V23990-K242-A-PM MiniSKiiP® 3 PIM 600V/75A MiniSkiip® 3 housing Features ● IGBT3 technology for low saturation losses ● Solderless spring contact mounting system Target Applications Schematic ● Industrial motor drives Types ● V23990-K242-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 69 93 A 700 A 2450 A2s D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C 77 Tc=80°C 117 W Tjmax 150 °C VCE 600 V T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Copyright by Vincotech Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 70 92 225 225 Th=80°C Tc=80°C 126 191 A A A W ±20 V 6 360 µs V 175 °C Revision: 3.1 V23990-K242-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 55 72 A D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 45 Th=80°C Tc=80°C 79 120 A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+125 °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 3.1 V23990-K242-A-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,02 0,94 0,88 0,75 4 6 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 0,1 2 0,90 mA K/W T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 75 612 0 ±25 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,54 1,75 0,1 650 Rgoff=8 Ω Rgon=8 Ω ±15 300 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 4 td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,0012 217 223 27 30 266 290 55 81 1,58 2,07 1,79 2,24 ns mWs 4700 f=1MHz 25 0 Tj=25°C pF 300 145 ±15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 0,75 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 75 Rgoff=8 Ω 300 di(rec)max /dt Erec RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,54 1,6 63,45 74,57 58,2 262,4 3,74 6,47 3216 2350 0,74 1,33 2,6 V A ns µC A/µs mWs 1,2 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P -3 3 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Vincotech NTC Reference Copyright by Vincotech Ω 1670,313 T=25°C Power dissipation constant % 1/K 1/K² E 3 Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 225 IC (A) 225 188 188 150 150 113 113 75 75 38 38 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 225 IC (A) IF (A) 75 V CE (V) 4 Tj = 25°C 188 60 150 45 Tj = Tjmax-25°C 113 Tj = 25°C 30 75 15 Tj = Tjmax-25°C 38 0 0 0 2 4 At tp = VCE = 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 1 1 250 µs 2 2 3 V F (V) 3 Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 6,0 E (mWs) E (mWs) 6,0 T1,T2,T3,T4,T5,T6,T7 IGBT 5,0 Eon High T 5,0 Eon High T Eon Low T 4,0 4,0 Eoff High T Eon Low T 3,0 Eoff High T 3,0 Eoff Low T Eoff Low T 2,0 2,0 1,0 1,0 0,0 0,0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 75 A T1,T2,T3,T4,T5,T6,T7 IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 2 E (mWs) 2 T1,T2,T3,T4,T5,T6,T7 IGBT Erec 1,6 Tj = Tjmax -25°C 1,6 Tj = Tjmax -25°C 1,2 1,2 Erec Erec 0,8 0,8 Tj = 25°C Tj = 25°C Erec 0,4 0,4 0 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = ±15 V IC = 75 A 5 Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 tdoff 1 tdoff t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdon tdon tf 0,1 0,1 tr tr tf 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = ±15 V IC = 75 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 trr t rr( µs) t rr( µs) 0,4 D1,D2,D3,D4,D5,D6,D7 FWD trr 0,3 0,3 Tj = Tjmax -25°C trr 0,2 0,2 trr Tj = Tjmax -25°C 0,2 0,2 0,1 0,1 Tj = 25°C Tj = 25°C 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 120 I C (A) 150 °C V V Ω Copyright by Vincotech 6 0 8 At Tj = VR = IF = VGE = 25/125 300 75 ±15 16 24 32 R g on ( Ω ) 40 °C V A V Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 D1,D2,D3,D4,D5,D6,D7 FWD 10 Qrr( µC) Qrr( µC) Qrr 8 8 Tj = Tjmax -25°C 6 Qrr 6 Qrr Tj = 25°C Tj = Tjmax -25°C 4 4 Qrr 2 2 Tj = 25°C 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 120 I C (A) °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 8 At Tj = VR = IF = VGE = 25/125 300 75 ±15 150 D1,D2,D3,D4,D5,D6,D7 FWD 16 24 32 R g on ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 120 IrrM (A) IrrM (A) 100 Tj = Tjmax -25°C Tj = Tjmax - 25°C 80 90 Tj = 25°C 60 Tj = 25°C IRRM IRRM 60 40 IRRM IRRM 30 20 0 0 0 30 At Tj = VCE = VGE = Rgon = 25/125 300 ±15 8 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 8 25/125 300 75 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 4000 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) dI0/dt dIrec/dt