V23990 K243 A D3 14

V23990-K243-A-PM
MiniSKiiP® 3 PIM
600V/100A
MiniSkiip® 3 housing
Features
● IGBT3 technology for low saturation losses
● Solderless spring contact mounting system
Target Applications
Schematic
● Industrial motor drives
Types
● V23990-K243-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
69
93
A
700
A
2450
A2s
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
77
Tc=80°C
117
W
Tjmax
150
°C
VCE
600
V
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Copyright by Vincotech
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
85
85
300
300
Th=80°C
Tc=80°C
154
224
A
A
A
W
±20
V
6
360
µs
V
175
°C
Revision: 3.1
V23990-K243-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
75
75
A
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
985
Th=80°C
Tc=80°C
A
119
181
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+125
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 3.1
V23990-K243-A-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,02
0,94
0,88
0,75
4
6
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
35
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,1
2
0,90
mA
K/W
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
100
600
0
±25
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,05
1,58
1,78
1,85
0,0052
1200
Rgoff=8 Ω
Rgon=8 Ω
±15
300
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,008
187,2
187,2
31,5
32,8
222,5
241,8
53,3
86,9
2,29
2,92
2,43
3,08
ns
mWs
6280
f=1MHz
25
0
400
Tj=25°C
pF
186
480
±15
100
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
620
nC
0,6
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
100
Rgoff=8 Ω
300
di(rec)max
/dt
Erec
RthJH
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,38
1,4
92,8
112,9
167,5
247,7
5,85
10,5
3184
2578
1,1
2,15
1,9
V
A
ns
µC
A/µs
mWs
0,8
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
-3
3
T=25°C
Power dissipation constant
%
Ω
1670,313
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
Copyright by Vincotech
E
3
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
2
100
300
IF (A)
3
4
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
D1,D2,D3,D4,D5,D6,D7 FWD
250
80
Tj = 25°C
200
60
Tj = Tjmax-25°C
150
Tj = 25°C
40
100
20
Tj = Tjmax-25°C
50
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
250
1
1,5
2
V F (V)
2,5
µs
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
10
T1,T2,T3,T4,T5,T6,T7 IGBT
Eon High T
E (mWs)
E (mWs)
10
8
Eon Low T
8
Eon High T
6
6
Eoff High T
4
Eoff Low T
4
Eoff Low T
Eoff High T
2
2
Eon Low T
0
0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG( Ω )
32
40
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
IC =
100
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3,2
E (mWs)
3,2
T1,T2,T3,T4,T5,T6,T7 IGBT
E (mWs)
Erec
2,4
2,4
Tj = Tjmax -25°C
Erec
1,6
1,6
Tj = Tjmax -25°C
Erec
Tj = 25°C
Tj = 25°C
0,8
0,8
Erec
0
0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
5
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
tdon
tdon
tf
0,1
tdoff
t ( µs)
t ( µs)
1
0,1
tr
tf
tr
0,01
0,01
0,001
0,001
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr( µs)
t rr( µs)
0,5
D1,D2,D3,D4,D5,D6,D7 FWD
trr
0,4
0,4
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,3
0,3
trr
trr
0,2
0,2
0,1
0,1
Tj = 25°C
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
300
±15
8
100
150
I C (A)
200
°C
V
V
Ω
Copyright by Vincotech
6
0
8
At
Tj =
VR =
IF =
VGE =
25/125
300
100
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
20
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
15
Qrr
16
12
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Qrr
12
9
Qrr
Tj = 25°C
8
6
4
3
Qrr
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
300
±15
8
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
8
25/125
300
100
±15
16
24
32
R g on ( Ω)
40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
200
IrrM (A)
IrrM (A)
200
Tj = Tjmax - 25°C
150
150
Tj = Tjmax -25°C
100
100
Tj = 25°C
Tj = 25°C
IRRM
IRRM
50
IRRM
IRRM
50
0
0
0
50
At
Tj =
VCE =
VGE =
Rgon =
25/125
300
±15
8
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/125
300
100
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
5000
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dIrec/dtLow T
4000
D1,D2,D3,D4,D5,D6,D7 FWD
7500
dI0/dt
dIrec/dt
6000
dIrec/dtHigh T
3000
4500
dIo/dtLow T
3000
2000
di0/dtHigh T
1500
1000
dI0/dt
dIrec/dt
