10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet flowMNPC 1 1200V/160A Features flow1 12mm housing ● mixed voltage NPC topology ● reactive power capability ● low inductance layout ● Split output ● Common collector neutral connection 12mm solder pin 12mm PressFiT pin Schematic Target Applications ● solar inverter ● UPS ● Active frontend Types ● 10-FY12NMA160SH-M420F ● 10-PY12NMA160SH-M420FY Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Halfbridge IGBT Inverse Diode Repetitive peak reverse voltage VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp=10ms Power dissipation per Diode Ptot Maximum Junction Temperature DC forward current Th=80°C Tc=80°C 14 19 A 14 A 31 47 W Tjmax 150 °C VCE 1200 V 116 156 A 640 A 260 394 W ±20 V 10 600 µs V 175 °C Th=80°C Tc=80°C Halfbridge IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 66 90 A 240 A 67 101 W Tjmax 150 °C VCE 600 V 63 83 A 300 A NP Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C NP IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC Icpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 94 142 W ±20 V 6 360 µs V 175 °C 600 V 13 18 A 30 A 20 31 W 150 °C 1200 V 36 50 A 120 A 61 92 W 150 °C 630 V NP Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Halfbridge Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tjmax DC link Capacitor Max.DC voltage copyright Vincotech VMAX Tc=25°C 2 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj 7 Tj=25°C Tj=125°C Min Unit Typ Max 1,97 1,65 3,4 Halfbridge IGBT Inverse Diode Forward voltage Vf Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE 1 V 2,24 K/W 1,48 Halfbridge IGBT Gate emitter threshold voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(ON) Rise time Turn-off delay time Fall time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,004 160 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5,8 6,5 1 2,02 2,37 2,5 1 2400 none Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C tr td(OFF) 5 Rgoff=4 Ω Rgon=4 Ω ±15 350 100 V V mA nA Ω 133 135 20 23 225 276 38 64 1,80 3,18 2,52 4,03 ns mWs 9320 f=1MHz 0 Tj=25°C 25 600 pF 520 15 960 160 740 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK nC 0,37 K/W 0,24 *additional value stands for built-in capacitor NP Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Rgon=4 Ω ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 120 Thermal grease thickness≤50um λ = 1 W/mK 4 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,4 1,47 1,29 127 151 40 81 3,02 7,13 12386 3767 0,31 1,01 2 V A ns µC A/µs mWs 1,05 K/W 0,69 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max NP IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0016 100 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5 5,8 6,5 1,05 1,58 1,8 1,85 0,0052 1200 none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=4 Ω Rgon=4 Ω ±15 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 103 103 16,8 19,2 158 179 44 64 1,06 1,52 2,48 3,32 ns µWs 6280 f=1MHz 15 480 100 Tj=25°C 400 pF 186 Tj=25°C nC 620 Thermal grease thickness≤50um λ = 1 W/mK 1,01 K/W 0,67 NP Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Coupled thermal resistance inverter transistor-diode RthJC 15 Tj=25°C Tj=125°C 1,00 Thermal grease thickness≤50um λ = 1 W/mK 1,61 1,57 2,15 V 3,43 K/W 2,27 Halfbridge Diode Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 60 1200 IRRM trr Qrr Rgon=4 Ω ±15 350 100 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,50 2,47 2,11 3,40 200 107 142 51 69 6,24 12,71 5985 2890 1,71 3,61 Thermal grease thickness≤50um λ = 1 W/mK 1,15 DC+ to Neutral and DC- to Neutral 100 V µA A ns µC A/µs mWs K/W 0,76 DC link Capacitor C value C nF Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Power dissipation constant T=25°C Ω 22000 T=25°C R100=1486 Ω -5 +5 % T=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference K B Module Properties Thermal resistance, case to heatsink RthCH per module