dIrec/dtLow T 3200 D1,D2,D3,D4,D5,D6,D7 FWD 6000 dI0/dt dIrec/dt 4500 2400 dIo/dtLow T dIrec/dtHigh T 3000 1600 di0/dtHigh T 1500 800 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/125 300 ±15 8 60 90 I C (A) 120 150 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 300 75 ±15 16 24 32 R gon ( Ω ) 40 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) D1,D2,D3,D4,D5,D6,D7 FWD ZthJH (K/W) Zth-JH (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) t p (s) 10110 At D= RthJH = tp / T 0,75 K/W 10 tp / T 1,20 IGBT thermal model values FWD thermal model values Thermal grease Thermal grease R (C/W) 0,02 0,12 0,41 0,14 0,04 0,02 R (C/W) 0,02 0,19 0,54 0,27 0,11 0,07 Tau (s) 9,4E+00 1,1E+00 2,1E-01 4,0E-02 6,3E-03 4,0E-04 Copyright by Vincotech K/W 8 Tau (s) 9,9E+00 1,0E+00 1,8E-01 3,4E-02 6,0E-03 6,5E-04 Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 240 200 100 160 80 120 60 80 40 40 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 150 150 120 80 90 60 60 40 30 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 3.1 V23990-K242-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 3 1mS 10mS VGE (V) 15 IC (A) 10 T1,T2,T3,T4,T5,T6,T7 IGBT 100uS 120V 100mS DC 12 102 480V 9 101 6 10 0 3 0 10-1 0 10 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 10 0 3 80 120 160 200 240 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 40 10 75 A Revision: 3.1 V23990-K242-A-PM D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 Tj = 25°C Tj = Tjmax-25°C 120 1 ZthJC (K/W) IF (A) 10 D8,D9,D10,D11,D12,D13 diode 10 0 10 -1 10 -2 90 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 0 0,0 0,4 0,8 1,2 1,6 V F (V) 2,0 10-5 At tp = At D= RthJH = µs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-3 10-2 10-1 100 t p (s) 10110 tp / T 0,90 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 120 Ptot (W) IF (A) 180 150 100 120 80 90 60 60 40 30 20 0 0 0 At Tj = 10-4 30 150 60 90 120 T h ( o C) 150 0 At Tj = ºC Copyright by Vincotech 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3.1 V23990-K242-A-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 3.1 V23990-K242-A-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 8Ω Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 120 210 % % IC 180 tdoff 100 VCE VGE 90% VCE 90% 150 80 120 IC 60 VCE 90 VGE tdon tEoff 60 40 30 IC 1% 20 0 -0,2 IC10% VGE10% VGE VCE 3% tEon 0 -30 -0,05 0,1 0,25 0,4 0,55 0,7 2,6 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 300 75 0,29 0,53 2,75 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 2,9 3,05 -15 15 300 75 0,22 0,47 V V V A µs µs 3,2 time(us) 3,5 Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,35 Turn-on Switching Waveforms & definition of tr 120 210 fitted % % IC 100 Ic 180 VCE IC 90% 150 80 120 VCE IC 60% 60 IC90% 90 40 tr IC 40% 60 20 30 IC10% 0 -20 0,15 VC (100%) = IC (100%) = tf = IC10% 0 tf -30 0,2 0,25 300 75 0,08 Copyright by Vincotech 0,3 0,35 0,4 0,45 time (us) 2,9 0,5 3 3,1 3,2 3,3 time(us) VC (100%) = IC (100%) = tr = V A µs 13 300 75 0,03 V A µs Revision: 3.1 V23990-K242-A-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 % Poff Pon % Eoff 100 120 Eon 80 90 60 60 40 30 20 VGE 10% VCE 3% 0 0 VGE 90% -20 -0,2 IC 1% tEoff -0,05 0,1 0,25 tEon -30 0,4 0,55 2,7 0,7 2,8 2,9 3 3,1 3,2 Poff (100%) = Eoff (100%) = tEoff = 22,50 2,24 0,53 3,3 3,4 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 22,50 2,07 0,47 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd fitted 0 IRRM10% -40 -80 IRRM90% IRRM100% -120 2,95 3,05 3,15 3,25 3,35 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 14 300 75 75 0,26 V A A µs Revision: 3.1 V23990-K242-A-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 110 120 % % Id Qrr 80 Erec 100 80 50 tQrr 20 60 -10 40 -40 20 -70 0 tErec Prec -20 -100 2,9 3,1 3,3 3,5 2,9 3,7 3,1 3,3 Id (100%) = Qrr (100%) = tQrr = 75 6,47 0,60 Copyright by Vincotech 3,5 3,7 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 22,50 1,33 0,60 kW mJ µs Revision: 3.1 V23990-K242-A-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K242-A-/0A/-PM V23990-K242-A-/1A/-PM V23990-K242-A-/0B/-PM V23990-K242-A-/1B/-PM K242A K242A K242A K242A in packaging barcode as K242A-/0A/ K242A-/1A/ K242A-/0B/ K242A-/1B/ Outline Pinout Copyright by Vincotech 16 Revision: 3.1 V23990-K242-A-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 3.1