70-W206NBA600SA-M788L flowBOOST 4w 600V/600A Features FlowSCREW 4w ● Symmetrical Booster ● Integrated DC-capacitor ● Low DC Inductance (<5nH) ● Transient Interface for optional regeneration of switching losses ● Temperature Sensor Target Applications ● UPS (3 Phase PFC) ● Solar inverter (Booster) Schematic Types ● 70-W206NBA600SA-M788L Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Th=80°C Tc=80°C 515 600 A tp limited by Tjmax 1800 A Tj≤150°C VCE<=VCES 1800 A 792 1199 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V 40 81 A 40 A 113 160 W 175 °C Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Input Boost Inverse Diode Peak Repetitive Reverse Voltage Forward average current IFAV Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1.2 70-W206NBA600SA-M788L Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Tc=80°C 334 432 A Tj=25°C 1760 A 1800 A 501 759 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Input Boost FWD Peak Repetitive Reverse Voltage VRRM Th=80°C Forward average current IFAV Tj=Tjmax Surge forward current IFSM tp=10ms Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech t=2s DC voltage 2 Revision: 1.2 70-W206NBA600SA-M788L Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,43 1,58 2,1 Input Boost IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time 0,0096 600 Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,03 2400 Rgoff=1 Ω Rgon=1 Ω ±15/-8 400 492 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 0,5 tr td(off) tf Fall time VCE=VGE 202 209 46 46 485 519 30 44 6,91 7,52 19,34 22,64 ns mWs 36960 f=1MHz 0 25 2304 Tj=25°C pF 1096 ±15 480 600 Tj=25°C nC 3760 0,12 Phase-Change Material K/W 0,08 Input Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 20 Tj=25°C Tj=125°C 1 1,45 1,28 2,1 V 0,84 Phase-Change Material K/W 0,56 Input Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current 600 ±15/-8 Rgon=1 Ω ±15/-8 Erec di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 400 400 492 492 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,74 1,91 2,1 960 315 462 174 175 19,38 34,94 6,29 11,35 5361 4811 V µA A ns µC mWs A/µs 0,19 Phase-Change Material K/W 0,13 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant Ω 22000 -12 +14 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K B Vincotech NTC Reference Copyright by Vincotech 3 Revision: 1.2 70-W206NBA600SA-M788L Boost Inverse Diode Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 ZthJC (K/W) IF (A) 100 125 100 75 10-1 Tj = Tjmax-25°C Tj = 25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 50 25 0 0 At tp = 0,5 1 1,5 2 2,5 V F (V) 10 3 10-5 At D= RthJH = µs 250 -2 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 0,84 K/W 10-2 100 t p (s) 101 2 10 Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 225 10-1 200 40 175 150 30 125 100 20 75 50 10 25 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 4 50 175 100 150 Th ( o C) 200 ºC Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) IC (A) 1800 IC(A) 1800 1500 1500 1200 1200 900 900 600 600 300 300 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGS from µs 350 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 V CE (V) 5 µs 350 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 1800 IF (A) ID (A) 600 500 1500 400 1200 Tj = 25°C Tj = Tjmax-25°C 300 900 Tj = 25°C 200 600 100 300 Tj = Tjmax-25°C 0 0 0 At tp = VDS = 2 350 10 4 6 8 10 V GS (V) 12 0 At tp = µs V Copyright by Vincotech 5 0,5 350 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(ID) 100 E (mWs) 35 E (mWs) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 30 Eon High T 80 Eon Low T Eoff Low T 25 Eoff High T 60 20 Eoff Low T 15 40 10 Eon High T 20 Eon Low T 5 0 0 0 0 100 200 300 400 500 600 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = +15/-8 V Rgon = 1 Ω Rgoff = 1,08 Ω 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +15/-8 V ID = 492 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 16 E (mWs) 2 I C (A)700 14 16 14 Erec High T 12 12 10 10 8 8 6 6 Erec High T Erec Low T 4 4 2 2 Erec Low T 0 0 0 100 200 300 400 500 600 I C (A) 700 0 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = +15/-8 V Rgon = 1 Ω Rgoff = 1,08 Ω Copyright by Vincotech 2 4 6 8 R G ( Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +15/-8 V ID = 492 A 6 Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( ms) t ( ms) 10 tdoff 1 1 tdoff tdon tdon 0,1 tr 0,1 tr tf tf 0,01 0,01 0,001 0,001 0 100 200 300 400 500 600 0 700 I D (A) With an inductive load at Tj = 125 °C VDS = 400 V VGS = +15/-8 V Rgon = 1 Ω Rgoff = 1,08 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VDS = 400 V VGS = +15/-8 V IC = 492 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,6 t rr( ms) t rr( ms) 0,3 trr High T 0,5 0,25 0,4 0,2 trr High T trr Low T 0,15 0,3 trr Low T 0,1 0,2 0,05 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 400 +15/-8 1 200 300 400 500 600 0 I C (A) 700 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 7 2 25/125 400 492 +15/-8 4 6 8 R Gon ( Ω) 10 °C V A V Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr ( µC) 50 Qrr ( µC) 50 Qrr High T Qrr High T 40 40 30 30 20 20 Qrr Low T Qrr Low T 10 10 0 0 At At Tj = VCE = VGE = Rgon = 0 100 25/125 400 +15/-8 1 200 300 400 500 600 0 I C (A)700 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 