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
300
±15
8
100
I C (A)
150
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
300
100
±15
16
R gon ( Ω )
24
32
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
100
100
10
8
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
-1
10
-2
10-5
101
At
D=
RthJH =
tp / T
0,62
10
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-2
10-1
100
t p (s)
101
tp / T
0,80
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,04
0,09
0,23
0,15
0,07
0,02
R (C/W)
0,08
0,26
0,33
0,08
0,05
Tau (s)
6,5E+00
1,0E+00
2,0E-01
5,9E-02
1,2E-02
2,2E-03
Copyright by Vincotech
10-3
8
Tau (s)
2,9E+00
3,2E-01
8,4E-02
1,1E-02
7,9E-04
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
300
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
240
150
200
60
160
120
40
80
20
40
0
0
0
At
Tj =
50
175
100
150
T h ( o C) 200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 3.1
V23990-K243-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
18
10mS
1mS
10uS
100uS
VGE (V)
IC (A)
103
100mS
15
DC
10
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
120V
2
12
480V
9
101
6
100
3
0
10-1
100
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
400
600
800
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
200
10
100
A
Revision: 3.1
V23990-K243-A-PM
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
IF (A)
ZthJC (K/W)
101
120
100
90
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
30
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
0,3
0,6
0,9
1,2
V F (V)
10
1,5
-2
10-5
At
tp =
At
D=
RthJH =
µs
250
10-4
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-3
10-2
100
t p (s)
101
tp / T
0,90
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
150
Ptot (W)
IF (A)
180
10-1
150
120
120
90
90
60
60
30
30
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
Copyright by Vincotech
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3.1
V23990-K243-A-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 3.1
V23990-K243-A-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 8Ω
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
240
%
%
IC
200
tdoff
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
VCE
160
VGE 90%
90
VCE 90%
120
60
IC
VCE
80
tEoff
tdon
VGE
30
40
IC 1%
VGE
0
IC10%
VGE10%
VCE 3%
0
tEon
-30
-0,2
-0,05
0,1
0,25
0,4
0,55
-40
2,45
0,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
99
0,24
0,50
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
2,9
-15
15
300
99
0,19
0,41
3,05
3,2
3,35
time(us)
3,5
V
V
V
A
µs
µs
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
240
fitted
%
%
VCE
IC
100
2,75
Figure 4
Turn-off Switching Waveforms & definition of tf
120
2,6
Ic
200
IC 90%
80
160
IC 60%
60
120
VCE
IC90%
40
80
IC 40%
tr
40
20
IC10%
0
-20
0,15
VC (100%) =
IC (100%) =
tf =
IC10%
0
tf
-40
0,2
0,25
300
99
0,09
Copyright by Vincotech
0,3
0,35
time (us)
2,9
0,4
2,95
3
3,05
3,1
3,15
3,2
3,25
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
300
99
0,03
V
A
µs
Revision: 3.1
V23990-K243-A-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
%
Poff
%
Eoff
Pon
100
120
Eon
80
90
60
60
40
30
20
VGE 10%
VCE 3%
0
0
VGE 90%
IC 1%
tEoff
-20
-0,2
-0,05
0,1
0,25
tEon
-30
0,4
0,55
2,7
0,7
2,8
2,9
3
Poff (100%) =
Eoff (100%) =
tEoff =
29,72
3,08
0,50
3,1
3,2
3,3
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
29,72
2,92
0,41
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
fitted
IRRM10%
-40
-80
IRRM90%
IRRM100%
-120
2,8
2,9
3
3,1
3,2
3,3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
300
99
113
0,25
Copyright by Vincotech
V
A
A
µs
14
Revision: 3.1
V23990-K243-A-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Qrr
%
%
Id
Erec
100
100
80
tErec
50
tQrr
60
0
40
-50
20
Prec
-100
0
-150
-20
2,7
2,9
3,1
3,3
3,5
3,7
3,9
2,9
3
3,1
3,2
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
99
10,50
0,30
Copyright by Vincotech
3,3
3,4
3,5
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
29,72
2,15
0,30
kW
mJ
µs
Revision: 3.1
V23990-K243-A-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K243-A-/0A/-PM
V23990-K243-A-/1A/-PM
V23990-K243-A-/0B/-PM
V23990-K243-A-/1B/-PM
K243A
K243A
K243A
K243A
in packaging barcode as
K243A-/0A/
K243A-/1A/
K243A-/0B/
K243A-/1B/
Outline
Pinout
Copyright by Vincotech
16
Revision: 3.1
V23990-K243-A-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 3.1