30-FT12NMA160SH-M669F08 flow2 MNPC 1200V/160A Features flow2 13mm housing ● mixed voltage NPC topology ● reactive power capability ● low inductance layout ● Split output ● Common collector neutral connection Target Applications Schematic ● solar inverter ● UPS ● Active frontend Types ● 30-FT12NMA160SH-M669F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Half Bridge IGBT Inverse Diode Repetitive peak reverse voltage VRRM Th=80°C Tc=80°C 17 IF Tj=Tjmax IFRM tp=10ms 14 A I2t-value I2t Tj=Tjmax 40 A 2s Power dissipation per Diode Ptot 40 60 W Maximum Junction Temperature Tjmax 150 °C VCE 1200 V 157 202 A tp limited by Tjmax 480 A VCEmax = 1200V, Tvj ≤ 150°C 320 A 398 604 W ±20 V 10 800 µs V 175 °C DC forward current Maximum repetitive forward current Th=80°C Tc=80°C 22 A Half Bridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 30-FT12NMA160SH-M669F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 96 129 A 1200 A 110 166 W Tjmax 150 °C VCE 600 V 91 121 A tp limited by Tjmax 300 A VCE ≤ 600V, Tj ≤ 175°C 300 A Neutral Point FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Non-repetitive Peak Surge Current IFSM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Neutral Point IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC Icpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C 174 264 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V 38 51 A 60 A 65 99 W Tjmax 175 °C VRRM 1200 V 50 66 A 650 A 94 143 W 150 °C Tj≤150°C VGE=15V Neutral Point Inverse Diode Peak Repetitive Reverse Voltage DC forward current Maximum repetitive forward current Power dissipation per Diode Maximum Junction Temperature IF IFRM Ptot Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Th=80°C Tc=80°C Nonrepetitive peak surge current IFRM tp limited by Tjmax (Halfwave 1 Phase 60Hz) Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 2 Th=80°C Tc=80°C Revision: 2 30-FT12NMA160SH-M669F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 2 30-FT12NMA160SH-M669F08 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 1,97 1,65 1,33 1,01 91 91 3,4 Half Bridge IGBT Inverse Diode Forward voltage Vf 7 Threshold voltage (for power loss calc. only) Vto 7 Slope resistance (for power loss calc. only) rt 7 Reverse current Ir 1200 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mΩ 0,25 mA 1,77 K/W 1,17 Halfbridge IGBT Gate emitter threshold voltage 0,006 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(ON) Rise time Turn-off delay time Fall time 160 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss 5,2 5,8 6,5 2 2,02 2,37 2,4 0,02 480 none tr td(OFF) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=4 Ω Rgon=4 Ω ±15 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 133 135 20 23 225 276 38 64 1,80 3,18 2,52 4,03 ns mWs 9200 f=1MHz 0 25 920 pF Tj=25°C Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 540 15 960 160 740 Thermal grease thickness≤50um λ = 1 W/mK nC 0,24 K/W 0,16 Neutral Point FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 120 IRRM trr Qrr Rgon=4 Ω ±15 350 100 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,47 1,29 127 151 40 81 3,02 7,13 12386 3767 0,31 1,01 1,7 V A ns µC A/µs mWs 0,64 K/W 0,42 Neutral Point IGBT Gate emitter threshold voltage 0,0016 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 100 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss 5 5,8 6,5 1,05 1,58 1,8 1,85 0,0052 1200 none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=4 Ω Rgon=4 Ω ±15 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 103 103 17 19 158 179 44 64 1,06 1,52 2,48 3,32 V V mA nA Ω ns µWs 6280 f=1MHz 0 25 400 pF Tj=25°C Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright by Vincotech 186 15 Thermal grease thickness≤50um λ = 1 W/mK 4 480 100 620 nC 0,54 K/W 0,36 Revision: 2 30-FT12NMA160SH-M669F08 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value Unit IC [A] or IF [A] or ID [A] Tj Min Typ Max 