V23990 K201 A D3 14

V23990-K201-A-PM
datasheet
MiniSKiiP® 1 PIM
600V / 6A
MiniSKiiP® 1 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT3 technology
Target Applications
Schematic
● Industrial drives
Types
● V23990-K201-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
29
A
220
A
240
A2s
46
W
Tjmax
150
°C
VCE
600
V
10
A
18
A
40
W
±20
V
6
360
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation
Ptot
Maximum Junction Temperature
Tj=Tjmax
tp=10ms
half sine wave
Tj=Tjmax
Th=80°C
Tj=25°C
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 3
V23990-K201-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
10
A
18
A
31
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
V23990-K201-A-PM
datasheet
Characteristic Values
Parameter
Value
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink
25
1500
RthJH
Thermal grease
thickness≤50um
λ =1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,51
1,42
0,86
0,79
0,03
0,03
V
V
Ω
0,05
mA
K/W
1,50
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0008
15
6
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink
RthJH
5
2,8
6,5
1,1
1,69
1,88
1,9
0,0004
300
Rgoff=32 Ω
Rgon=64 Ω
±15
300
6
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
21
20
13
17
152
170
98
103
0,155
0,209
0,133
0,168
ns
mWs
380
f=1MHz
25
0
28
Tj=25°C
pF
11
Thermal grease
thickness≤50um
λ =1 W/mK
K/W
2,40
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
50
diF/dt=tbd A/us
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,34
1,34
5,97
6,97
185
280
0,44
0,78
115
37
0,082
0,154
Thermal grease
thickness≤50um
λ =1 W/mK
V
A
ns
µC
A/µs
mWs
3,00
K/W
1000
Ω
PTC
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
Power dissipation constant
-3
3
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
copyright Vincotech
Ω
1670,313
T=25°C
Vincotech NTC Reference
%
1/K
1/K²
E
3
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
15
IC (A)
IC (A)
15
12
12
9
9
6
6
3
3
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
2
3
7
25
IF (A)
4
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
6
20
Tj = 25°C
5
15
4
Tj = Tjmax-25°C
3
10
2
5
Tj = Tjmax-25°C
1
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
1
250
µs
1,5
2
2,5
V F (V)
3
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
0,5
E (mWs)
0,5
Eon High T
Eon High T
0,4
0,4
Eon Low T
Eon Low T
0,3
0,3
Eoff High T
0,2
0,2
Eoff High T
Eoff Low T
Eoff Low T
0,1
0,1
0
0
0
2
4
6
8
I C (A)
10
12
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
Ω
64
Rgoff =
32
Ω
90
R G ( Ω ) 270
180
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
6
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,2
E (mWs)
0,25
T1,T2,T3,T4,T5,T6,T7 IGBT
Erec
0,2
0,16
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Erec
0,15
0,12
Erec
Tj = 25°C
0,1
0,08
Tj = 25°C
Erec
0,05
0,04
0
0
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
64
Ω
copyright Vincotech
90
180
R G ( Ω ) 270
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
5
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
0,1
tf
0,1
tf
tdon
tr
tr
tdon
0,01
0,01
0,001
0,001
0
2
4
6
8
I C (A)
10
12
0
With an inductive load at
Tj =
°C
125
VCE =
300
V
VGE =
15
V
Rgon =
Ω
64
Rgoff =
32
Ω
90
180
R G ( Ω ) 270
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
6
A
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,4
t rr( µs)
0,45
D1,D2,D3,D4,D5,D6,D7 FWD
trr
0,4
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,35
0,3
trr
0,3
trr
Tj = 25°C
0,25
0,2
0,2
Tj = 25°C
0,15
0,1
0,1
0,05
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
300
15
64
copyright Vincotech
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
90
25/125
300
6
15
180
R g on ( Ω )
270
°C
V
A
V
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,8
Qrr( µC)
Qrr( µC)
1,2
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr
Qrr
Tj = Tjmax -25°C
1
Tj = Tjmax -25°C
0,6
0,8
Qrr
Tj = 25°C
Qrr
0,6
0,4
Tj = 25°C
0,4
0,2
0,2
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
0
2
25/125
300
15
64
4
6
8
I C (A)
10
12
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
90
25/125
300
6
15
180
R g on ( Ω) 270
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
10
IrrM (A)
IrrM (A)
8
Tj = Tjmax -25°C
IRRM
8
6
IRRM
Tj = Tjmax - 25°C
Tj = 25°C
6
IRRM
4
Tj = 25°C
IRRM
4
2
2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
300
15
64
copyright Vincotech
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
90
25/125
300
