V23990-K201-A-PM datasheet MiniSKiiP® 1 PIM 600V / 6A MiniSKiiP® 1 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT3 technology Target Applications Schematic ● Industrial drives Types ● V23990-K201-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 29 A 220 A 240 A2s 46 W Tjmax 150 °C VCE 600 V 10 A 18 A 40 W ±20 V 6 360 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation Ptot Maximum Junction Temperature Tj=Tjmax tp=10ms half sine wave Tj=Tjmax Th=80°C Tj=25°C Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Revision: 3 V23990-K201-A-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 10 A 18 A 31 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 3 V23990-K201-A-PM datasheet Characteristic Values Parameter Value Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink 25 1500 RthJH Thermal grease thickness≤50um λ =1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,51 1,42 0,86 0,79 0,03 0,03 V V Ω 0,05 mA K/W 1,50 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0008 15 6 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink RthJH 5 2,8 6,5 1,1 1,69 1,88 1,9 0,0004 300 Rgoff=32 Ω Rgon=64 Ω ±15 300 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω - td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 21 20 13 17 152 170 98 103 0,155 0,209 0,133 0,168 ns mWs 380 f=1MHz 25 0 28 Tj=25°C pF 11 Thermal grease thickness≤50um λ =1 W/mK K/W 2,40 D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink 50 diF/dt=tbd A/us di(rec)max /dt Erec RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,34 1,34 5,97 6,97 185 280 0,44 0,78 115 37 0,082 0,154 Thermal grease thickness≤50um λ =1 W/mK V A ns µC A/µs mWs 3,00 K/W 1000 Ω PTC Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C Power dissipation constant -3 3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 copyright Vincotech Ω 1670,313 T=25°C Vincotech NTC Reference % 1/K 1/K² E 3 Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) 15 IC (A) IC (A) 15 12 12 9 9 6 6 3 3 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT 2 3 7 25 IF (A) 4 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 6 20 Tj = 25°C 5 15 4 Tj = Tjmax-25°C 3 10 2 5 Tj = Tjmax-25°C 1 Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 1 250 µs 1,5 2 2,5 V F (V) 3 Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 0,5 E (mWs) 0,5 Eon High T Eon High T 0,4 0,4 Eon Low T Eon Low T 0,3 0,3 Eoff High T 0,2 0,2 Eoff High T Eoff Low T Eoff Low T 0,1 0,1 0 0 0 2 4 6 8 I C (A) 10 12 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = Ω 64 Rgoff = 32 Ω 90 R G ( Ω ) 270 180 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 6 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 0,2 E (mWs) 0,25 T1,T2,T3,T4,T5,T6,T7 IGBT Erec 0,2 0,16 Tj = Tjmax -25°C Tj = Tjmax -25°C Erec 0,15 0,12 Erec Tj = 25°C 0,1 0,08 Tj = 25°C Erec 0,05 0,04 0 0 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 64 Ω copyright Vincotech 90 180 R G ( Ω ) 270 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 6 A 5 Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff 0,1 tf 0,1 tf tdon tr tr tdon 0,01 0,01 0,001 0,001 0 2 4 6 8 I C (A) 10 12 0 With an inductive load at Tj = °C 125 VCE = 300 V VGE = 15 V Rgon = Ω 64 Rgoff = 32 Ω 90 180 R G ( Ω ) 270 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 6 A D1,D2,D3,D4,D5,D6,D7 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,4 t rr( µs) 0,45 D1,D2,D3,D4,D5,D6,D7 FWD trr 0,4 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,35 0,3 trr 0,3 trr Tj = 25°C 0,25 0,2 0,2 Tj = 25°C 0,15 0,1 0,1 0,05 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 300 15 64 copyright Vincotech 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω 6 90 25/125 300 6 15 180 R g on ( Ω ) 270 °C V A V Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,8 Qrr( µC) Qrr( µC) 1,2 D1,D2,D3,D4,D5,D6,D7 FWD Qrr Qrr Tj = Tjmax -25°C 1 Tj = Tjmax -25°C 0,6 0,8 Qrr Tj = 25°C Qrr 0,6 0,4 Tj = 25°C 0,4 0,2 0,2 0 At 0 At Tj = VCE = VGE = Rgon = 0 2 25/125 300 15 64 4 6 8 I C (A) 10 12 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 90 25/125 300 6 15 180 R g on ( Ω) 270 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 10 IrrM (A) IrrM (A) 8 Tj = Tjmax -25°C IRRM 8 6 IRRM Tj = Tjmax - 25°C Tj = 25°C 6 IRRM 4 Tj = 25°C IRRM 4 2 2 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 300 15 64 copyright Vincotech 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω 