V23990 K233 F P2 14

V23990-K233-F
preliminary datasheet
2 nd gen. MiniSKiiP 2
600V/75A
Features
MiniSKiiP 2 Housing
● SixPack (inverter) topology
● Solder less interconnection
● Designed for motor drives up to 7 kW
● Fully compatible with Semikron pedant 27AC066V1
● Temperature sensor
● Standard (6.5mm) and thin (2.8mm) lids,16mm housing
● Optional with pre-applied thermal grease
Schematic
Target Applications
● Industrial Motor Drives
● Power Generation
● UPS
Types
● V23990-K233-F
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
57
74
A
225
A
92
139
W
±20
V
6
360
μs
V
175
°C
600
V
55
74
A
45
A
70
107
W
175
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
V23990-K233-F
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
V23990-K233-F
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
612
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
0,0012
75
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,54
1,76
700
Rgoff=8 Ω
Rgon=8 Ω
300
±15
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
0,2
mA
nA
Ω
4
tr
td(off)
tf
Fall time
VCE=VGE
215
222
26
30
255
274
45
92
1,82
2,42
1,72
2,22
ns
mWs
4700
f=1MHz
Tj=25°C
25
0
pF
300
145
±15
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,04
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
75
Rgoff=8 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,39
1,43
72
82
203
333
5,70
9,14
2458
1983
1,15
1,93
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
μC
A/μs
mWs
1,35
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
-3
3
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
Vincotech NTC Reference
Copyright by Vincotech
Ω
1670,3125
T=25°C
Power dissipation constant
%
1/K
1/K²
E
3
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
200
IC (A)
200
160
160
120
120
80
80
40
40
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
200
IF (A)
IC (A)
75
V CE (V)
60
160
Tj = Tjmax-25°C
45
120
Tj = 25°C
30
80
Tj = Tjmax-25°C
Tj = 25°C
15
40
0
0
0
2
4
At
tp =
VCE =
250
10
μs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0,0
At
tp =
4
0,5
250
1,0
1,5
2,0
2,5
V F (V)
3,0
μs
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
6
E (mWs)
6
Eon High T
5
Eon High T
5
Eon Low T
Eon Low T
4
4
Eoff High T
3
Eoff High T
3
Eoff Low T
Eoff Low T
2
2
1
1
0
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
±15
V
IC =
75
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
3,0
E (mWs)
3,0
Erec
2,5
2,5
Tj = Tjmax -25°C
2,0
2,0
Erec
Tj = Tjmax -25°C
1,5
1,5
1,0
1,0
Erec
Tj = 25°C
Erec
Tj = 25°C
0,5
0,5
0,0
0,0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
5
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
1
tdon
tdoff
tdon
0,1
0,1
tf
tr
tf
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG( Ω )
32
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
±15
V
IC =
75
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,6
t rr( μs)
t rr( μs)
0,6
0,5
0,5
trr
trr
0,4
0,4
Tj = Tjmax -25°C
trr
0,3
0,3
trr
Tj = Tjmax -25°C
0,2
0,2
0,1
0,1
Tj = 25°C
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/125
300
±15
8
60
90
120
I C (A)
150
°C
V
V
Ω
Copyright by Vincotech
6
0
8
At
Tj =
VR =
IF =
VGE =
25/125
300
75
±15
16
24
32
R g on ( Ω )
40
°C
V
A
V
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( μC)
10
Qrr( μC)
15
Qrr
Qrr
Tj = Tjmax -25°C
12
8
9
6
Qrr
Qrr
Tj = Tjmax -25°C
Tj = 25°C
6
4
3
2
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
30
25/125
300
±15
8
60
90
120
I C (A)
150
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
300
75
±15
24
32
R g on ( Ω)
40
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
100
IRRM
80
Tj = Tjmax - 25°C
120
IRRM
Tj = Tjmax -25°C
90
60
Tj = 25°C
40
60
Tj = 25°C
IRRM
IRRM
30
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/125
300
±15
8
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/125
300
75
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
direc / dt (A/ μs)
direc / dt (A/μ s)
4000
dI0/dt
dIrec/dt
3200
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
6000
dI0/dt
dIrec/dt
dIo/dtLow T
4500
Tj = 25°C
2400
Tj = Tjmax - 25°C
dIrec/dtLow T
3000
1600
dIrec/dtHigh T
di0/dtHigh T
1500
800
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/125
300
±15
8
60
90
I C (A)
120
