V23990 K429 A60 D1 14

V23990-K429-A60-PM
MiniSKiiP® 3 PIM
1200V/75A
MiniSKiiP® 3 housing
Features
● Solderless interconnection
● Mitsubishi Generation 6.1 technology
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K429-A60-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
71
80
A
490
A
1200
A2s
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=150°C
Tj=Tjmax
Th=80°C
77
Tc=80°C
117
W
Tjmax
150
°C
VCE
1200
V
69
80
A
tp limited by Tjmax
150
A
VCE ≤ 1200V, Tj ≤ Top max
150
A
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
151
228
W
20
V
10
850
µs
V
175
°C
Revision: 1.1
V23990-K429-A60-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
63
75
A
150
A
127
192
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1.1
V23990-K429-A60-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
1,09
1,02
0,88
0,74
4,0
6,0
1,8
D8,D9,D10,D11,D12,D13
Forward voltage
VF
50
Threshold voltage (for power loss calc. only)
Vto
50
Slope resistance (for power loss calc. only)
rt
50
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1600
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=145°C
V
V
mΩ
1,1
0,90
mA
K/W
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
75
1200
0
20
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5,4
6
6,6
1
1,82
2,18
2,4
0,3
500
Rgoff=8 Ω
Rgon=8 Ω
±15
600
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,0075
83
82
15
18
157
204
60
96
3,29
5,73
4,07
6,78
ns
mWs
7500
f=1MHz
0
Tj=25°C
10
1500
pF
130
600
±15
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
175
nC
0,63
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
75
Rgon=8 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
2,67
2,18
54
73
276
602
5,46
15,61
1767
625
2,38
7,29
3,4
V
A
ns
µC
A/µs
mWs
0,75
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1670 Ω
Tc=100°C
Tc=100°C
Power dissipation constant
3
B(25/50)
Tol. %
Tj=25°C
B-value
B(25/100)
Tol. %
Tj=25°C
Vincotech NTC Reference
Tj=25°C
3
%
Ω
1670,3
Tj=25°C
B-value
Copyright by Vincotech
-3
mW/K
7,635*10
-3
1/K
1,731*10
-5
1/K²
E
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
210
IC (A)
IC (A)
210
180
180
150
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
V CE (V)
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1,D2,D3,D4,D5,D6,D7 FWD
150
IF (A)
IC (A)
75
125
60
100
45
75
30
50
15
25
0
0
0
At
Tj =
tp =
VCE =
2
25/150
250
10
4
6
8
10
V GE (V) 12
0
At
Tj =
tp =
°C
µs
V
Copyright by Vincotech
4
0,8
25/150
250
1,6
2,4
3,2
V F (V)
4
°C
µs
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
15
T1,T2,T3,T4,T5,T6,T7 IGBT
E (mWs)
15
E (mWs)
Eon High T
12
12
Eon High T
Eoff High T
9
9
Eon Low T
Eon Low T
Eoff High T
6
6
Eoff Low T
Eoff Low T
3
3
0
0
0
25
50
75
100
125 I C (A)
0
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
12
D1,D2,D3,D4,D5,D6,D7 FWD
E (mWs)
E (mWs)
12
10
10
Erec
8
8
6
6
Erec
4
4
Erec
Erec
2
2
0
0
0
25
50
75
100
125 I C (A)
0
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
RG(Ω)
40
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
5
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tdon
0,10
0,10
tf
tf
tr
tdon
0,01
0,01
0,00
0,00
tr
0
25
50
75
100
125 I (A)
C
150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG(Ω )
32
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,5
t rr( µs)
t rr( µs)
1,5
D1,D2,D3,D4,D5,D6,D7 FWD
1,2
1,2
trr
trr
0,9
0,9
0,6
0,6
trr
trr
0,3
0,3
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
100
125 I (A)
C
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
8
25/150
600
75
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
30
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
30
25
25
Qrr
20
20
15
15
Qrr
10
10
Qrr
Qrr
5
5
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
100
125I C (A)
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
8
At
Tj =
VR =
IF =
VGE =
25/150
600
75
±15
150
D1,D2,D3,D4,D5,D6,D7 FWD
16
32
R gon ( Ω)
40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
200
IrrM (A)
IrrM (A)
200
24
160
160
120
120
80
80
IRRM
IRRM
40
40
IRRM
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
100
125 I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
8
25/150
600
75
±15
16
24
32 R gon ( Ω )
40
°C
V
A
V
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ µs)
6000
direc / dt (A/µ s)
dI0/dt
dIrec/dt
D1,D2,D3,D4,D5,D6,D7 FWD
12000
dI0/dt
dIrec/dt
9000
4500
6000
3000
3000
1500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
600
±15
8
50
75
100
125 I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
16
24
32
150
25/150
600
75
±15
D1,D2,D3,D4,D5,D6,D7 FWD
ZthJH (K/W)
Zth-JH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
40
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
R gon ( Ω )
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
