V23990 K232 F D3 14

V23990-K232-F-PM
MiniSKiiP® 2 PACK
600V/50A
MiniSKiiP® 2 Housing
Features
● SixPack (inverter) topology
● Solder less interconnection
● Designed for motor drives up to 7 kW
● Fully compatible with Semikron pedant 27AC066V1
● Temperature sensor
● Standard (6.5mm) and thin (2.8mm) lids,16mm housing
● Optional with pre-applied thermal grease
Schematic
Target Applications
● Industrial Motor Drives
● Power Generation
● UPS
Types
● V23990-K232-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Copyright by Vincotech
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
50
50
150
A
A
200
A
100
152
W
±20
V
6
µs
360
V
175
°C
Revision: 3.1
V23990-K232-F-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
41
55
A
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
81
109
59
A
W
89
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 3.1
V23990-K232-F-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
612
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0008
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
1,49
1,69
700
Rgoff=8 Ω
Rgon=8 Ω
±15
300
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,2
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
100
100
16
17
151
172
96
167
0,55
0,72
1,28
1,62
ns
mWs
3140
f=1MHz
25
0
Tj=25°C
200
pF
93
±15
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
315
nC
0,95
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
37
Rgoff=8 Ω
300
di(rec)max
/dt
Erec
RthJH
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,47
1,54
73
84
48
157
3,22
4,89
3872
3958
0,75
1,18
2,5
V
A
ns
µC
A/µs
mWs
1,61
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
Power dissipation constant
3
-3
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
Copyright by Vincotech
Ω
1670,313
T=25°C
Vincotech NTC Reference
%
1/K
1/K²
E
3
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
150
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IF (A)
IC (A)
50
V CE (V)
4
Tj = 25°C
40
120
30
90
Tj = Tjmax-25°C
Tj = 25°C
20
10
60
30
Tj = Tjmax-25°C
0
0
0
At
Tj =
tp =
VCE =
2
4
6
8
10
V GE (V)
12
0,0
0,5
1,0
1,5
2,0
2,5
V F (V)
3,0
At
25/125
250
10
°C
µs
V
Copyright by Vincotech
tp =
4
250
µs
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
3
E (mWs)
E (mWs)
3
2,5
Eoff High T
2,5
2
Eoff Low T
2
Eon High T
Eon Low T
Eoff High T
Eon High T
1,5
1,5
Eoff Low T
Eon Low T
1
1
0,5
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
IC =
50
A
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1,8
E (mWs)
1,8
Erec
1,5
Tj = Tjmax -25°C
1,5
Tj = Tjmax -25°C
Erec
1,2
1,2
0,9
Erec
0,9
Tj = 25°C
0,6
0,6
0,3
0,3
0,0
Tj = 25°C
Erec
0,0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
5
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdon
tdoff
tf
0,1
0,1
tf
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
I C (A)
80
100
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG(Ω )
32
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
50
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( µs)
t rr( µs)
0,30
trr
0,25
Tj = Tjmax -25°C
0,3
trr
trr
0,20
trr
0,2
0,15
Tj = 25°C
Tj = Tjmax -25°C
0,10
0,1
Tj = 25°C
V23990-K232-F-PM
0,05
0,0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
8
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
8
25/125
300
50
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
9
Qrr( µC)
Qrr( µC)
9
8
8
Qrr
6
6
Tj = Tjmax -25°C
Qrr
Qrr
Tj = Tjmax -25°C
5
5
Tj = 25°C
3
Qrr
3
Tj = 25°C
2
2
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
8
40
60
80
I C (A)
0
100
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
300
50
±15
24
32
R g on ( Ω)
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
150
Tj = Tjmax - 25°C
120
120
IRRM
90
90
IRRM
Tj = Tjmax -25°C
Tj = 25°C
60
60
IRRM
IRRM
Tj = 25°C
30
30
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
300
±15
8
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/125
300
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
6000
dI0/dt
dIrec/dt
