V23990-K429-A40-PM MiniSKiiP® 3 PIM 1200V / 75A MiniSKiiP® 3 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT4 technology Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K429-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 69 A 450 A 1020 A2s 77 W Tjmax 150 °C VCE 1200 V 68 A 225 A 162 W ±20 V 10 800 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax tSC Tj=150°C VCC VGE=15V Tjmax 1 Th=80°C Revision: 5.1 V23990-K429-A40-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 67 A D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 225 Th=80°C A 131 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 5.1 V23990-K429-A40-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,03 0,93 0,92 0,79 0,004 0,005 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 35 1500 RthJH Thermal grease thickness≤50µm λ=1W/mK VGE(th) VCE=VGE V V Ω 0,1 1,1 mA K/W 0,90 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,003 15 75 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,6 1,97 2,42 2,4 0,1 600 Rgoff=4Ω Rgon=4Ω ±15 600 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 10 td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 173 189 30 40 284 359 78 120 6,51 10,61 4,25 6,68 ns mWs 4400 f=1MHz 0 25 Tj=25°C pF 290 235 ±15 Tj=25°C Thermal grease thickness≤50µm λ=1W/mK 570 nC 0,58 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 75 IRRM trr Qrr Rgon=4Ω ±15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 Thermal grease thickness≤50µm λ=1W/mK 2,01 2,05 57,3 68,4 310 602 6,29 14,8 1733 384 2,21 5,51 2,8 V A ns µC A/µs mWs 0,75 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C P T=100°C Power dissipation constant -3 3 % Ω 1670,313 mW/K T=25°C A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech PTC Reference copyright Vincotech E 3 Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) 200 IC (A) IC (A) 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 250 IC (A) IF (A) 75 4 60 200 45 150 30 100 15 Tj = Tjmax-25°C 50 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,8 250 1,6 2,4 3,2 V F (V) 4 µs Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 30 E (mWs) 30 T1,T2,T3,T4,T5,T6,T7 IGBT Eon High T 25 25 20 20 Eon Low T Eon High T 15 15 Eoff High T 10 Eon Low T 10 Eoff High T Eoff Low T 5 5 0 Eoff Low T 0 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG( Ω ) 20 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 75 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 7,5 E (mWs) 7,5 T1,T2,T3,T4,T5,T6,T7 IGBT Erec Tj = Tjmax -25°C 6 6 Tj = Tjmax -25°C Erec 4,5 4,5 Erec 3 3 Tj = 25°C Tj = 25°C Erec 1,5 1,5 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 RG( Ω ) 20 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 75 A 5 Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 150 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG( Ω ) 20 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 75 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1 D1,D2,D3,D4,D5,D6,D7 FWD t rr( µs) t rr( µs) 1 trr 0,8 0,8 Tj = Tjmax -25°C Tj = Tjmax -25°C trr 0,6 0,6 trr Tj = 25°C trr 0,4 0,4 Tj = 25°C 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 copyright Vincotech 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω 6 4 25/150 600 75 ±15 8 12 16 R g on ( Ω ) 20 °C V A V Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 25 D1,D2,D3,D4,D5,D6,D7 FWD Qrr( µC) Qrr( µC) 25 Qrr 20 20 Tj = Tjmax -25°C Tj = Tjmax -25°C 15 Qrr 15 10 10 Qrr Tj = 25°C Tj = 25°C 5 Qrr 5 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 120 I C (A) 150 0 4 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 8 25/150 600 75 ±15 12 16 R g on ( Ω) 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 100 IrrM (A) IrrM (A) 100 80 80 Tj = Tjmax -25°C Tj = Tjmax - 25°C IRRM 60 60 IRRM IRRM Tj = 25°C Tj = 25°C 40 40 20 20 IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 copyright Vincotech 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω 7 4 25/150 600 75 ±15 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 3000 direc / dt (A/ µs) direc / dt (A/µ s) 3000 dI0/dt dIrec/dt 2500 dI0/dt dIrec/dt 2500 2000 2000 1500 1500 1000 1000 500 500 0 0 0 At Tj = VCE = VGE = Rgon = 30 25/150 600 ±15 4 60 90 I C (A) 120 150 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/150 600 75 ±15 8 12 R gon ( Ω ) 16 20 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 D1,D2,D3,D4,D5,D6,D7 FWD 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 0,58 K/W 10-4 10-3 R (C/W) 0,11 0,33 0,08 0,04 0,02 R (C/W) 0,04 0,12 0,38 0,12 0,07 8 100 t p (s) 101 10 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 0,75 IGBT thermal model values Tau (s) 1,0E+00 1,5E-01 3,6E-02 7,3E-03 4,9E-04 10-2 Tau (s) 5,1E+00 9,5E-01 2,0E-01 6,1E-02 1,1E-02 Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 300 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 Ptot (W) IF (A) 250 150 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 5.1 V23990-K429-A40-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 IC (A) VGE (V) 16 10uS 14 100uS 10 2 240V 12 960V 100mS DC 10mS 1mS 10 101 8 6 100 4 10 -1 2 0 10 0 At D= Th = VGE = Tj = 101 102 103 0 100 150 200 250 300 350 400 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 50 V CE (V) 10 75 A Revision: 5.1 V23990-K429-A40-PM D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 IF (A) ZthJC (K/W) 10 D8,D9,D10,D11,D12,D13 diode 80 10 0 10 -1 60 Tj = 25°C Tj = Tjmax-25°C 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 0 0 0,3 0,6 0,9 1,2 V F (V) 10-2 1,5 10-5 At tp = At D= RthJH = µs 250 10-4 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-3 10-2 100 t p (s) 10110 tp / T 0,90 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 100 Ptot (W) IF (A) 180 10-1 150 80 120 60 90 40 60 20 30 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 5.1 V23990-K429-A40-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R (Ω) 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 Revision: 5.1 V23990-K429-A40-PM Switching Definitions Output Inverter General conditions = 150 °C Tj Rgon = 4Ω Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 200 IC tdoff 170 VCE 120 140 90 VGE 90% VCE 90% VCE 110 % IC %60 80 tEoff VGE tdon 50 30 IC10% 20 IC 1% VGE 0 VCE 3% VGE10% -10 -30 -0,2 tEon -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 0,3 -15 15 600 75 0,36 0,74 0,4 0,5 0,6 0,7 -40 0,8 0,9 time (us) 2,8 2,9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 3,2 -15 15 600 75 0,19 0,58 3,3 3,4 3,6time(us) 3,7 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,5 Turn-on Switching Waveforms & definition of tr 140 200 Ic fitted 120 170 VCE 100 140 IC IC 90% 80 VCE 110 IC 60% % 60 IC 40% 40 IC90% % 80 tr 50 20 20 IC10% IC10% tf 0 -20 0,25 -10 -40 0,3 VC (100%) = IC (100%) = tf = copyright Vincotech 0,35 600 75 0,12 0,4 0,45 0,5 0,55 0,6 time (us) 3,1 VC (100%) = IC (100%) = tr = V A µs 13 3,2 3,3 600 75 0,04 3,4 3,5 3,6 time(us) V A µs Revision: 5.1 V23990-K429-A40-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 Pon Eoff Poff 100 150 80 120 60 90 Eon % % 60 40 30 20 Uce3% Uge10% VGE 90% 0 0 tEon tEoff IC 1% -30 -20 -0,2 -0,05 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,25 0,4 time (us) 45,10 6,68 0,74 0,55 0,7 2,9 0,85 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 3,1 3,2 45,10 10,61 0,58 3,3 time(us) 3,4 3,5 3,6 3,7 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id 80 trr 40 % 0 Vd IRRM10% -40 IRRM90% -80 IRRM100% fitted -120 3 3,2 3,4 3,6 3,8 4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 600 75 -68 0,60 V A A µs 14 Revision: 5.1 V23990-K429-A40-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 140 Id Erec Qrr 100 100 80 tErec tQrr 60 60 % 20 % 40 -20 20 Prec -60 0 -100 -20 3 3,2 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,4 3,6 75 14,81 1,20 3,8 time(us) 4 4,2 4,4 4,6 3 3,2 Prec (100%) = Erec (100%) = tErec = A µC µs 15 3,4 3,6 45,10 5,51 1,20 3,8 time(us) 4 4,2 4,4 4,6 kW mJ µs Revision: 5.1 V23990-K429-A40-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K429-A40-/0A/-PM V23990-K429-A40-/1A/-PM V23990-K429-A40-/0B/-PM V23990-K429-A40-/1B/-PM K429A40 K429A40 K429A40 K429A40 in packaging barcode as K429A40-/0A/ K429A40-/1A/ K429A40-/0B/ K429A40-/1B/ Outline Pinout copyright Vincotech 16 Revision: 5.1 V23990-K429-A40-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 5.1