λPaste=1W/(m·K)/λgrease=1W/(m·K) Module stray inductance LsCE V23990-P-M107-*-31 Rcc'1+EE' Tc=25°C, per switch Chip module lead resistance, terminals -chip Mounting torque M Weight G copyright Vincotech Screw M4 - mounting according to valid application note Flow1-4TY-P-*-HI for PressFiT, V23990-P-M101-*-31 for SolderPin tbd. nH tbd. mΩ 2 2,2 42,28 5 K/W 5 Nm g Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 320 IC (A) 320 240 240 160 160 80 80 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT 2 3 4 100 300 IF (A) Tj = Tjmax-25°C V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V NP FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 Tj = 25°C Tj = Tjmax-25°C 250 80 Tj = 25°C 200 60 150 40 100 20 50 0 0 0 At tp = VCE = Tj = 2 250 10 25/150 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = Tj = µs V °C 6 0,5 250 25/150 1 1,5 2 V F (V) 2,5 µs °C Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 8 6 Eon High T E (mWs) E (mWs) Eoff High T 6 Eon High T Eon Low T Eoff Low T Eoff High T 4 4 Eon Low T Eoff Low T 2 2 0 0 0 50 I C (A) 150 100 200 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 100 A NP FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) NP FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 1,6 E (mWs) 1,6 Erec High T 1,2 1,2 0,8 0,8 Erec Low T Erec High T 0,4 0,4 0 0 Erec Low T 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 100 A 7 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff tdon tdon 0,10 0,10 tf tf tr tr 0,01 0,01 0,00 0,00 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 100 A NP FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) NP FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,180 t rr(ms) 0,120 trr High T 0,150 trr High T 0,090 0,120 0,060 0,090 trr Low T 0,060 trr Low T 0,030 0,030 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4 copyright Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 8 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD NP FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) NP FWD Figure 14 Typical reverse recovery charge as a function of JFET turn on gate resistor Qrr = f(Rgon) 10 12 Qrr (mC) Qrr (mC) Qrr High T 10 8 8 6 Qrr High T 6 Qrr Low T 4 4 2 2 Qrr Low T 0 At 0 At Tj = VCE = VGE = Rgon = 0 40 25/125 350 ±15 4 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω NP FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V NP FWD Figure 16 Typical reverse recovery current as a function of JFET turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 200 IRRM High T 200 160 IRRM Low T 120 150 80 100 40 50 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4 copyright Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 9 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD NP FWD NP FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of JFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 14000 30000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dtLow T 12000 dI0/dtLow T dI0/dtHigh T dIrec/dtLow T dIrec/dtHigh T 25000 10000 20000 8000 15000 dIo/dtLow T 6000 10000 4000 dIrec/dtHigh T di0/dtHigh T 5000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4 80 120 I C (A) 160 200 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 100 ±15 8 12 R gon ( Ω) 16 20 °C V A V NP FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 -3 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 1 10 tp / T 0,37 -5 At D= RthJH = K/W 10 -4 10 R (C/W) 0,06 0,15 0,12 0,03 0,01 R (C/W) 0,05 0,27 0,55 0,11 0,04 0,03 10 -2 10 -1 10 0 t p (s) 1 101 K/W FWD thermal model values copyright Vincotech 10 tp / T 1,05 IGBT thermal model values Tau (s) 2,4E+00 4,0E-01 1,0E-01 1,3E-02 8,4E-04 -3 Tau (s) 7,4E+00 1,3E+00 2,7E-01 4,0E-02 5,1E-03 6,0E-04 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) 180 IC (A) 500 Ptot (W) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 450 150 400 350 120 300 250 90 200 60 150 100 30 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 