5000
D1,D2,D3,D4,D5,D6 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dIo/dtLow T
8000
dI0/dt
dIrec/dt
6400
4000
Tj = 25°C
4800
Tj = Tjmax - 25°C
dIrec/dtLow T
3000
dIrec/dtHigh T
3200
2000
di0/dtHigh T
1600
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
300
±15
8
40
60
I C (A)
80
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
300
50
±15
16
24
R gon ( Ω )
32
40
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
100
10
-1
10
-2
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
1
10-5
1010
At
D=
RthJH =
tp / T
0,95
K/W
10-4
10-2
10-1
100
t p (s)
1
1010
tp / T
1,61
K/W
FWD thermal model values
IGBT thermal model values
Thermal grease
Thermal grease
R (C/W)
0,02
0,13
0,45
0,23
0,08
0,03
R (C/W)
0,04
0,22
0,66
0,38
0,19
0,11
Tau (s)
9,1E+00
1,2E+00
2,0E-01
3,8E-02
5,7E-03
3,2E-04
Copyright by Vincotech
10-3
8
Tau (s)
9,2E+00
1,0E+00
2,1E-01
4,0E-02
7,0E-03
7,5E-04
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
210
180
50
150
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
120
150
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C) 200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 3.1
V23990-K232-F-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
VGE (V)
15
IC (A)
10
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
120V
10uS
12
10
2
100uS
480V
1mS
10mS
100mS
DC
9
101
6
100
3
0
10-1 0
10
10
At
D=
Th =
VGE =
1
10
V CE (V)
2
10
0
3
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
40
50
80
120
160
200
Q g (nC)
240
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
Copyright by Vincotech
75
100
T (°C)
125
10
Revision: 3.1
V23990-K232-F-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 8Ω
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
120
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
270
tdoff
%
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
%
IC
VCE
100
220
VGE 90%
VCE 90%
VGE
80
170
60
IC
120
VCE
tEoff
40
tdon
70
IC 1%
20
VGE
20 VGE10%
0
VCE 3%
IC10%
tEon
-20
-0,2
-30
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
2,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
50
0,17
0,48
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3
-15
15
300
50
0,10
0,23
3,1
time(us)
3,2
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
270
fitted
%
2,9
%
VCE
100
Ic
220
IC
IC 90%
80
170
IC 60%
60
120
40
VCE
IC 40%
IC90%
tr
70
20
IC10%
0
20
tf
-20
0,05
VC (100%) =
IC (100%) =
tf =
IC10%
-30
0,1
0,15
300
50
0,17
Copyright by Vincotech
0,2
0,25
0,3
0,35
time (us)
2,8
0,4
2,9
3
3,1
3,2
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
300
50
0,02
V
A
µs
Revision: 3.1
V23990-K232-F-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
%
%
Eoff
Poff
100
Pon
120
Eon
80
90
60
60
40
30
20
VGE 10%
VCE 3%
0
0
tEoff
VGE 90%
-20
-0,2
IC 1%
tEon
-30
-0,06
0,08
0,22
0,36
0,5
2,8
0,64
2,9
3
3,1
3,2
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
14,94
1,62
0,48
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
14,94
0,72
0,23
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
80
Id
trr
40
0
fitted
Vd
IRRM10%
-40
-80
-120
IRRM90%
-160
-200
2,925
IRRM100%
2,95
2,975
3
3,025
3,05
3,075
3,1
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
12
300
50
84
0,16
V
A
A
µs
Revision: 3.1
V23990-K232-F-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
Qrr
%
%
Erec
100
120
Id
50
90
tQrr
0
tErec
60
-50
30
-100
Prec
0
-150
-200
2,65
-30
2,85
3,05
3,25
3,45
3,65
2,7
2,9
3,1
3,3
Id (100%) =
Qrr (100%) =
tQrr =
50
4,89
0,40
Copyright by Vincotech
3,5
3,7
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
14,94
1,18
0,40
kW
mJ
µs
Revision: 3.1
V23990-K232-F-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K232-A-/0A/-PM
V23990-K232-A-/1A/-PM
V23990-K232-A-/0B/-PM
V23990-K232-A-/1B/-PM
K232A
K232A
K232A
K232A
in packaging barcode as
K232A-/0A/
K232A-/1A/
K232A-/0B/
K232A-/1B/
Outline
Pinout
Copyright by Vincotech
14
Revision: 3.1
V23990-K232-F-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 3.1