V23990-K305-F-PM MiniSKiiP® 2 PACK 600V/100A MiniSKiiP® 2 Housing Features ● SixPack (inverter) topology ● Solder less interconnection ● Designed for motor drives up to 11 kW ● Fully compatible with Semikron pedant 28AC066V1 ● Temperature sensor ● Standard (6.5mm) and thin (2.8mm) lids,16mm housing ● Optional with pre-applied thermal grease Schematic Target Applications ● Industrial Motor Drives ● Power Generation ● UPS Types ● V23990-K305-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 91 100 A 150 A 154 234 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V 91 100 A 157 A T1,T2,T3,T4,T5,T6 IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V D1,D2,D3,D4,D5,D6 FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 119 181 175 1 W °C Revision: 3.1 V23990-K305-F-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 3.1 V23990-K305-F-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 T1,T2,T3,T4,T5,T6 IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time 0,0016 100 Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,48 1,67 700 Rgoff=8 Ω Rgon=8 Ω 300 ±15 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,2 mA nA Ω none tr td(off) tf Fall time VCE=VGE 197 199 29 33 261 216 87 97 2,40 3,11 2,51 3,07 ns mWs 3140 f=1MHz 0 Tj=25°C 25 200 pF 93 ±15 480 50 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 310 nC 0,6 K/W D1,D2,D3,D4,D5,D6 FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 100 Rgoff=8 Ω ±15 300 di(rec)max /dt Erec RthJH 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,35 1,36 94 114 144 289 6,29 11,43 3061 2051 1,19 2,20 2,3 V A ns µC A/µs mWs 0,8 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R T=25°C R100=1670 Ω T=100°C -3 3 % T=100°C 1670,3125 Ω A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² R100 P Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 300 IC (A) IF (A) 100 4 250 80 200 60 150 40 100 20 50 0 0 0 2 At Tj = tp = VCE = 25/125 250 10 4 6 8 V GE (V) 10 0,0 At Tj = tp = °C µs V Copyright by Vincotech 4 0,5 25/125 250 1,0 1,5 2,0 V F (V) 2,5 °C µs Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 10 E (mWs) E (mWs) 10 Eon High T 8 8 Eon Low T Eon High T 6 6 Eon Low T Eoff High T Eoff High T 4 4 Eoff Low T Eoff Low T 2 2 0 0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 99 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 4,0 E (mWs) 4,0 Erec 3,2 3,2 2,4 2,4 Erec 1,6 1,6 0,8 0,8 0,0 Erec Erec 0,0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG(Ω) 40 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = ±15 V IC = 99 A 5 Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tdon tf 0,1 0,1 tr tf tr 0,01 0,01 0,001 0,001 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 99 A D1,D2,D3,D4,D5,D6 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,5 t rr( µs) 0,4 trr 0,3 trr 0,4 trr trr 0,2 0,3 0,2 0,2 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 50 25/125 300 ±15 8 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 8 25/125 300 99 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 12 Qrr( µC) Qrr( µC) 20 Qrr Qrr 16 9 12 Qrr 6 Qrr 8 3 4 0 0 At 0 At Tj = VCE = VGE = Rgon = 50 25/125 300 ±15 8 100 I C (A) 150 0 200 At Tj = VR = IF = VGE = °C V V Ω D1,D2,D3,D4,D5,D6 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 300 99 ±15 16 24 32 R g on ( Ω) 40 °C V A V D1,D2,D3,D4,D5,D6 FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 150 IRRM 200 120 IRRM 90 150 60 100 IRRM 50 30 IRRM 0 0 0 40 At Tj = VCE = VGE = Rgon = 25/125 300 ±15 8 80 120 160 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 300 99 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 FWD D1,D2,D3,D4,D5,D6 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dI0/dt