V23990-K233-F preliminary datasheet 2 nd gen. MiniSKiiP 2 600V/75A Features MiniSKiiP 2 Housing ● SixPack (inverter) topology ● Solder less interconnection ● Designed for motor drives up to 7 kW ● Fully compatible with Semikron pedant 27AC066V1 ● Temperature sensor ● Standard (6.5mm) and thin (2.8mm) lids,16mm housing ● Optional with pre-applied thermal grease Schematic Target Applications ● Industrial Motor Drives ● Power Generation ● UPS Types ● V23990-K233-F Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 57 74 A 225 A 92 139 W ±20 V 6 360 μs V 175 °C 600 V 55 74 A 45 A 70 107 W 175 °C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 V23990-K233-F preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 V23990-K233-F preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 Inverter Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 612 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time 0,0012 75 Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,54 1,76 700 Rgoff=8 Ω Rgon=8 Ω 300 ±15 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V 0,2 mA nA Ω 4 tr td(off) tf Fall time VCE=VGE 215 222 26 30 255 274 45 92 1,82 2,42 1,72 2,22 ns mWs 4700 f=1MHz Tj=25°C 25 0 pF 300 145 ±15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,04 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 75 Rgoff=8 Ω ±15 300 di(rec)max /dt Erec RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,39 1,43 72 82 203 333 5,70 9,14 2458 1983 1,15 1,93 Thermal grease thickness≤50um λ = 1 W/mK V A ns μC A/μs mWs 1,35 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P -3 3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Vincotech NTC Reference Copyright by Vincotech Ω 1670,3125 T=25°C Power dissipation constant % 1/K 1/K² E 3 Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 200 IC (A) 200 160 160 120 120 80 80 40 40 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 μs 125 °C 7 V to 17 V in steps of 1 V Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 200 IF (A) IC (A) 75 V CE (V) 60 160 Tj = Tjmax-25°C 45 120 Tj = 25°C 30 80 Tj = Tjmax-25°C Tj = 25°C 15 40 0 0 0 2 4 At tp = VCE = 250 10 μs V Copyright by Vincotech 6 8 10 V GE (V) 12 0,0 At tp = 4 0,5 250 1,0 1,5 2,0 2,5 V F (V) 3,0 μs Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 6 E (mWs) 6 Eon High T 5 Eon High T 5 Eon Low T Eon Low T 4 4 Eoff High T 3 Eoff High T 3 Eoff Low T Eoff Low T 2 2 1 1 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 75 A Output inverter IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 3,0 E (mWs) 3,0 Erec 2,5 2,5 Tj = Tjmax -25°C 2,0 2,0 Erec Tj = Tjmax -25°C 1,5 1,5 1,0 1,0 Erec Tj = 25°C Erec Tj = 25°C 0,5 0,5 0,0 0,0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 75 A 5 Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( μs) t ( μs) 1 tdon tdoff tdon 0,1 0,1 tf tr tf tr 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG( Ω ) 32 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 75 A Output inverter FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,6 t rr( μs) t rr( μs) 0,6 0,5 0,5 trr trr 0,4 0,4 Tj = Tjmax -25°C trr 0,3 0,3 trr Tj = Tjmax -25°C 0,2 0,2 0,1 0,1 Tj = 25°C Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 120 I C (A) 150 °C V V Ω Copyright by Vincotech 6 0 8 At Tj = VR = IF = VGE = 25/125 300 75 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( μC) 10 Qrr( μC) 15 Qrr Qrr Tj = Tjmax -25°C 12 8 9 6 Qrr Qrr Tj = Tjmax -25°C Tj = 25°C 6 4 3 2 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 120 I C (A) 150 0 8 At Tj = VR = IF = VGE = °C V V Ω Output inverter FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 300 75 ±15 24 32 R g on ( Ω) 40 °C V A V Output inverter FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 150 IrrM (A) IrrM (A) 100 IRRM 80 Tj = Tjmax - 25°C 120 IRRM Tj = Tjmax -25°C 90 60 Tj = 25°C 40 60 Tj = 25°C IRRM IRRM 30 20 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 300 75 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) direc / dt (A/ μs) direc / dt (A/μ s) 4000 dI0/dt dIrec/dt 3200 Output inverter FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 dI0/dt dIrec/dt dIo/dtLow T 4500 Tj = 25°C 2400 Tj = Tjmax - 25°C dIrec/dtLow T 3000 1600 dIrec/dtHigh T di0/dtHigh T 1500 800 dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 I C (A) 120 150 0 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 