30 Tj=25°C Tj=125°C 1,00 1,64 1,55 1,95 Neutral Point Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Coupled thermal resistance inverter transistor-diode RthJC Thermal grease thickness≤50um λ = 1 W/mK V 1,45 K/W 0,96 Half Bridge FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 60 1200 IRRM trr Qrr Rgon=4 Ω ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,50 2,47 2,11 3,30 200 107 142 51 69 6 13 5985 2890 1,71 3,61 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 0,74 K/W 0,49 Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Power dissipation constant Tj=100°C Ω 22000 -5 +5 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3998 K Vincotech NTC Reference copyright by Vincotech B 5 Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 320 IC (A) 320 240 240 160 160 80 80 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V NP FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 300 IC (A) IF (A) 100 V CE (V) 250 80 200 60 150 40 100 Tj = Tjmax-25°C 20 Tj = Tjmax-25°C 50 Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = Tj = 2 250 10 25/150 copyright by Vincotech 4 6 8 10 V GE (V) 12 0,0 At tp = Tj = µs V °C 6 0,5 250 25/150 1,0 1,5 2,0 V F (V) 2,5 µs °C Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 8 Eon High T E (mWs) E (mWs) Eoff High T Eon High T 6 6 Eon Low T Eoff Low T Eoff High T 4 4 Eon Low T Eoff Low T 2 2 0 0 0 50 150 100 I C (A) 0 200 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = A 100 NP FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) NP FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 1,6 E (mWs) 1,6 Erec High T 1,2 1,2 0,8 0,8 Erec Low T Erec High T 0,4 0,4 0 0 Erec Low T 0 40 80 120 160 I C (A) 200 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 100 A 7 Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff tdon 0,10 tdon 0,10 tf tf tr tr 0,01 0,01 0,00 0,00 0 40 80 120 160 200 I C (A) 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = A 100 NP FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) NP FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,10 0,15 trr High T t rr(ms) t rr(ms) trr High T 0,08 0,12 0,06 0,09 trr Low T 0,04 0,06 trr Low T 0,02 0,03 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4 copyright by Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 8 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD NP FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) NP FWD Figure 14 Typical reverse recovery charge as a function of JFET turn on gate resistor Qrr = f(Rgon) 10 12 Qrr (mC) Qrr (mC) Qrr High T 10 8 8 6 Qrr High T 6 Qrr Low T 4 4 2 Qrr Low T 2 0 0 0 At At Tj = VCE = VGE = Rgon = 80 40 25/125 350 ±15 4 120 160 I C (A) 200 0 4 At Tj = VR = IF = VGE = °C V V Ω NP FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V NP FWD Figure 16 Typical reverse recovery current as a function of JFET turn on gate resistor IRRM = f(Rgon) 250 180 IrrM (A) IrrM (A) IRRM High T IRRM Low T 150 200 120 150 90 100 60 IRRM High T 50 30 0 0 0 At Tj = VCE = VGE = Rgon = IRRM Low T 40 25/125 350 ±15 4 copyright by Vincotech 80 120 160 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω 9 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD NP FWD NP FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of JFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 14000 30000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt T dI0/dt T 12000 dI0/dt T dIrec/dt T 25000 10000 20000 8000 15000 6000 10000 4000 5000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 40 25/125 350 ±15 4 80 120 160 200 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V NP FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 101 100 10 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 -1 10-3 -3 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 101 At D= RthJH = tp / T 0,24 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 K/W 10-4 10-3 R (C/W) 0,08 0,06 