dIrec/dt 5000 10000 dI0/dt dIrec/dt 8000 dIrec/dtLow T 4000 6000 dIo/dtLow T 3000 4000 2000 dIrec/dtHigh T di0/dtHigh T 2000 1000 dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/125 300 ±15 8 100 150 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 300 99 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) D1,D2,D3,D4,D5,D6 FWD ZthJH (K/W) Zth-JH (K/W) 101 10 0 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) 1 1010 At D= RthJH = tp / T 0,6 K/W 10 tp / T 0,8 IGBT thermal model values FWD thermal model values Thermal grease Thermal grease R (C/W) 0,04 0,09 0,23 0,15 0,07 0,02 0,03 R (C/W) 0,08 0,26 0,33 0,08 0,05 Tau (s) 6,5E+00 1,0E+00 2,0E-01 5,9E-02 1,2E-02 2,2E-03 2,7E-04 Copyright by Vincotech K/W 8 Tau (s) 2,9E+00 3,2E-01 8,4E-02 1,1E-02 7,9E-04 Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 320 100 240 80 160 60 40 80 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 IF (A) Ptot (W) 240 150 200 100 160 80 120 60 80 40 40 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 3.1 V23990-K305-F-PM T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6 T1,T2,T3,T4,T5,T6 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 15 10uS 100uS 12 102 120V 1mS 100mS DC 10mS 480V 9 101 6 100 3 0 10-1 0 10 10 At D= Th = VGE = 1 10 V CE (V) 2 0 103 120 180 240 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = 60 99 A Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 10 Revision: 3.1 V23990-K305-F-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 8Ω Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 240 120 tdoff % % VCE IC 200 100 VGE 90% VCE 90% 160 80 IC 120 60 VCE tEoff 40 VGE 80 20 tdon 40 IC 1% VGE IC10% VGE10% VCE 3% 0 0 tEon -20 -0,05 0,1 0,25 0,4 0,55 0,7 -40 2,85 0,85 3 3,15 3,3 3,45 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 99 0,22 0,47 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,6 time(us) time (us) -15 15 300 99 0,20 0,40 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 240 fitted % % Ic 210 100 IC VCE IC 90% 180 80 150 IC 60% 60 40 120 VCE IC90% 90 IC 40% tr 60 20 30 IC10% 0 tf 0 -30 3,15 -20 0,2 VC (100%) = IC (100%) = tf = 0,25 0,3 300 99 0,10 Copyright by Vincotech 0,35 0,4 0,45 0,5 0,55 IC10% 3,2 3,25 time (us) 3,3 3,35 time(us) VC (100%) = IC (100%) = tr = V A µs 11 300 99 0,03 V A µs Revision: 3.1 V23990-K305-F-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 % Poff 100 Pon % Eoff 120 Eon 80 90 60 60 40 30 20 VGE 10% VCE 3% VGE 90% 0 0 tEon tEoff IC 1% -20 -0,15 -30 0 0,15 0,3 0,45 0,6 2,8 0,75 2,95 3,1 3,25 3,4 3,55 time (us) Poff (100%) = Eoff (100%) = tEoff = 29,71 3,07 0,47 3,7 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 29,71 3,11 0,40 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % 80 Id trr 40 fitted 0 Vd IRRM10% -40 -80 IRRM90% IRRM100% -120 -160 3,15 3,2 3,25 3,3 3,35 3,4 3,45 3,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 12 300 99 -114 0,29 V A A µs Revision: 3.1 V23990-K305-F-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Qrr % % Erec 100 90 Id tQrr tErec 50 60 0 Prec 30 -50 0 -100 -150 -30 3,1 Id (100%) = Qrr (100%) = tQrr = 3,3 3,5 99 11,43 0,33 Copyright by Vincotech 3,7 time(us) 3,9 3,1 Prec (100%) = Erec (100%) = tErec = A µC µs 13 3,3 3,5 29,71 2,20 0,33 3,7 time(us) 3,9 kW mJ µs Revision: 3.1 V23990-K305-F-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as in packaging barcode as V23990-K305-F-/1A/ V23990-K305-F-/1B/ V23990-K305-F-/0A/ V23990-K305-F-/0B/ K305-F K305-F K305-F K305-F K305-F K305-F K305-F K305-F Outline Pinout Copyright by Vincotech 14 Revision: 3.1 V23990-K305-F-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 15 Revision: 3.1