V23990-K232-F-PM MiniSKiiP® 2 PACK 600V/50A MiniSKiiP® 2 Housing Features ● SixPack (inverter) topology ● Solder less interconnection ● Designed for motor drives up to 7 kW ● Fully compatible with Semikron pedant 27AC066V1 ● Temperature sensor ● Standard (6.5mm) and thin (2.8mm) lids,16mm housing ● Optional with pre-applied thermal grease Schematic Target Applications ● Industrial Motor Drives ● Power Generation ● UPS Types ● V23990-K232-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V T1,T2,T3,T4,T5,T6 Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Copyright by Vincotech Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C 50 50 150 A A 200 A 100 152 W ±20 V 6 µs 360 V 175 °C Revision: 3.1 V23990-K232-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 41 55 A D1,D2,D3,D4,D5,D6 Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 81 109 59 A W 89 Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 3.1 V23990-K232-F-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 T1,T2,T3,T4,T5,T6 Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 612 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0008 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 1,49 1,69 700 Rgoff=8 Ω Rgon=8 Ω ±15 300 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,2 mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 100 100 16 17 151 172 96 167 0,55 0,72 1,28 1,62 ns mWs 3140 f=1MHz 25 0 Tj=25°C 200 pF 93 ±15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 315 nC 0,95 K/W D1,D2,D3,D4,D5,D6 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 37 Rgoff=8 Ω 300 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,47 1,54 73 84 48 157 3,22 4,89 3872 3958 0,75 1,18 2,5 V A ns µC A/µs mWs 1,61 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P Power dissipation constant 3 -3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Copyright by Vincotech Ω 1670,313 T=25°C Vincotech NTC Reference % 1/K 1/K² E 3 Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 150 IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IF (A) IC (A) 50 V CE (V) 4 Tj = 25°C 40 120 30 90 Tj = Tjmax-25°C Tj = 25°C 20 10 60 30 Tj = Tjmax-25°C 0 0 0 At Tj = tp = VCE = 2 4 6 8 10 V GE (V) 12 0,0 0,5 1,0 1,5 2,0 2,5 V F (V) 3,0 At 25/125 250 10 °C µs V Copyright by Vincotech tp = 4 250 µs Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 3 E (mWs) E (mWs) 3 2,5 Eoff High T 2,5 2 Eoff Low T 2 Eon High T Eon Low T Eoff High T Eon High T 1,5 1,5 Eoff Low T Eon Low T 1 1 0,5 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 1,8 E (mWs) 1,8 Erec 1,5 Tj = Tjmax -25°C 1,5 Tj = Tjmax -25°C Erec 1,2 1,2 0,9 Erec 0,9 Tj = 25°C 0,6 0,6 0,3 0,3 0,0 Tj = 25°C Erec 0,0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 50 A 5 Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdon tdoff tf 0,1 0,1 tf tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 I C (A) 80 100 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG(Ω ) 32 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr( µs) t rr( µs) 0,30 trr 0,25 Tj = Tjmax -25°C 0,3 trr trr 0,20 trr 0,2 0,15 Tj = 25°C Tj = Tjmax -25°C 0,10 0,1 Tj = 25°C V23990-K232-F-PM 0,05 0,0 0,00 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 8 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 8 25/125 300 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 9 Qrr( µC) Qrr( µC) 9 8 8 Qrr 6 6 Tj = Tjmax -25°C Qrr Qrr Tj = Tjmax -25°C 5 5 Tj = 25°C 3 Qrr 3 Tj = 25°C 2 2 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 8 40 60 80 I C (A) 0 100 8 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 300 50 ±15 24 32 R g on ( Ω) 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 150 IrrM (A) IrrM (A) 150 Tj = Tjmax - 25°C 120 120 IRRM 90 90 IRRM Tj = Tjmax -25°C Tj = 25°C 60 60 IRRM IRRM Tj = 25°C 30 30 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/125 300 ±15 8 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 300 