-/3/
in DataMatrix as
M420F
M420FY
M420F
M420FY
in packaging barcode as
M420F
M420FY
M420F
M420FY
Outline
Pinout
copyright Vincotech
29
Revision: 2
10-FY12NMA160SH-M420F
10-PY12NMA160SH-M420FY
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
30
Revision: 2