0,07 0,02 0,01 R (C/W) 0,17 0,11 0,08 0,20 0,04 0,03 10 100 t p (s) 101 K/W FWD thermal model values copyright by Vincotech 10-1 tp / T 0,64 IGBT thermal model values Tau (s) 2,26 0,29 0,05 0,01 0,002 10-2 Tau (s) 3,90 0,85 0,18 0,04 0,01 0,001 Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 800 200 600 150 400 100 200 50 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = °C 175 NP FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 °C V NP FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 180 IF (A) Ptot (W) 250 T h ( o C) 150 200 120 150 90 100 60 50 30 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 10 VGE (V) IC (A) 17,5 15 3 240V 100uS 12,5 1mS 10 2 960V 10 100mS 101 10mS 7,5 DC 10 0 5 2,5 10-1 0 0 100 At D= Th = VGE = Tj = 102 101 103 At ID = Tj = single pulse 80 ºC V ±15 Tjmax ºC Output inverter IGBT Figure 27 100 200 300 400 500 600 V CE (V) 160 25 Q g (nC) 800 A ºC Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 700 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 1200 IC (sc) tsc (µS) 17,5 15 1000 12,5 800 10 600 7,5 400 5 200 2,5 0 0 12 13 14 15 16 17 18 19 V GE (V) 20 12 13 14 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC copyright by Vincotech 12 15 16 17 18 19 V GE (V) 20 Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 600 Ic MODULE 400 VCE MAX 300 Ic CHIP IC MAX 500 200 100 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 13 Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT and Half Bridge FWD NP IGBT Figure 1 Typical output characteristics IC = f(VCE) NP IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 300 IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V NP IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 200 IF (A) IC (A) 80 60 150 40 100 20 50 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 2 At tp = VCE = Tj = 250 10 25/150 copyright by Vincotech 4 6 8 V GE (V) 10 0 At tp = Tj = µs V °C 14 1 250 25/150 2 3 V F (V) 4 µs °C Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT and Half Bridge FWD NP IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 6 E (mWs) NP IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 5 6 Eon High T 5 Eon Low T 4 4 Eoff Low T Eoff High T 3 3 Eoff Low T Eon High T 2 2 Eon Low T 1 1 0 0 0 50 100 150 200 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = A 100 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 E (mWs) 5 E (mWs) Erec High T 4 4 Erec Low T 3 3 2 2 1 1 Erec High T Erec Low T 0 0 0 50 100 150 I C (A) 0 200 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright by Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 100 A 15 Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT and Half Bridge FWD NP IGBT NP IGBT 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tdoff tdon 0,10 0,10 tr tf tf tr 0,01 0,01 0,00 0,00 0 50 100 150 200 I C (A) 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 100 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,7 t rr(ms) 0,12 t rr(ms) trr High T trr High T 0,6 0,09 0,5 0,4 0,06 trr Low T 0,3 0,2 0,03 0,1 trr Low T 0 0,00 0 At Tj = VCE = VGE = Rgon = 50 25/125 350 ±15 4,0 copyright by Vincotech 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω 16 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT and Half Bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 15 Qrr (mC) 18 Qrr (mC) Qrr High T 15 Qrr High T 12 12 9 Qrr Low T 9 6 Qrr Low T 6 3 3 0 0 0 At At Tj = VCE = VGE = Rgon = 50 100 150 200 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 4 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 100 ±15 8 12 16 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 200 IrrM (A) 180 20 R gon ( Ω) IRRM High T 150 160 IRRM Low T 120 120 90 80 IRRM High T 60 IRRM Low T 40 30 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/125 350 ±15 4 copyright by Vincotech 100 150 I C (A) 0 200 At Tj = VR = IF = VGE = °C V V Ω 17 