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD 6000 dI0/dt dIrec/dt 5000 D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dIo/dtLow T 8000 dI0/dt dIrec/dt 6400 4000 Tj = 25°C 4800 Tj = Tjmax - 25°C dIrec/dtLow T 3000 dIrec/dtHigh T 3200 2000 di0/dtHigh T 1600 1000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 300 ±15 8 40 60 I C (A) 80 100 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 300 50 ±15 16 24 R gon ( Ω ) 32 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 -1 10 -2 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 1 10-5 1010 At D= RthJH = tp / T 0,95 K/W 10-4 10-2 10-1 100 t p (s) 1 1010 tp / T 1,61 K/W FWD thermal model values IGBT thermal model values Thermal grease Thermal grease R (C/W) 0,02 0,13 0,45 0,23 0,08 0,03 R (C/W) 0,04 0,22 0,66 0,38 0,19 0,11 Tau (s) 9,1E+00 1,2E+00 2,0E-01 3,8E-02 5,7E-03 3,2E-04 Copyright by Vincotech 10-3 8 Tau (s) 9,2E+00 1,0E+00 2,1E-01 4,0E-02 7,0E-03 7,5E-04 Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 210 180 50 150 40 120 30 90 20 60 10 30 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 120 150 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 3.1 V23990-K232-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 VGE (V) 15 IC (A) 10 T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge 120V 10uS 12 10 2 100uS 480V 1mS 10mS 100mS DC 9 101 6 100 3 0 10-1 0 10 10 At D= Th = VGE = 1 10 V CE (V) 2 10 0 3 At IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = 40 50 80 120 160 200 Q g (nC) 240 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 10 Revision: 3.1 V23990-K232-F-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 8Ω Rgoff = 8Ω Output inverter IGBT Figure 1 120 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 270 tdoff % Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) % IC VCE 100 220 VGE 90% VCE 90% VGE 80 170 60 IC 120 VCE tEoff 40 tdon 70 IC 1% 20 VGE 20 VGE10% 0 VCE 3% IC10% tEon -20 -0,2 -30 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 2,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 50 0,17 0,48 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3 -15 15 300 50 0,10 0,23 3,1 time(us) 3,2 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 270 fitted % 2,9 % VCE 100 Ic 220 IC IC 90% 80 170 IC 60% 60 120 40 VCE IC 40% IC90% tr 70 20 IC10% 0 20 tf -20 0,05 VC (100%) = IC (100%) = tf = IC10% -30 0,1 0,15 300 50 0,17 Copyright by Vincotech 0,2 0,25 0,3 0,35 time (us) 2,8 0,4 2,9 3 3,1 3,2 time(us) VC (100%) = IC (100%) = tr = V A µs 11 300 50 0,02 V A µs Revision: 3.1 V23990-K232-F-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 % % Eoff Poff 100 Pon 120 Eon 80 90 60 60 40 30 20 VGE 10% VCE 3% 0 0 tEoff VGE 90% -20 -0,2 IC 1% tEon -30 -0,06 0,08 0,22 0,36 0,5 2,8 0,64 2,9 3 3,1 3,2 time (us) Poff (100%) = Eoff (100%) = tEoff = 14,94 1,62 0,48 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 14,94 0,72 0,23 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % 80 Id trr 40 0 fitted Vd IRRM10% -40 -80 -120 IRRM90% -160 -200 2,925 IRRM100% 2,95 2,975 3 3,025 3,05 3,075 3,1 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 12 300 50 84 0,16 V A A µs Revision: 3.1 V23990-K232-F-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 Qrr % % Erec 100 120 Id 50 90 tQrr 0 tErec 60 -50 30 -100 Prec 0 -150 -200 2,65 -30 2,85 3,05 3,25 3,45 3,65 2,7 2,9 3,1 3,3 Id (100%) = Qrr (100%) = tQrr = 50 4,89 0,40 Copyright by Vincotech 3,5 3,7 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 13 14,94 1,18 0,40 kW mJ µs Revision: 3.1 V23990-K232-F-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as V23990-K232-A-/0A/-PM V23990-K232-A-/1A/-PM V23990-K232-A-/0B/-PM V23990-K232-A-/1B/-PM K232A K232A K232A K232A in packaging barcode as K232A-/0A/ K232A-/1A/ K232A-/0B/ K232A-/1B/ Outline Pinout Copyright by Vincotech 14 Revision: 3.1 V23990-K232-F-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 3.1