7 90 25/125 300 6 15 180 R gon ( Ω ) 270 °C V A V Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 800 dI0/dt dIrec/dt 500 dI0/dt direc / dt (A/ µs) direc / dt (A/µ s) 600 D1,D2,D3,D4,D5,D6,D7 FWD dIrec/dt 600 400 300 400 200 200 100 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 300 15 64 4 6 I C (A) 8 10 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 300 6 15 R gon ( Ω ) 270 180 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 10 90 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 -1 10 -2 10-5 At D= RthJH = tp / T 2,40 10 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-3 R (K/W) 0,08 0,18 0,82 0,59 0,43 0,30 R (K/W) 0,17 0,87 0,95 0,56 0,50 8 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 3,00 IGBT thermal model values Tau (s) 9,7E+00 4,8E-01 7,5E-02 1,5E-02 2,9E-03 3,0E-04 10-2 Tau (s) 1,2E+00 1,1E-01 2,6E-02 4,6E-03 8,4E-04 Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 12 IC (A) Ptot (W) 80 10 60 8 40 6 4 20 2 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 12 IF (A) Ptot (W) 60 50 10 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 3 V23990-K201-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 18 VGE (V) 3 IC (A) 10 T1,T2,T3,T4,T5,T6,T7 IGBT 15 10 100uS 2 10uS 120V 480V 12 1mS 9 10mS 101 100mS 6 DC 100 3 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC 15 V Tjmax ºC copyright Vincotech 10 10 6 20 30 40 50 Q g (nC) 60 A Revision: 3 V23990-K201-A-PM datasheet D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 1 IF (A) ZthJC (K/W) 10 D8,D9,D10,D11,D12,D13 Diode 40 100 30 Tj = 25°C 20 Tj = Tjmax-25°C 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 0 0 0,5 1 1,5 2 V F (V) 2,5 10-5 At tp = At D= RthJH = µs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 Diode 10-3 10-2 10-1 100 t p (s) 10110 tp / T 1,50 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 Diode 50 Ptot (W) IF (A) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 10-4 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3 V23990-K201-A-PM datasheet Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 Revision: 3 V23990-K201-A-PM datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj = 32 Ω Rgon Rgoff = 17 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 230 120 % tdoff IC % VCE 100 185 VCE 90% VGE 90% 80 VGE 140 IC 60 95 40 VGE tdon tEoff VCE 50 20 IC 1% IC10% VGE10% tEon 5 0 -20 -0,1 VCE 3% -40 0 0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,3 0,4 time (us) 2,8 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs 0 15 300 6 0,13 0,41 Output inverter IGBT Figure 3 3 0 15 300 6 0,01 0,16 3,1 time(us) 3,2 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 120 2,9 Turn-on Switching Waveforms & definition of tr 230 fitted % VCE % 100 Ic 200 IC 90% IC 170 80 140 IC 60% 60 110 40 IC 40% IC90% 80 tr 20 VCE 50 IC10% tf 0 20 IC10% -20 -10 0 0,05 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,15 300 6 0,10 0,2 0,25 0,3 0,35 0,4 time (us) 2,8 VC (100%) = IC (100%) = tr = V A µs 13 2,85 2,9 300 6 0,01 2,95 3 3,05 time(us) 3,1 V A µs Revision: 3 V23990-K201-A-PM datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 % % Pon Eoff Poff 100 180 80 140 60 Eon 100 40 60 20 VGE 90% 20 tEoff 0 tEon Uge10% Uce3% IC 1% -20 -20 -0,2 -0,05 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,25 1,80 0,17 0,41 0,4 time (us) 2,8 0,55 Pon (100%) = Eon (100%) = tEon = kW mJ µs 2,85 2,9 1,80 0,18 0,16 2,95 3 3,05 time(us) kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 fitted 0 Vd IRRM10% -40 -80 IRRM90% -120 IRRM100% -160 2,8 2,85 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 2,9 2,95 300 6 7 0,25 3 3,05 3,1 3,15 3,2 time(us) V A A µs 14 Revision: 3 V23990-K201-A-PM datasheet Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Qrr Id Erec 100 100 tQrr 80 tErec 50 60 0 40 -50 20 -100 Prec 0 -150 -20 2,7 2,9 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,1 6 0,77 0,51 3,3 3,5 time(us) 3,7 2,7 Prec (100%) = Erec (100%) = tErec = A µC µs 15 2,9 3,1 1,80 0,16 0,51 3,3 3,5 time(us) 3,7 kW mJ µs Revision: 3 V23990-K201-A-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K201-A-/0A/-PM V23990-K201-A-/1A/-PM V23990-K201-A-/0B/-PM V23990-K201-A-/1B/-PM K201A K201A K201A K201A in packaging barcode as K201A-/0A/ K201A-/1A/ K201A-/0B/ K201A-/1B/ Outline Pinout copyright Vincotech 16 Revision: 3 V23990-K201-A-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 3