V23990 K429 A40 D5k1 14

V23990-K429-A40-PM
MiniSKiiP® 3 PIM
1200V / 75A
MiniSKiiP® 3 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K429-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
69
A
450
A
1020
A2s
77
W
Tjmax
150
°C
VCE
1200
V
68
A
225
A
162
W
±20
V
10
800
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
tSC
Tj=150°C
VCC
VGE=15V
Tjmax
1
Th=80°C
Revision: 5.1
V23990-K429-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
67
A
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
225
Th=80°C
A
131
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 5.1
V23990-K429-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,03
0,93
0,92
0,79
0,004
0,005
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
35
1500
RthJH
Thermal grease
thickness≤50µm
λ=1W/mK
VGE(th)
VCE=VGE
V
V
Ω
0,1
1,1
mA
K/W
0,90
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,003
15
75
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,6
1,97
2,42
2,4
0,1
600
Rgoff=4Ω
Rgon=4Ω
±15
600
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
10
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
173
189
30
40
284
359
78
120
6,51
10,61
4,25
6,68
ns
mWs
4400
f=1MHz
0
25
Tj=25°C
pF
290
235
±15
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
570
nC
0,58
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
75
IRRM
trr
Qrr
Rgon=4Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
Thermal grease
thickness≤50µm
λ=1W/mK
2,01
2,05
57,3
68,4
310
602
6,29
14,8
1733
384
2,21
5,51
2,8
V
A
ns
µC
A/µs
mWs
0,75
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
Power dissipation constant
-3
3
%
Ω
1670,313
mW/K
T=25°C
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech PTC Reference
copyright Vincotech
E
3
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
200
IC (A)
IC (A)
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
250
IC (A)
IF (A)
75
4
60
200
45
150
30
100
15
Tj = Tjmax-25°C
50
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,8
250
1,6
2,4
3,2
V F (V)
4
µs
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
30
E (mWs)
30
T1,T2,T3,T4,T5,T6,T7 IGBT
Eon High T
25
25
20
20
Eon Low T
Eon High T
15
15
Eoff High T
10
Eon Low T
10
Eoff High T
Eoff Low T
5
5
0
Eoff Low T
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
7,5
E (mWs)
7,5
T1,T2,T3,T4,T5,T6,T7 IGBT
Erec
Tj = Tjmax -25°C
6
6
Tj = Tjmax -25°C
Erec
4,5
4,5
Erec
3
3
Tj = 25°C
Tj = 25°C
Erec
1,5
1,5
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
5
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
D1,D2,D3,D4,D5,D6,D7 FWD
t rr( µs)
t rr( µs)
1
trr
0,8
0,8
Tj = Tjmax -25°C
Tj = Tjmax -25°C
trr
0,6
0,6
trr
Tj = 25°C
trr
0,4
0,4
Tj = 25°C
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
copyright Vincotech
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
4
25/150
600
75
±15
8
12
16
R g on ( Ω ) 20
°C
V
A
V
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
25
D1,D2,D3,D4,D5,D6,D7 FWD
Qrr( µC)
Qrr( µC)
25
Qrr
20
20
Tj = Tjmax -25°C
Tj = Tjmax -25°C
15
Qrr
15
10
10
Qrr
Tj = 25°C
Tj = 25°C
5
Qrr
5
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
120
I C (A)
150
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
8
25/150
600
75
±15
12
16
R g on ( Ω)
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
100
IrrM (A)
IrrM (A)
100
80
80
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
IRRM
60
60
IRRM
IRRM
Tj = 25°C
Tj = 25°C
40
40
20
20
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
copyright Vincotech
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
4
25/150
600
75
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
3000
direc / dt (A/ µs)
direc / dt (A/µ s)
3000
dI0/dt
dIrec/dt
2500
dI0/dt
dIrec/dt
2500
2000
2000
1500
1500
1000
1000
500
500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
I C (A)
120
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
600
75
±15
8
12
R gon ( Ω )
16
20
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
100
10