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT and Half Bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 18000 direc / dt (A/ms) 10000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt T dIrec/dt T dIrec/dt T dI0/dt T 15000 8000 12000 6000 9000 4000 6000 2000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/125 350 ±15 4 100 150 I C (A) 200 0 At Tj = VR = IF = VGE = °C V V Ω NP IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 20 100 100 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -5 At D= RthJH = 10 -4 tp / T 0,54 10 -3 10 -2 10 -1 10 0 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10 -1 10-3 1 10 10 K/W 10-5 10-4 At D= RthJH = tp / T 0,74 10-3 FWD thermal model values R (C/W) 0,11 0,09 0,12 0,17 0,03 R (C/W) 0,07 0,10 0,20 0,26 0,07 copyright by Vincotech 18 10-1 100 t p (s) 101 10 K/W IGBT thermal model values Tau (s) 2,87 0,46 0,10 0,02 0,004 10-2 Tau (s) 3,67 0,54 0,10 0,03 0,005 Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT and Half Bridge FWD NP IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) NP IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 150 IC (A) Ptot (W) 350 300 125 250 100 200 75 150 50 100 25 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 Ptot (W) IF (A) 250 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 50 150 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 150 100 150 Th ( o C) 200 ºC Revision: 2 30-FT12NMA160SH-M669F08 Neutral Point IGBT Neutral Point IGBT NP IGBT Figure 25 Reverse bias safe operating area NP IGBT Figure 26 Gate voltage vs Gate charge IC = f(VCE) VGE = f(Qg) 16 VGE (V) IC (A) 350 IC MAX 120V 14 Ic MODULE 300 12 480V Ic CHIP 250 200 10 8 VCE MAX 150 100 6 4 50 2 0 0 0 100 200 300 400 500 600 700 0 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus Switching mode : Figure 27 100 At ID = Tj = ºC 100 25 200 300 400 500 600 Q g (nC) 700 A ºC 3 level switching Output inverter IGBT Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 1800 tsc (µS) IC (sc) 14 1600 12 1400 10 1200 8 1000 6 800 600 4 400 2 200 0 0 10 11 12 13 14 V GE (V) 15 12 13 14 At VCE = 600 V At VCE ≤ 400 V Tj ≤ 150 ºC Tj = 125 ºC copyright by Vincotech 20 15 16 17 18 19 V (V) 20 GE Revision: 2 30-FT12NMA160SH-M669F08 NP IGBT Inverse Diode NP Inverse Diode Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) NP Inverse Diode Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 80 10 0 10 -1 10 -2 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 At tp = 0,5 1,0 1,5 2,0 2,5 V F (V) 3,0 10-5 At D= RthJH = µs 250 NP Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 1,45 K/W 10-2 10-1 100 t p (s) 10110 NP Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 60 Ptot (W) IF (A) 125 50 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 21 50 175 100 150 Th ( o C) 200 ºC Revision: 2 30-FT12NMA160SH-M669F08 Half Bridge Inverse Diode Halfbridge IGBT Inverse Diode Figure 1 Typical FWD forward current as a function of forward voltage IF= f(VF) Halfbridge IGBT Inverse Diode Figure 2 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 ZthJC (K/W) IF (A) 101 25 20 100 15 10 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = Tjmax-25°C 5 Tj = 25°C 0 0 1 At tp = 2 3 V F (V) 4 10-5 At D= RthJH = µs 250 10-4 Halfbridge IGBT Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 100 t p (s) 10110 tp / T 1,77 K/W Halfbridge IGBT Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 100 10-1 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 22 50 150 100 150 T h ( o C) 200 ºC Revision: 2 30-FT12NMA160SH-M669F08 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 23 Revision: 2 30-FT12NMA160SH-M669F08 Switching Definitions Half Bridge General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % IC % 100 200 VGE 90% IC 75 150 VGE VCE 50 VGE 100 VCE 90% tEoff 25 50 IC 1% 0 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 0,6 time (us) 3,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 