1021
10-5
At
D=
RthJH =
tp / T
0,63
K/W
10-4
10-2
10-1
100
t p (s)
1021
tp / T
0,75
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,05
0,19
0,30
0,06
0,03
R (C/W)
0,06
0,27
0,31
0,08
0,04
Tau (s)
3,0E+00
3,6E-01
7,9E-02
9,8E-03
5,2E-04
Copyright by Vincotech
10-3
8
Tau (s)
2,8E+00
2,8E-01
6,9E-02
8,5E-03
5,3E-04
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
300
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
250
150
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
20
IC (A)
VGE (V)
103
18
10uS
10
2
240V
16
14
960V
100uS
12
101
10
1mS
8
100
10mS
6
100mS
4
DC
10
-1
2
0
10
0
10
At
D=
Th =
VGE =
102
1
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 27
40
80
75
120
200
Q g (nC)
240
A
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 28
Short circuit safe operating area (SCSOA)
160
Typical short circuit collector current as a function of
gate-emitter voltage
Ic = f(VCE)
x7
IC (Normalized) [A]
Ic(normalized) [A]
x 11
x 10
x9
x8
x6
x5
x7
x4
x6
x5
x3
x4
x 2
x3
x2
x1
x1
x0
x0
0
200
400
At
VCE =
1200
V
Tj ≤
175
ºC
Copyright by Vincotech
600
800
1000
1200
1400
13
V GE (V)
VCE=
Tj=
10
14
800
150
15
16
V GE (V)
17
V
ºC
Revision: 1.1
V23990-K429-A60-PM
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 28
Reverse bias safe operating area
IC = f(VCE)
IC (A)
175
150
IC MAX
Ic
CHIP
125
100
MODULE
75
VCE MAX
Ic
50
25
0
0
200
400
600
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
Copyright by Vincotech
800
1000
1200
1400
V CE (V)
11
Revision: 1.1
V23990-K429-A60-PM
D8,D9,D10,D11,D12,D13
D8,D9,D10,D11,D12,D13 diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
D8,D9,D10,D11,D12,D13 diode
100
IF (A)
ZthJC (K/W)
160
120
80
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
0
0,0
At
Tj =
tp =
0,4
0
25/125
250
0,8
1,2
V F (V)
10-2
1,6
10-5
10-4
At
D=
RthJH =
°C
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-3
10-2
100
t p (s)
1021
tp / T
0,90
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
100
IF (A)
Ptot (W)
180
10-1
150
80
120
60
90
40
60
20
30
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
Copyright by Vincotech
12
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 1.1
V23990-K429-A60-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
45
65
Copyright by Vincotech
85
105
T (°C)
125
13
Revision: 1.1
V23990-K429-A60-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 8Ω
Rgoff
= 8Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
%
%
120
tdoff
200
VCE
IC
100
VGE 90%
VCE 90%
150
80
VCE
IC
VGE
100
60
tEoff
40
tdon
50
20
IC 1%
VGE
VGE 10%
0
VCE 3%
IC 10%
0
tEon
-50
-20
-0,2
0,0
0,2
0,4
0,6
0,8
3,9
1,0
4,0
4,1
4,2
4,3
4,4
time(us)
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
75
0,20
0,86
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
V
V
V
A
µs
µs
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
250
%
%
120
-15
15
600
75
0,08
0,31
fitted
VCE
IC
200
Ic
100
IC 90%
150
80
VCE
60
IC90%
100
IC 60%
tr
40
IC 40%
50
20
IC10%
IC 10%
0
0
tf
-20
-0,1
0,1
0,2
0,3
0,4
-50
4,00
0,5
4,05
4,10
4,15
time (us)
VC (100%) =
IC (100%) =
tf =
600
75
0,10
Copyright by Vincotech
4,20
4,25
4,30
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
14
600
75
0,02
V
A
µs
Revision: 1.1
V23990-K429-A60-PM
Switching Definitions Output Inverter
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
200
%
%
Poff
100
Eoff
Pon
160
80
120
Eon
60
80
40
40
20
VGE 10%
VGE 90%
IC 1%
VCE 3%
0
0
tEon
tEoff
-20
-0,2
-40
0,0
0,2
0,4
0,6
0,8
3,9
1,0
4,0
4,1
4,2
4,3
4,4
4,5
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
44,94
6,78
0,86
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
44,94
5,73
0,31
kW
mJ
µs
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
Id
%
80
trr
40
Vd
0
IRRM 10%
-40
fitted
-80
IRRM 90%
IRRM 100%
-120
3,9
4,1
4,3
4,5
4,7
4,9
5,1
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
15
600
75
-73
0,60
V
A
A
µs
Revision: 1.1
V23990-K429-A60-PM
Switching Definitions Output Inverter
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 9
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
Qrr
Erec
100
100
80
tErec
tQrr
50
60
40
0
20
Prec
-50
0
-100
-20
3,8
4,2
4,6
5,0
5,4
3,8
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
75
15,61
1,00
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
16
4,2
4,6
44,94
7,29
1,00
5,0
time(us)
5,4
kW
mJ
µs
Revision: 1.1
V23990-K429-A60-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K429-A60-/0A/-PM
V23990-K429-A60-/1A/-PM
V23990-K429-A60-/0B/-PM
V23990-K429-A60-/1B/-PM
K429A60
K429A60
K429A60
K429A60
in packaging barcode as
K429A60-/0A/
K429A60-/1A/
K429A60-/0B/
K429A60-/1B/
Outline
Pinout
Copyright by Vincotech
17
Revision: 1.1
V23990-K429-A60-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
18
Revision: 1.1