NP FWD 175 15 100 150 150 120 IF (A) T h ( o C) 200 °C V NP FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) Ptot (W) Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 120 90 90 60 60 30 30 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge half bridge IGBT and Neutral Point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) IC (A) VGE (V) 16 10 14 3 240V 10uS 12 100uS 10 960V 1mS 2 10 100mS 101 10mS 8 6 10 DC 0 4 2 10-1 0 At D= 0 103 102 101 100 Tj = 200 300 400 500 600 700 800 Q g (nC) At ID = VDS= Tj= single pulse 80 ºC V 0 Tjmax ºC Th = VGE = 100 V CE (V) 20 600 25 A V ºC IGBT Figure 27 Reverse bias safe operating area 200 ICMAX Ic MODULE 160 Ic CHIP IC (A) IC = f(VCE) 120 VCEMAX 80 40 0 0 200 400 600 800 1000 1200 1400 VCE(V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 12 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 1 Typical output characteristics IC = f(VCE) NP IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V NP IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 60 V CE (V) Tj = Tjmax-25°C IF (A) IC (A) 200 Tj = Tjmax-25°C 50 160 40 Tj = 25°C 120 30 Tj = 25°C 80 20 40 10 0 0 0 At tp = VCE = Tj = 2 250 10 25/150 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = Tj = µs V °C 13 1 250 25/150 2 3 V F (V) 4 µs °C Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) NP IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 6 E (mWs) E (mWs) 6 Eoff High T 5 5 4 4 Eoff Low T Eon High T 3 3 Eon Low T Eoff High T Eon High T 2 2 Eon Low T Eoff Low T 1 1 0 0 0 40 80 120 160 200 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 60 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 5 E (mWs) E (mWs) Erec High T 4 4 Erec Low T 3 3 2 2 1 1 Erec High T Erec Low T 0 0 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 60 A 14 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) NP IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdon tdoff tdon 0,1 0,1 tf tr tf 0,01 0,01 tr 0,001 0,001 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 60 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,12 0,8 t rr(ms) t rr(ms) trr High T 0,09 0,6 trr High T 0,06 0,4 trr Low T 0,03 0,2 0,00 0 trr Low T 0 40 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4,0 copyright Vincotech 80 120 160 I C (A) 200 °C V V Ω 15 0 4 At Tj = VR = IF = VGE = 25/125 350 60 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 15 Qrr (mC) 18 Qrr (mC) Qrr High T 15 12 12 Qrr High T 9 Qrr Low T 9 6 6 Qrr Low T 3 3 0 0 At 0 At Tj = VCE = VGE = Rgon = 80 40 25/125 350 ±15 4,0 120 160 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 60 ±15 8 12 16 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 180 20 200 IrrM (A) IrrM (A) IRRM High T 150 160 IRRM Low T 120 120 90 80 60 IIRRM RRMHigh Low T 40 30 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4,0 copyright Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 16 4 25/125 350 60 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT and half bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 18000 direc / dt (A/ms) 10000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 15000 dIo/dtLow T 12000 di0/dtHigh T 6000 9000 4000 dIrec/dtLow T 6000 dIrec/dtHigh T 2000 3000 dIrec/dtHigh T dI /dtLow Low T dIrec /dt dI 00/dt High T 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4,0 80 120 I C (A) 160 200 0 At Tj = VR = IF = VGE = °C V V Ω NP IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 60 ±15 8 12 R gon ( Ω) 16 20 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 4 10 -5 At D= RthJH = 10 -4 tp / T 1,01 10 -3 10 -2 10 -1 10 0 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -3 10 -1 1 10 10 K/W -3 10-5 10-4 10-3 At D= RthJH = tp / T 1,15 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,05 0,16 0,52 0,18 0,07 R (C/W) 0,05 0,13 0,59 0,22 0,10 Tau (s) 6,49 1,27 0,25 0,07 0,01 copyright Vincotech 17 10-2 10-1 100 t p (s) 101 10 Tau (s) 4,90 0,82 0,18 0,05 0,01 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) NP IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 180 150 80 120 60 90 40 60 20 30 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 70 Ptot (W) IF (A) 140 120 60 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 150 100 150 Th ( o C) 200 ºC Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Neutral Point IGBT neutral point IGBT NP IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 125 Ic MODULE 75 Ic CHIP ICMAX 100 VCEMAX 50 25 0 0 100 200 300 400 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 500 600 VCE(V) 700 19 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet NP IGBT Inverse Diode NP Inverse Diode Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) NP Inverse Diode Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 101 ZthJC (K/W) IF (A) Tj = 25°C 40 Tj = Tjmax-25°C 100 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 0 0 At tp = 0,5 1 1,5 2 2,5 VF (V) 10-2 3 10-5 At D= RthJH = µs 250 NP Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 tp / T 3,43 10-2 10-1 100 t p (s) 10110 K/W NP Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 25 Ptot (W) IF (A) 50 40 20 30 15 20 10 10 5 0 0 0 At Tj = 10-4 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 20 50 150 100 150 Th ( o C) 200 ºC Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Half bridge Inverse Diode Halfbridge IGBT Inverse Diode Figure 1 Typical FWD forward current as a function of forward voltage IF= f(VF) Halfbridge IGBT Inverse Diode Figure 2 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 24 IF (A) 101 ZthJC (K/W) Tj = Tjmax-25°C 20 Tj = 25°C 16 100 12 8 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 4 0 0 At tp = 0,5 1 1,5 2 2,5 3 VF (V) 3,5 10-5 At D= RthJH = µs 250 Halfbridge IGBT Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 100 t p (s) 10110 tp / T 2,235 K/W Halfbridge IGBT Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 70 10-1 60 20 50 15 40 30 10 20 5 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 21 50 150 100 150 T h ( o C) 200 ºC Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 copyright Vincotech 50 75 100 T (°C) 125 22 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Switching Definitions half bridge General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω half bridge IGBT Figure 1 half bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 125 tdoff % % 250 100 IC VGE 90% 200 75 IC 150 VCE 50 VCE 90% tEoff 100 IC 1% VCE 25 VGE tdon 50 VGE 0 -25 -0,1 0 0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,3 -15 15 700 100 0,28 0,66 0,4 0,5 -50 2,85 0,6 0,7 time (us) 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs half bridge IGBT Figure 3 VCE5% IC10% tEon VGE10% 0 3,05 3,15 -15 15 700 100 0,14 0,27 V V V A µs µs 3,25 3,35 time(us)3,45 half bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 130 300 fitted % % 250 IC Ic 100 IC 90% 200 70 150 IC 60% VCE 100 40 IC90% IC 40% VCE 50 10 IC10% -20 0,14 IC10% 0 tf tr -50 0,18 VC (100%) = IC (100%) = tf = copyright Vincotech 0,22 700 100 0,06 0,26 0,3 0,34 time (us) 0,38 3,1 3,15 3,2 3,25 3,3 time(us) VC (100%) = IC (100%) = tr = V A µs 23 700 100 0,02 V A µs Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Switching Definitions half bridge half bridge IGBT Figure 5 half bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 120 % % Eoff 100 Eon 100 80 80 60 60 40 40 Pon 20 20 VGE90% Poff VGE10% VCE3% 0 0 tEoff tEon IC 1% -20 -0,1 -20 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,3 70,22 4,03 0,66 0,4 0,5 0,6 2,9 0,7 time (us) 0,8 2,95 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs half bridge IGBT Figure 7 3,05 3,1 3,15 70,22 3,18 0,27 3,2 3,25 3,35 3,4 3,45 time(us) kW mJ µs neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 Uge (V) Gate voltage vs Gate charge (measured) 3,3 % Id 80 trr 10 40 Vd 0 fitted 0 IRRM10% -40 -80 -10 -120 IRRM90% IRRM100% -160 -20 -200 -200 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 200 400 -15 15 700 100 1140,19 600 800 1000 1200 Qg (nC) 3,1 3,14 3,18 3,22 3,26 3,3 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 700 100 -151 0,08 V A A µs Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Switching Definitions half bridge neutral point FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 % 100 neutral point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) % Qrr Id Erec 100 tQrr 50 tErec 0 50 Prec -50 -100 0 -150 -50 -200 3,1 3,15 Id (100%) = Qrr (100%) = tQrr = 3,2 100 7,13 0,16 3,25 3,3 time(us) 3,1 3,35 Prec (100%) = Erec (100%) = tErec = A µC µs 3,15 3,2 70,22 1,01 0,16 3,25 3,3 3,35 time(us) kW mJ µs half bridge switching measurement circuit half bridge IGBT Figure 11 copyright Vincotech 25 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Switching Definitions neutral point IGBT General conditions = Tj #REF! = 4Ω Rgon Rgoff = 4Ω neutral point IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 % tdoff % neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 200 100 IC VGE 150 75 VCE 50 IC 1% 100 tEoff VGE 25 50 0 0 -25 -0,2 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 0,3 tEon -50 2,85 0,4 0,5 time (us) 2,95 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs #REF! #REF! #REF! #REF! #REF! #REF! VCE neutral point IGBT Figure 3 3,05 3,15 #REF! #REF! #REF! 100 #REF! #N/A V V V A µs µs 3,25 neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,35 3,45 time(us) Turn-on Switching Waveforms & definition of tr 125 250 % % 100 Ic 200 75 150 VCE 50 100 25 50 tr VCE IC 0 -25 0,03 0 tf 0,06 0,09 VC (100%) = IC (100%) = tf = copyright Vincotech 0,12 700 100 0,064 0,15 0,18 0,21 0,24 -50 2,95 0,27 0,30 time (us) VC (100%) = IC (100%) = tr = V A µs 26 3 3,05 700 100 0,019 3,1 3,15 3,2 3,25 3,3 time(us) V A µs Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Switching Definitions neutral point IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 130 130 % % Eon 100 100 Eoff 70 70 40 40 Poff 10 10 -20 -0,2 Pon tEoff Ic 1% tEon -20 -0,1 Poff (100%) = Eoff (100%) = tEoff = 0 0,1 69,93 3,32 0,44 0,2 0,3 0,4 0,5 0,6 time (us) 2,8 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs neutral point IGBT Figure 7 2,9 3,1 69,9279 1,52 0,18 3,2 3,3 kW mJ µs half bridge FWD Figure 8 Gate voltage vs Gate charge (measured) 3,4 3,5 time(us) Turn-off Switching Waveforms & definition of trr 20 Uge (V) 150 % 100 Id 10 50 0 0 fitted Ud -50 -10 -100 -20 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -150 2,95 200 Qg (nC) -15 15 700 100 950,59 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 27 3,05 3,1 700 100 -142 0,07 3,15 3,2 3,25 3,3 3,35 3,4 time(us) V A A µs Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Switching Definitions neutral point IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) half bridge FWD 120 % 150 % Qrr Id half bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 100 Erec 80 tErec 100 60 40 50 20 Prec 0 0 2,85 3 3,15 Id (100%) = Qrr (100%) = tQint = 3,3 3,45 100 12,71 1,00 3,6 3,75 3,9 4,05 -20 2,95 4,2 4,35 time(us) 3,1 Prec (100%) = Erec (100%) = tErec = A µC µs 3,25 3,4 69,93 3,61 1,00 3,55 3,7 3,85 4 4,15 4,3 time(us) kW mJ µs neutral point IGBT switching measurement circuit neutral point IGBT Figure 11 copyright Vincotech 28 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 12mm housing with PressFiT with phase change thermal paste 12mm housing with phase change thermal paste 12mm housing with PressFiT Ordering Code 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY 10-FY12NMA160SH-M420F-/3/ 10-PY12NMA160SH-M420FY-/3/ in DataMatrix as M420F M420FY M420F M420FY in packaging barcode as M420F M420FY M420F M420FY Outline Pinout copyright Vincotech 29 Revision: 2 10-FY12NMA160SH-M420F 10-PY12NMA160SH-M420FY preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 30 Revision: 2