300 75 ±15 16 24 40 °C V A V Output inverter FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 R gon ( Ω ) 32 0 0 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 1,04 Thermal grease R (C/W) 0,03 0,20 0,55 0,16 0,06 0,03 10-3 K/W 0,94 IGBT thermal model values Phase change interface Tau (s) 8,2E+00 9,4E-01 1,9E-01 3,6E-02 6,2E-03 3,7E-04 Copyright by Vincotech R (C/W) 0,03 0,16 0,45 0,13 0,05 0,03 10-4 R (C/W) 0,03 0,18 0,69 0,27 0,12 0,07 8 10-2 10-1 100 t p (s) 1011 tp / T 1,35 Thermal grease Tau (s) 6,6E+00 7,6E-01 1,5E-01 2,9E-02 5,0E-03 3,0E-04 10-3 K/W 1,15 FRED thermal model values Phase change interface Tau (s) 9,4E+00 1,2E+00 2,1E-01 4,1E-02 6,3E-03 7,1E-04 R (C/W) 0,02 0,15 0,56 0,22 0,09 0,06 Tau (s) 7,7E+00 9,6E-01 1,7E-01 3,3E-02 5,1E-03 5,7E-04 Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 200 160 80 120 60 80 40 40 20 0 0 0 At Tj = 50 175 100 °C 150 T h ( o C) 200 0 At Tj = VGE = single heating overall heating Output inverter FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V Output inverter FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 150 120 80 90 60 60 40 30 20 0 0 0 At Tj = 50 50 175 100 °C Copyright by Vincotech 150 T h ( o C) 200 0 At Tj = single heating overall heating 9 50 175 100 150 T h ( o C) 200 °C Revision: 2 V23990-K233-F preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 15 10uS 12 10 120V 2 100uS 100mS DC 10mS 1mS 480V 9 101 6 100 3 0 10-1 0 10 At D= Th = VGE = Tj = 1 10 10 2 V CE (V) 0 3 10 40 60 80 100 120 140 160 180 200 220 240 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 20 10 75 A Revision: 2 V23990-K233-F preliminary datasheet Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 3000 2500 2000 1500 1000 500 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 11 Revision: 2 V23990-K233-F preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 210 % % 120 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) IC 180 tdoff VCE 150 100 VGE 90% VCE 90% 80 120 VCE IC 60 90 40 60 VGE tEoff IC 1% 20 30 IC10% VGE10% VGE 0 tdon VCE 3% 0 tEon -20 -0,2 -30 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 2,5 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 75 0,27 0,55 2,65 2,8 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 2,95 -15 15 300 75 0,22 0,49 3,1 3,4 time(us) V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,25 Turn-on Switching Waveforms & definition of tr 140 210 % % 120 IC Ic 180 fitted VCE 100 150 IC 90% 80 120 IC 60% 60 IC90% 90 IC 40% 40 VCE tr 60 30 20 IC10% tf 0 -20 0,15 VC (100%) = IC (100%) = tf = 0,2 0,25 300 75 0,09 Copyright by Vincotech 0,3 IC10% 0 0,35 0,4 -30 2,85 0,45 2,91 2,97 3,03 time (us) 3,09 3,15 time(us) VC (100%) = IC (100%) = tr = V A μs 12 300 75 0,03 V A μs Revision: 2 V23990-K233-F preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 % Poff 100 Pon % Eoff 120 Eon 80 90 60 60 40 30 20 VGE 10% VGE 90% VCE 3% 0 0 tEoff tEon IC 1% -30 -20 -0,2 -0,06 0,08 0,22 0,36 0,5 2,6 0,64 2,75 2,9 3,05 3,2 3,35 3,5 time (us) Poff (100%) = Eoff (100%) = tEoff = 22,36 2,22 0,55 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 22,36 2,42 0,49 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 VGE (V) 120 % 15 Id 80 fitted trr 10 40 5 0 Vd 0 IRRM10% -40 -5 -80 -10 IRRM90% IRRM100% -120 -15 -20 -100 -160 0 100 200 300 400 500 600 700 2,9 800 3 3,1 3,2 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 300 75 670,17 Copyright by Vincotech 3,3 3,4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 13 300 75 82 0,33 V A A μs Revision: 2 V23990-K233-F preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Erec % % Qrr 100 90 Id 50 tQrr tErec 60 0 30 -50 Prec 0 -100 -150 -30 2,7 Id (100%) = Qrr (100%) = tQrr = 2,9 3,1 3,3 75 9,14 0,56 A μC μs Copyright by Vincotech 3,5 3,7 time(us) 3,9 2,7 Prec (100%) = Erec (100%) = tErec = 14 2,9 3,1 3,3 22,36 1,93 0,56 kW mJ μs 3,5 3,7 time(us) 3,9 Revision: 2 V23990-K233-F preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as with thermal paste, 6.5 mm lid with thermal paste, 2.8 mm lid no thermal paste, 6.5 mm lid no thermal paste, 2.8 mm lid V23990-K233-F-/1A/ V23990-K233-F-/1B/ V23990-K233-F-/0A/ V23990-K233-F-/0B/ K233-F K233-F K233-F K233-F K233-F K233-F K233-F K233-F Outline Pinout Copyright by Vincotech 15 Revision: 2 V23990-K233-F preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 16 Revision: 2