V23990-K243-A-PM MiniSKiiP® 3 PIM 600V/100A MiniSkiip® 3 housing Features ● IGBT3 technology for low saturation losses ● Solderless spring contact mounting system Target Applications Schematic ● Industrial motor drives Types ● V23990-K243-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 69 93 A 700 A 2450 A2s D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C 77 Tc=80°C 117 W Tjmax 150 °C VCE 600 V T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Copyright by Vincotech Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 85 85 300 300 Th=80°C Tc=80°C 154 224 A A A W ±20 V 6 360 µs V 175 °C Revision: 3.1 V23990-K243-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 75 75 A D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 985 Th=80°C Tc=80°C A 119 181 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+125 °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 3.1 V23990-K243-A-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,02 0,94 0,88 0,75 4 6 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 0,1 2 0,90 mA K/W T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 100 600 0 ±25 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,05 1,58 1,78 1,85 0,0052 1200 Rgoff=8 Ω Rgon=8 Ω ±15 300 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,008 187,2 187,2 31,5 32,8 222,5 241,8 53,3 86,9 2,29 2,92 2,43 3,08 ns mWs 6280 f=1MHz 25 0 400 Tj=25°C pF 186 480 ±15 100 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 620 nC 0,6 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 100 Rgoff=8 Ω 300 di(rec)max /dt Erec RthJH 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,38 1,4 92,8 112,9 167,5 247,7 5,85 10,5 3184 2578 1,1 2,15 1,9 V A ns µC A/µs mWs 0,8 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P -3 3 T=25°C Power dissipation constant % Ω 1670,313 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT 2 100 300 IF (A) 3 4 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 D1,D2,D3,D4,D5,D6,D7 FWD 250 80 Tj = 25°C 200 60 Tj = Tjmax-25°C 150 Tj = 25°C 40 100 20 Tj = Tjmax-25°C 50 0 0 0 2 4 At tp = VCE = 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 250 1 1,5 2 V F (V) 2,5 µs Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 T1,T2,T3,T4,T5,T6,T7 IGBT Eon High T E (mWs) E (mWs) 10 8 Eon Low T 8 Eon High T 6 6 Eoff High T 4 Eoff Low T 4 Eoff Low T Eoff High T 2 2 Eon Low T 0 0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG( Ω ) 32 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 100 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3,2 E (mWs) 3,2 T1,T2,T3,T4,T5,T6,T7 IGBT E (mWs) Erec 2,4 2,4 Tj = Tjmax -25°C Erec 1,6 1,6 Tj = Tjmax -25°C Erec Tj = 25°C Tj = 25°C 0,8 0,8 Erec 0 0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 100 A 5 Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff tdon tdon tf 0,1 tdoff t ( µs) t ( µs) 1 0,1 tr tf tr 0,01 0,01 0,001 0,001 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 100 A D1,D2,D3,D4,D5,D6,D7 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 t rr( µs) t rr( µs) 0,5 D1,D2,D3,D4,D5,D6,D7 FWD trr 0,4 0,4 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,3 0,3 trr trr 0,2 0,2 0,1 0,1 Tj = 25°C Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 50 25/125 300 ±15 8 100 150 I C (A) 200 °C V V Ω Copyright by Vincotech 6 0 8 At Tj = VR = IF = VGE = 25/125 300 100 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 20 D1,D2,D3,D4,D5,D6,D7 FWD Qrr( µC) Qrr( µC) 15 Qrr 16 12 Tj = Tjmax -25°C Tj = Tjmax -25°C Qrr 12 9 Qrr Tj = 25°C 8 6 4 3 Qrr Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 50 25/125 300 ±15 8 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 8 25/125 300 100 ±15 16 24 32 R g on ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 200 IrrM (A) IrrM (A) 200 Tj = Tjmax - 25°C 150 150 Tj = Tjmax -25°C 100 100 Tj = 25°C Tj = 25°C IRRM IRRM 50 IRRM IRRM 50 0 0 0 50 At Tj = VCE = VGE = Rgon = 25/125 300 ±15 8 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 300 100 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 5000 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dIrec/dtLow T 4000 D1,D2,D3,D4,D5,D6,D7 FWD 7500 dI0/dt dIrec/dt 6000 dIrec/dtHigh T 3000 4500 dIo/dtLow T 3000 2000 di0/dtHigh T 1500 1000 dI0/dt dIrec/dt 