70-W206NBA600SA-M788L Maximum Ratings

70-W206NBA600SA-M788L
flowBOOST 4w
600V/600A
Features
FlowSCREW 4w
● Symmetrical Booster
● Integrated DC-capacitor
● Low DC Inductance (<5nH)
● Transient Interface for optional
regeneration of switching losses
● Temperature Sensor
Target Applications
● UPS (3 Phase PFC)
● Solar inverter (Booster)
Schematic
Types
● 70-W206NBA600SA-M788L
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpulse
Th=80°C
Tc=80°C
515
600
A
tp limited by Tjmax
1800
A
Tj≤150°C
VCE<=VCES
1800
A
792
1199
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
40
81
A
40
A
113
160
W
175
°C
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Input Boost Inverse Diode
Peak Repetitive Reverse Voltage
Forward average current
IFAV
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1.2
70-W206NBA600SA-M788L
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Tc=80°C
334
432
A
Tj=25°C
1760
A
1800
A
501
759
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Input Boost FWD
Peak Repetitive Reverse Voltage
VRRM
Th=80°C
Forward average current
IFAV
Tj=Tjmax
Surge forward current
IFSM
tp=10ms
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
t=2s
DC voltage
2
Revision: 1.2
70-W206NBA600SA-M788L
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,43
1,58
2,1
Input Boost IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
0,0096
600
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,03
2400
Rgoff=1 Ω
Rgon=1 Ω
±15/-8
400
492
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
0,5
tr
td(off)
tf
Fall time
VCE=VGE
202
209
46
46
485
519
30
44
6,91
7,52
19,34
22,64
ns
mWs
36960
f=1MHz
0
25
2304
Tj=25°C
pF
1096
±15
480
600
Tj=25°C
nC
3760
0,12
Phase-Change
Material
K/W
0,08
Input Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
20
Tj=25°C
Tj=125°C
1
1,45
1,28
2,1
V
0,84
Phase-Change
Material
K/W
0,56
Input Boost FWD
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
600
±15/-8
Rgon=1 Ω
±15/-8
Erec
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
400
400
492
492
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,74
1,91
2,1
960
315
462
174
175
19,38
34,94
6,29
11,35
5361
4811
V
µA
A
ns
µC
mWs
A/µs
0,19
Phase-Change
Material
K/W
0,13
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
Ω
22000
-12
+14
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
B
Vincotech NTC Reference
Copyright by Vincotech
3
Revision: 1.2
70-W206NBA600SA-M788L
Boost Inverse Diode
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
ZthJC (K/W)
IF (A)
100
125
100
75
10-1
Tj = Tjmax-25°C
Tj = 25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
50
25
0
0
At
tp =
0,5
1
1,5
2
2,5
V F (V)
10
3
10-5
At
D=
RthJH =
µs
250
-2
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
0,84
K/W
10-2
100
t p (s)
101 2
10
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
225
10-1
200
40
175
150
30
125
100
20
75
50
10
25
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
4
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
IC (A)
1800
IC(A)
1800
1500
1500
1200
1200
900
900
600
600
300
300
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGS from
µs
350
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
V CE (V)
5
µs
350
125
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
1800
IF (A)
ID (A)
600
500
1500
400
1200
Tj = 25°C
Tj = Tjmax-25°C
300
900
Tj = 25°C
200
600
100
300
Tj = Tjmax-25°C
0
0
0
At
tp =
VDS =
2
350
10
4
6
8
10
V GS (V)
12
0
At
tp =
µs
V
Copyright by Vincotech
5
0,5
350
1
1,5
2
2,5
3
V F (V) 3,5
µs