400 492 +15/-8 4 6 8 10 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 700 IrrM (A) 600 R Gon ( Ω) IRRM High T 600 500 500 400 IRRM Low T 400 300 300 IRRM High T 200 200 IRRM Low T 100 100 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 400 +15/-8 1 200 300 400 500 600 0 I C (A) 700 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 8 2 25/125 400 492 +15/-8 4 6 8 R Gon ( Ω) 10 °C V A V Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 12000 20000 direc / dt (A/ µs) dI0/dt dIrec/dt direc / dt (A/ µs) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10000 dI0/dt dIrec/dt 16000 8000 12000 6000 8000 4000 4000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 400 +15/-8 1 200 300 400 500 600 I C (A)700 0 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 6 R Gon ( Ω) 8 10 °C V A V BOOST FWD 100 ZthJH (K/W) ZthJH (K/W) -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 25/125 400 492 +15/-8 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 2 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10 -3 10-5 101 At D= RthJH = tp / T 0,12 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -3 10-5 -1 K/W 10-4 10-3 R (C/W) 1,96E-02 2,10E-02 2,82E-02 4,04E-02 6,08E-03 4,80E-03 R (C/W) 2,29E-02 2,65E-02 4,14E-02 6,70E-02 2,51E-02 6,68E-03 9 100 t p (s) 101 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 0,19 IGBT thermal model values Tau (s) 3,49E+00 8,16E-01 1,43E-01 3,10E-02 6,85E-03 7,10E-04 10-2 Tau (s) 5,42E+00 1,12E+00 2,09E-01 4,40E-02 1,39E-02 2,22E-03 Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 600 IC (A) Ptot (W) 900 750 500 600 400 450 300 300 200 150 100 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 175 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 600 IF (A) Ptot (W) 1000 Th ( o C) 500 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 ºC Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST IGBT Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 16 ID (A) VGE (V) 103 120V 14 10uS 102 480V 12 1mS 10 10 100uS 10mS 1 8 DC 6 100 4 10 100mS -1 2 0 10 0 101 At D= Th = VGS = 102 10 3 0 V DS (V) At IC = Output inverter IGBT Figure 27 1000 1500 2000 2500 3000 3500 4000 4500 Qg (nC) single pulse ºC 80 V +15/-8 Tjmax ºC Tj = 500 600 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 1200 IC (sc) tsc (µS) 14 12 1000 10 800 8 600 6 400 4 200 2 0 0 10 11 12 13 14 V GE (V) 15 12 13 14 15 At VCE = 400 V At VCE ≤ 600 V Tj ≤ 150 ºC Tj = 150 ºC Copyright by Vincotech 11 16 17 18 19 20 V GE (V) Revision: 1.2 70-W206NBA600SA-M788L INPUT BOOST IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 1400 IC MAX 1200 Ic CHIP 1000 MODULE 800 Ic 600 VCE MAX 400 200 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Rgon = Rgoff = Ω Ω 1 1 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 1.2 70-W206NBA600SA-M788L Switching Definitions Boost IGBT General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 150 % IC % VCE 125 tdoff 150 100 VCE 90% VGE 90% VCE 100 75 VGE VGE IC 50 tdon 50 tEoff 25 VGE 10% IC 1% tEon 0 -25 -0,1 VCE 3% IC 10% 0 -50 0,1 0,3 0,5 0,7 0,9 1,1 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 23 400 492 0,52 0,85 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 3,2 0 23 400 492 0,21 0,35 V V V A µs µs 3,3 3,5 time(us) Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,4 Turn-on Switching Waveforms & definition of tr 200 % 150 % IC 175 125 fitted VCE IC 150 100 125 IC 90% VCE 75 100 IC 90% IC 60% 75 50 IC 40% tr 50 25 IC10% 25 IC 10% 0 tf 0 -25 -25 0,4 VC (100%) = IC (100%) = tf = 0,5 0,6 0,7 400 492 0,04 V A µs Copyright by Vincotech 0,8 0,9 time (us) 3,1 1 VC (100%) = IC (100%) = tr = 13 3,2 3,3 400 492 0,05 3,4 time(us) 3,5 V A µs Revision: 1.2 70-W206NBA600SA-M788L Switching Definitions Boost IGBT Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 Poff % % Eon Eoff 100 100 75 75 50 50 Pon 25 25 IC 1% VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,1 -25 0,1 0,3 Poff (100%) = Eoff (100%) = tEoff = 0,5 196,80 22,64 0,85 0,7 0,9 2,9 1,1time (us) 1,3 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 3,1 3,2 196,80 7,52 0,35 kW mJ µs 3,3 3,4 time(us) 3,5 Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd 0 IRRM 10% fitted -50 IRRM 90% IRRM 100% -100 -150 3,15 Vd (100%) = Id (100%) = IRRM (100%) = trr = 3,25 3,35 400 492 -462 0,18 Copyright by Vincotech 3,45 time(us) 3,55 V A A µs 14 Revision: 1.2 70-W206NBA600SA-M788L Switching Definitions Boost IGBT Output inverter FRED Figure 8 Output inverter FRED Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 Erec % % Qrr Id 100 100 Prec tErec 75 tQrr 50 50 0 25 -50 0 -100 3,05 Id (100%) = Qrr (100%) = tQrr = 3,15 3,25 492 34,94 0,35 Copyright by Vincotech 3,35 3,45 3,55 3,65 -25 3,15 3,75 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 3,25 3,35 196,80 11,35 0,35 3,45 3,55 3,65 3,75 time(us) kW mJ µs Revision: 1.2 70-W206NBA600SA-M788L Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 70-W206NBA600SA-M788L in DataMatrix as M788L in packaging barcode as M788L Outline Copyright by Vincotech 16 Revision: 1.2 70-W206NBA600SA-M788L Ordering Code and Marking - Outline - Pinout Pinout 70-W206NBA600SA-M788L Copyright by Vincotech 17 Revision: 1.2 70-W206NBA600SA-M788L DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 18 Revision: 1.2