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
300
75
±15
16
24
40
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
32
0
0
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
1,04
Thermal grease
R (C/W)
0,03
0,20
0,55
0,16
0,06
0,03
10-3
K/W
0,94
IGBT thermal model values
Phase change interface
Tau (s)
8,2E+00
9,4E-01
1,9E-01
3,6E-02
6,2E-03
3,7E-04
Copyright by Vincotech
R (C/W)
0,03
0,16
0,45
0,13
0,05
0,03
10-4
R (C/W)
0,03
0,18
0,69
0,27
0,12
0,07
8
10-2
10-1
100
t p (s)
1011
tp / T
1,35
Thermal grease
Tau (s)
6,6E+00
7,6E-01
1,5E-01
2,9E-02
5,0E-03
3,0E-04
10-3
K/W
1,15
FRED thermal model values
Phase change interface
Tau (s)
9,4E+00
1,2E+00
2,1E-01
4,1E-02
6,3E-03
7,1E-04
R (C/W)
0,02
0,15
0,56
0,22
0,09
0,06
Tau (s)
7,7E+00
9,6E-01
1,7E-01
3,3E-02
5,1E-03
5,7E-04
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
200
160
80
120
60
80
40
40
20
0
0
0
At
Tj =
50
175
100
°C
150
T h ( o C)
200
0
At
Tj =
VGE =
single heating
overall heating
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
150
120
80
90
60
60
40
30
20
0
0
0
At
Tj =
50
50
175
100
°C
Copyright by Vincotech
150
T h ( o C) 200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2
V23990-K233-F
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
15
10uS
12
10
120V
2
100uS
100mS
DC
10mS
1mS
480V
9
101
6
100
3
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
1
10
10
2
V CE (V)
0
3
10
40
60
80
100
120
140
160
180
200
220
240
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
20
10
75
A
Revision: 2
V23990-K233-F
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
3000
2500
2000
1500
1000
500
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
11
Revision: 2
V23990-K233-F
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
210
%
%
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
IC
180
tdoff
VCE
150
100
VGE 90%
VCE 90%
80
120
VCE
IC
60
90
40
60
VGE
tEoff
IC 1%
20
30
IC10%
VGE10%
VGE
0
tdon
VCE 3%
0
tEon
-20
-0,2
-30
-0,05
0,1
0,25
0,4
0,55
0,7
0,85
2,5
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
75
0,27
0,55
2,65
2,8
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
2,95
-15
15
300
75
0,22
0,49
3,1
3,4
time(us)
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,25
Turn-on Switching Waveforms & definition of tr
140
210
%
%
120
IC
Ic
180
fitted
VCE
100
150
IC 90%
80
120
IC 60%
60
IC90%
90
IC 40%
40
VCE
tr
60
30
20
IC10%
tf
0
-20
0,15
VC (100%) =
IC (100%) =
tf =
0,2
0,25
300
75
0,09
Copyright by Vincotech
0,3
IC10%
0
0,35
0,4
-30
2,85
0,45
2,91
2,97
3,03
time (us)
3,09
3,15
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
12
300
75
0,03
V
A
μs
Revision: 2
V23990-K233-F
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
150
%
Poff
100
Pon
%
Eoff
120
Eon
80
90
60
60
40
30
20
VGE 10%
VGE 90%
VCE 3%
0
0
tEoff
tEon
IC 1%
-30
-20
-0,2
-0,06
0,08
0,22
0,36
0,5
2,6
0,64
2,75
2,9
3,05
3,2
3,35
3,5
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
22,36
2,22
0,55
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
22,36
2,42
0,49
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
120
%
15
Id
80
fitted
trr
10
40
5
0
Vd
0
IRRM10%
-40
-5
-80
-10
IRRM90%
IRRM100%
-120
-15
-20
-100
-160
0
100
200
300
400
500
600
700
2,9
800
3
3,1
3,2
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
300
75
670,17
Copyright by Vincotech
3,3
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
13
300
75
82
0,33
V
A
A
μs
Revision: 2
V23990-K233-F
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Erec
%
%
Qrr
100
90
Id
50
tQrr
tErec
60
0
30
-50
Prec
0
-100
-150
-30
2,7
Id (100%) =
Qrr (100%) =
tQrr =
2,9
3,1
3,3
75
9,14
0,56
A
μC
μs
Copyright by Vincotech
3,5
3,7 time(us)
3,9
2,7
Prec (100%) =
Erec (100%) =
tErec =
14
2,9
3,1
3,3
22,36
1,93
0,56
kW
mJ
μs
3,5
3,7
time(us) 3,9
Revision: 2
V23990-K233-F
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
with thermal paste, 6.5 mm lid
with thermal paste, 2.8 mm lid
no thermal paste, 6.5 mm lid
no thermal paste, 2.8 mm lid
V23990-K233-F-/1A/
V23990-K233-F-/1B/
V23990-K233-F-/0A/
V23990-K233-F-/0B/
K233-F
K233-F
K233-F
K233-F
K233-F
K233-F
K233-F
K233-F
Outline
Pinout
Copyright by Vincotech
15
Revision: 2
V23990-K233-F
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
16
Revision: 2