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
100
E (mWs)
35
E (mWs)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
30
Eon High T
80
Eon Low T
Eoff Low T
25
Eoff High T
60
20
Eoff Low T
15
40
10
Eon High T
20
Eon Low T
5
0
0
0
0
100
200
300
400
500
600
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
+15/-8
V
Rgon =
1
Ω
Rgoff =
1,08
Ω
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+15/-8
V
ID =
492
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
16
E (mWs)
2
I C (A)700
14
16
14
Erec High T
12
12
10
10
8
8
6
6
Erec High T
Erec Low T
4
4
2
2
Erec Low T
0
0
0
100
200
300
400
500
600
I C (A)
700
0
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
+15/-8
V
Rgon =
1
Ω
Rgoff =
1,08
Ω
Copyright by Vincotech
2
4
6
8
R G ( Ω ) 10
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+15/-8
V
ID =
492
A
6
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( ms)
t ( ms)
10
tdoff
1
1
tdoff
tdon
tdon
0,1
tr
0,1
tr
tf
tf
0,01
0,01
0,001
0,001
0
100
200
300
400
500
600
0
700
I D (A)
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+15/-8
V
Rgon =
1
Ω
Rgoff =
1,08
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+15/-8
V
IC =
492
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,6
t rr( ms)
t rr( ms)
0,3
trr High T
0,5
0,25
0,4
0,2
trr High T
trr Low T
0,15
0,3
trr Low T
0,1
0,2
0,05
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
400
+15/-8
1
200
300
400
500
600
0
I C (A) 700
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
7
2
25/125
400
492
+15/-8
4
6
8
R Gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr ( µC)
50
Qrr ( µC)
50
Qrr High T
Qrr High T
40
40
30
30
20
20
Qrr Low T
Qrr Low T
10
10
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
100
25/125
400
+15/-8
1
200
300
400
500
600
0
I C (A)700
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
400
492
+15/-8
4
6
8
10
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
700
IrrM (A)
600
R Gon ( Ω)
IRRM High T
600
500
500
400
IRRM Low T
400
300
300
IRRM High T
200
200
IRRM Low T
100
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
400
+15/-8
1
200
300
400
500
600
0
I C (A) 700
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
8
2
25/125
400
492
+15/-8
4
6
8
R Gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
12000
20000
direc / dt (A/ µs)
dI0/dt
dIrec/dt
direc / dt (A/ µs)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
10000
dI0/dt
dIrec/dt
16000
8000
12000
6000
8000
4000
4000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
400
+15/-8
1
200
300
400
500
600
I C (A)700
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
6
R Gon ( Ω)
8
10
°C
V
A
V
BOOST FWD
100
ZthJH (K/W)
ZthJH (K/W)
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
25/125
400
492
+15/-8
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
2
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10
-3
10-5
101
At
D=
RthJH =
tp / T
0,12
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-3
10-5
-1
K/W
10-4
10-3
R (C/W)
1,96E-02
2,10E-02
2,82E-02
4,04E-02
6,08E-03
4,80E-03
R (C/W)
2,29E-02
2,65E-02
4,14E-02
6,70E-02
2,51E-02
6,68E-03
9
100
t p (s)
101
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
0,19
IGBT thermal model values
Tau (s)
3,49E+00
8,16E-01
1,43E-01
3,10E-02
6,85E-03
7,10E-04
10-2
Tau (s)
5,42E+00
1,12E+00
2,09E-01
4,40E-02
1,39E-02
2,22E-03
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
600
IC (A)
Ptot (W)
900
750
500
600
400
450
300
300
200
150
100
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