6
15
180
R gon ( Ω ) 270
°C
V
A
V
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
800
dI0/dt
dIrec/dt
500
dI0/dt
direc / dt (A/ µs)
direc / dt (A/µ s)
600
D1,D2,D3,D4,D5,D6,D7 FWD
dIrec/dt
600
400
300
400
200
200
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
300
15
64
4
6
I C (A)
8
10
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
300
6
15
R gon ( Ω ) 270
180
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
10
90
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
-1
10
-2
10-5
At
D=
RthJH =
tp / T
2,40
10
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
R (K/W)
0,08
0,18
0,82
0,59
0,43
0,30
R (K/W)
0,17
0,87
0,95
0,56
0,50
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
3,00
IGBT thermal model values
Tau (s)
9,7E+00
4,8E-01
7,5E-02
1,5E-02
2,9E-03
3,0E-04
10-2
Tau (s)
1,2E+00
1,1E-01
2,6E-02
4,6E-03
8,4E-04
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
12
IC (A)
Ptot (W)
80
10
60
8
40
6
4
20
2
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
12
IF (A)
Ptot (W)
60
50
10
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 3
V23990-K201-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
18
VGE (V)
3
IC (A)
10
T1,T2,T3,T4,T5,T6,T7 IGBT
15
10
100uS
2
10uS
120V
480V
12
1mS
9
10mS
101
100mS
6
DC
100
3
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
copyright Vincotech
10
10
6
20
30
40
50
Q g (nC)
60
A
Revision: 3
V23990-K201-A-PM
datasheet
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
1
IF (A)
ZthJC (K/W)
10
D8,D9,D10,D11,D12,D13 Diode
40
100
30
Tj = 25°C
20
Tj = Tjmax-25°C
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
0
0
0,5
1
1,5
2
V F (V)
2,5
10-5
At
tp =
At
D=
RthJH =
µs
250
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 Diode
10-3
10-2
10-1
100
t p (s)
10110
tp / T
1,50
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 Diode
50
Ptot (W)
IF (A)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
10-4
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3
V23990-K201-A-PM
datasheet
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 3
V23990-K201-A-PM
datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 32 Ω
Rgon
Rgoff
= 17 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
230
120
%
tdoff
IC
%
VCE
100
185
VCE 90%
VGE 90%
80
VGE
140
IC
60
95
40
VGE
tdon
tEoff
VCE
50
20
IC 1%
IC10%
VGE10%
tEon
5
0
-20
-0,1
VCE 3%
-40
0
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,3
0,4
time (us)
2,8
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
15
300
6
0,13
0,41
Output inverter IGBT
Figure 3
3
0
15
300
6
0,01
0,16
3,1
time(us)
3,2
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
120
2,9
Turn-on Switching Waveforms & definition of tr
230
fitted
%
VCE
%
100
Ic
200
IC 90%
IC
170
80
140
IC 60%
60
110
40
IC 40%
IC90%
80
tr
20
VCE
50
IC10%
tf
0
20
IC10%
-20
-10
0
0,05
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,1
0,15
300
6
0,10
0,2
0,25
0,3
0,35
0,4
time (us)
2,8
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
2,85
2,9
300
6
0,01
2,95
3
3,05
time(us)
3,1
V
A
µs
Revision: 3
V23990-K201-A-PM
datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
220
%
%
Pon
Eoff
Poff
100
180
80
140
60
Eon
100
40
60
20
VGE 90%
20
tEoff
0
tEon
Uge10%
Uce3%
IC 1%
-20
-20
-0,2
-0,05
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,25
1,80
0,17
0,41
0,4
time (us)
2,8
0,55
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
2,85
2,9
1,80
0,18
0,16
2,95
3
3,05
time(us)
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
fitted
0
Vd
IRRM10%
-40
-80
IRRM90%
-120
IRRM100%
-160
2,8
2,85
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
2,9
2,95
300
6
7
0,25
3
3,05
3,1
3,15
3,2
time(us)
V
A
A
µs
14
Revision: 3
V23990-K201-A-PM
datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Qrr
Id
Erec
100
100
tQrr
80
tErec
50
60
0
40
-50
20
-100
Prec
0
-150
-20
2,7
2,9
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,1
6
0,77
0,51
3,3
3,5
time(us)
3,7
2,7
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
2,9
3,1
1,80
0,16
0,51
3,3
3,5
time(us) 3,7
kW
mJ
µs
Revision: 3
V23990-K201-A-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K201-A-/0A/-PM
V23990-K201-A-/1A/-PM
V23990-K201-A-/0B/-PM
V23990-K201-A-/1B/-PM
K201A
K201A
K201A
K201A
in packaging barcode as
K201A-/0A/
K201A-/1A/
K201A-/0B/
K201A-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 3
V23990-K201-A-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 3