D1,D2,D3,D4,D5,D6,D7 FWD
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,58
K/W
10-4
10-3
R (C/W)
0,11
0,33
0,08
0,04
0,02
R (C/W)
0,04
0,12
0,38
0,12
0,07
8
100
t p (s)
101 10
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
0,75
IGBT thermal model values
Tau (s)
1,0E+00
1,5E-01
3,6E-02
7,3E-03
4,9E-04
10-2
Tau (s)
5,1E+00
9,5E-01
2,0E-01
6,1E-02
1,1E-02
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
300
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
Ptot (W)
IF (A)
250
150
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 5.1
V23990-K429-A40-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
16
10uS
14
100uS
10
2
240V
12
960V
100mS
DC
10mS
1mS
10
101
8
6
100
4
10
-1
2
0
10
0
At
D=
Th =
VGE =
Tj =
101
102
103
0
100
150
200
250
300
350
400
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
50
V CE (V)
10
75
A
Revision: 5.1
V23990-K429-A40-PM
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
IF (A)
ZthJC (K/W)
10
D8,D9,D10,D11,D12,D13 diode
80
10
0
10
-1
60
Tj = 25°C
Tj = Tjmax-25°C
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
0
0
0,3
0,6
0,9
1,2
V F (V)
10-2
1,5
10-5
At
tp =
At
D=
RthJH =
µs
250
10-4
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-3
10-2
100
t p (s)
10110
tp / T
0,90
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
100
Ptot (W)
IF (A)
180
10-1
150
80
120
60
90
40
60
20
30
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 5.1
V23990-K429-A40-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R (Ω)
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 5.1
V23990-K429-A40-PM
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
Rgon
= 4Ω
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
200
IC
tdoff
170
VCE
120
140
90
VGE 90%
VCE 90%
VCE
110
%
IC
%60
80
tEoff
VGE
tdon
50
30
IC10%
20
IC 1%
VGE
0
VCE 3%
VGE10%
-10
-30
-0,2
tEon
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
0,3
-15
15
600
75
0,36
0,74
0,4
0,5
0,6
0,7
-40
0,8
0,9
time (us)
2,8
2,9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
3,2
-15
15
600
75
0,19
0,58
3,3
3,4
3,6time(us)
3,7
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,5
Turn-on Switching Waveforms & definition of tr
140
200
Ic
fitted
120
170
VCE
100
140
IC
IC 90%
80
VCE
110
IC 60%
% 60
IC 40%
40
IC90%
% 80
tr
50
20
20
IC10%
IC10%
tf
0
-20
0,25
-10
-40
0,3
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,35
600
75
0,12
0,4
0,45
0,5
0,55
0,6
time (us)
3,1
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
3,2
3,3
600
75
0,04
3,4
3,5
3,6
time(us)
V
A
µs
Revision: 5.1
V23990-K429-A40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
Pon
Eoff
Poff
100
150
80
120
60
90
Eon
%
%
60
40
30
20
Uce3%
Uge10%
VGE 90%
0
0
tEon
tEoff
IC 1%
-30
-20
-0,2
-0,05
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,25
0,4
time (us)
45,10
6,68
0,74
0,55
0,7
2,9
0,85
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
3,1
3,2
45,10
10,61
0,58
3,3
time(us)
3,4
3,5
3,6
3,7
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
Id
80
trr
40
%
0
Vd
IRRM10%
-40
IRRM90%
-80
IRRM100%
fitted
-120
3
3,2
3,4
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
600
75
-68
0,60
V
A
A
µs
14
Revision: 5.1
V23990-K429-A40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
140
Id
Erec
Qrr
100
100
80
tErec
tQrr
60
60
% 20
%
40
-20
20
Prec
-60
0
-100
-20
3
3,2
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,4
3,6
75
14,81
1,20
3,8
time(us)
4
4,2
4,4
4,6
3
3,2
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
3,4
3,6
45,10
5,51
1,20
3,8
time(us)
4
4,2
4,4
4,6
kW
mJ
µs
Revision: 5.1
V23990-K429-A40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K429-A40-/0A/-PM
V23990-K429-A40-/1A/-PM
V23990-K429-A40-/0B/-PM
V23990-K429-A40-/1B/-PM
K429A40
K429A40
K429A40
K429A40
in packaging barcode as
K429A40-/0A/
K429A40-/1A/
K429A40-/0B/
K429A40-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 5.1
V23990-K429-A40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 5.1