175
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
600
IF (A)
Ptot (W)
1000
Th ( o C)
500
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
ºC
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
16
ID (A)
VGE (V)
103
120V
14
10uS
102
480V
12
1mS
10
10
100uS
10mS
1
8
DC
6
100
4
10
100mS
-1
2
0
10
0
101
At
D=
Th =
VGS =
102
10
3
0
V DS (V)
At
IC =
Output inverter IGBT
Figure 27
1000
1500
2000
2500
3000
3500
4000
4500
Qg (nC)
single pulse
ºC
80
V
+15/-8
Tjmax
ºC
Tj =
500
600
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
1200
IC (sc)
tsc (µS)
14
12
1000
10
800
8
600
6
400
4
200
2
0
0
10
11
12
13
14
V GE (V)
15
12
13
14
15
At
VCE =
400
V
At
VCE ≤
600
V
Tj ≤
150
ºC
Tj =
150
ºC
Copyright by Vincotech
11
16
17
18
19
20
V GE (V)
Revision: 1.2
70-W206NBA600SA-M788L
INPUT BOOST
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1400
IC MAX
1200
Ic CHIP
1000
MODULE
800
Ic
600
VCE MAX
400
200
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Rgon =
Rgoff =
Ω
Ω
1
1
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 1.2
70-W206NBA600SA-M788L
Switching Definitions Boost IGBT
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
150
%
IC
%
VCE
125
tdoff
150
100
VCE 90%
VGE 90%
VCE
100
75
VGE
VGE
IC
50
tdon
50
tEoff
25
VGE 10%
IC 1%
tEon
0
-25
-0,1
VCE 3%
IC 10%
0
-50
0,1
0,3
0,5
0,7
0,9
1,1
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
23
400
492
0,52
0,85
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
3,2
0
23
400
492
0,21
0,35
V
V
V
A
µs
µs
3,3
3,5
time(us)
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
200
%
150
%
IC
175
125
fitted
VCE
IC
150
100
125
IC 90%
VCE
75
100
IC 90%
IC 60%
75
50
IC 40%
tr
50
25
IC10%
25
IC 10%
0
tf
0
-25
-25
0,4
VC (100%) =
IC (100%) =
tf =
0,5
0,6
0,7
400
492
0,04
V
A
µs
Copyright by Vincotech
0,8
0,9
time (us)
3,1
1
VC (100%) =
IC (100%) =
tr =
13
3,2
3,3
400
492
0,05
3,4
time(us)
3,5
V
A
µs
Revision: 1.2
70-W206NBA600SA-M788L
Switching Definitions Boost IGBT
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
Poff
%
%
Eon
Eoff
100
100
75
75
50
50
Pon
25
25
IC 1%
VGE 90%
VCE 3%
VGE 10%
0
0
tEon
tEoff
-25
-0,1
-25
0,1
0,3
Poff (100%) =
Eoff (100%) =
tEoff =
0,5
196,80
22,64
0,85
0,7
0,9
2,9
1,1time (us) 1,3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
3,1
3,2
196,80
7,52
0,35
kW
mJ
µs
3,3
3,4
time(us)
3,5
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
fitted
-50
IRRM 90%
IRRM 100%
-100
-150
3,15
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
3,25
3,35
400
492
-462
0,18
Copyright by Vincotech
3,45
time(us)
3,55
V
A
A
µs
14
Revision: 1.2
70-W206NBA600SA-M788L
Switching Definitions Boost IGBT
Output inverter FRED
Figure 8
Output inverter FRED
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
Erec
%
%
Qrr
Id
100
100
Prec
tErec
75
tQrr
50
50
0
25
-50
0
-100
3,05
Id (100%) =
Qrr (100%) =
tQrr =
3,15
3,25
492
34,94
0,35
Copyright by Vincotech
3,35
3,45
3,55
3,65
-25
3,15
3,75
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
3,25
3,35
196,80
11,35
0,35
3,45
3,55
3,65
3,75
time(us)
kW
mJ
µs
Revision: 1.2
70-W206NBA600SA-M788L
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
70-W206NBA600SA-M788L
in DataMatrix as
M788L
in packaging barcode as
M788L
Outline
Copyright by Vincotech
16
Revision: 1.2
70-W206NBA600SA-M788L
Ordering Code and Marking - Outline - Pinout
Pinout
70-W206NBA600SA-M788L
Copyright by Vincotech
17
Revision: 1.2
70-W206NBA600SA-M788L
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
18
Revision: 1.2