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/125 300 ±15 8 100 I C (A) 150 200 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 300 100 ±15 16 R gon ( Ω ) 24 32 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 100 100 10 8 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) -1 10 -2 10-5 101 At D= RthJH = tp / T 0,62 10 K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 10-2 10-1 100 t p (s) 101 tp / T 0,80 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,04 0,09 0,23 0,15 0,07 0,02 R (C/W) 0,08 0,26 0,33 0,08 0,05 Tau (s) 6,5E+00 1,0E+00 2,0E-01 5,9E-02 1,2E-02 2,2E-03 Copyright by Vincotech 10-3 8 Tau (s) 2,9E+00 3,2E-01 8,4E-02 1,1E-02 7,9E-04 Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 300 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 IF (A) Ptot (W) 240 150 200 60 160 120 40 80 20 40 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 3.1 V23990-K243-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 18 10mS 1mS 10uS 100uS VGE (V) IC (A) 103 100mS 15 DC 10 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge 120V 2 12 480V 9 101 6 100 3 0 10-1 100 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 400 600 800 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 200 10 100 A Revision: 3.1 V23990-K243-A-PM D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 IF (A) ZthJC (K/W) 101 120 100 90 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 30 Tj = Tjmax-25°C Tj = 25°C 0 0,0 0,3 0,6 0,9 1,2 V F (V) 10 1,5 -2 10-5 At tp = At D= RthJH = µs 250 10-4 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-3 10-2 100 t p (s) 101 tp / T 0,90 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 150 Ptot (W) IF (A) 180 10-1 150 120 120 90 90 60 60 30 30 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = ºC Copyright by Vincotech 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3.1 V23990-K243-A-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 3.1 V23990-K243-A-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 8Ω Rgoff = 8Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 240 % % IC 200 tdoff 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) VCE 160 VGE 90% 90 VCE 90% 120 60 IC VCE 80 tEoff tdon VGE 30 40 IC 1% VGE 0 IC10% VGE10% VCE 3% 0 tEon -30 -0,2 -0,05 0,1 0,25 0,4 0,55 -40 2,45 0,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 99 0,24 0,50 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 2,9 -15 15 300 99 0,19 0,41 3,05 3,2 3,35 time(us) 3,5 V V V A µs µs Output inverter IGBT Turn-on Switching Waveforms & definition of tr 240 fitted % % VCE IC 100 2,75 Figure 4 Turn-off Switching Waveforms & definition of tf 120 2,6 Ic 200 IC 90% 80 160 IC 60% 60 120 VCE IC90% 40 80 IC 40% tr 40 20 IC10% 0 -20 0,15 VC (100%) = IC (100%) = tf = IC10% 0 tf -40 0,2 0,25 300 99 0,09 Copyright by Vincotech 0,3 0,35 time (us) 2,9 0,4 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) VC (100%) = IC (100%) = tr = V A µs 13 300 99 0,03 V A µs Revision: 3.1 V23990-K243-A-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 % Poff % Eoff Pon 100 120 Eon 80 90 60 60 40 30 20 VGE 10% VCE 3% 0 0 VGE 90% IC 1% tEoff -20 -0,2 -0,05 0,1 0,25 tEon -30 0,4 0,55 2,7 0,7 2,8 2,9 3 Poff (100%) = Eoff (100%) = tEoff = 29,72 3,08 0,50 3,1 3,2 3,3 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 29,72 2,92 0,41 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 fitted IRRM10% -40 -80 IRRM90% IRRM100% -120 2,8 2,9 3 3,1 3,2 3,3 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 300 99 113 0,25 Copyright by Vincotech V A A µs 14 Revision: 3.1 V23990-K243-A-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Qrr % % Id Erec 100 100 80 tErec 50 tQrr 60 0 40 -50 20 Prec -100 0 -150 -20 2,7 2,9 3,1 3,3 3,5 3,7 3,9 2,9 3 3,1 3,2 time(us) Id (100%) = Qrr (100%) = tQrr = 99 10,50 0,30 Copyright by Vincotech 3,3 3,4 3,5 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 29,72 2,15 0,30 kW mJ µs Revision: 3.1 V23990-K243-A-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K243-A-/0A/-PM V23990-K243-A-/1A/-PM V23990-K243-A-/0B/-PM V23990-K243-A-/1B/-PM K243A K243A K243A K243A in packaging barcode as K243A-/0A/ K243A-/1A/ K243A-/0B/ K243A-/1B/ Outline Pinout Copyright by Vincotech 16 Revision: 3.1 V23990-K243-A-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 3.1