700 100 0,28 0,66 tEon -50 2,95 0,8 Half Bridge IGBT Figure 3 VCE5% IC10% VGE10% 0 -25 -0,2 tdon VCE 3,15 -15 15 700 100 0,14 0,27 3,25 3,35 V V V A µs µs Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 250 % fitted Ic % IC 100 200 IC 90% 75 150 IC 60% VCE 50 100 IC90% IC 40% 25 VCE 50 IC10% 0 IC10% 0 tf -25 tr -50 0,1 0,15 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,2 700 100 0,06 0,25 0,3 time (us) 0,35 3,1 VC (100%) = IC (100%) = tr = V A µs 24 3,15 3,2 700 100 0,02 3,25 time(us) 3,3 V A µs Revision: 2 30-FT12NMA160SH-M669F08 Switching Definitions Half Bridge Half Bridge IGBT Figure 5 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Eoff Eon 100 100 75 75 50 50 Pon Poff 25 25 VGE 90% VGE VCE 10% 3% 0 0 tEon tEoff -25 -25 -0,2 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 70,22 4,03 0,66 0,4 0,6 time (us) 2,9 0,8 3 3,1 3,2 3,3 3,4 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 70,22 3,18 0,27 kW mJ µs Neutral Point FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% -50 -100 IRRM 90% -150 IRRM 100% -200 3,1 3,15 3,2 3,25 3,3 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 700 100 -151 0,08 V A A µs 25 Revision: 2 30-FT12NMA160SH-M669F08 Switching Definitions Half Bridge Neutral Point FWD Figure 8 Neutral Point FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % Erec % Id Qrr 100 100 tQrr 50 75 0 50 tErec Prec -50 25 -100 0 -25 -150 3,1 3,15 Id (100%) = Qrr (100%) = tQrr = 3,2 100 7,13 0,16 3,25 3,3 time(us) 3,1 3,35 3,15 3,2 3,25 3,3 3,35 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 70,22 1,01 0,16 kW mJ µs half bridge switching measurement circuit Half Bridge IGBT Figure 10 copyright by Vincotech 26 Revision: 2 30-FT12NMA160SH-M669F08 Switching Definitions Neutral Point IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω neutral point IGBT Figure 1 neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % % 100 IC 200 VGE 90% IC 75 150 VGE VCE 50 100 VCE 90% tEoff 25 50 IC 1% VGE tdon VCE 0 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 700 100 0,18 0,44 0,4 time (us) tEon -50 2,95 0,6 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs neutral point IGBT Figure 3 VCE 3% IC 10% VGE 10% 0 3,05 3,1 -15 15 700 100 0,10 0,18 V V V A µs µs 3,15 time(us) 3,25 neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,2 Turn-on Switching Waveforms & definition of tr 125 250 fitted % % 100 Ic 200 Ic 90% 75 150 Ic 60% VCE 50 100 IC 90% Ic 40% VCE 25 tr 50 IC Ic 10% 0 -25 0,00 0,05 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,10 0,15 700 100 0,064 V A µs IC 10% 0 tf 0,20 -50 3,05 0,25 0,30 time (us) VC (100%) = IC (100%) = tr = 27 3,1 3,15 700 100 0,019 3,2 time(us) 3,25 V A µs Revision: 2 30-FT12NMA160SH-M669F08 Switching Definitions Neutral Point IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Ic 1% Eon Eoff 100 100 75 75 50 50 Pon 25 25 Poff Uge 90% Uce 3% Uge 10% 0 0 tEoff -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = tEon 0,2 69,93 3,32 0,44 0,4 time (us) -25 2,95 0,6 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3 3,05 69,9279 1,52 0,18 3,1 3,15 3,2 time(us) 3,25 kW mJ µs half bridge FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % 100 Id trr 50 0 fitted Ud IRRM 10% -50 -100 -150 3,05 IRRM 90% IRRM 100% 3,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,15 3,2 700 100 -142 0,07 V A A µs 3,25 3,3 time(us) 3,35 28 Revision: 2 30-FT12NMA160SH-M669F08 Switching Definitions Neutral Point IGBT Figure 8 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) half bridge FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 half bridge FWD 125 % % Id Erec Qrr 100 100 tQint 50 75 0 50 -50 25 tErec Prec 0 -100 -25 -150 3 3,5 4 4,5 3 3,2 3,4 3,6 time(us) Id (100%) = Qrr (100%) = tQint = 100 12,71 1,00 3,8 4 4,2 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 69,93 3,61 1,00 kW mJ µs Neutral Point IGBT switching measurement circuit neutral point IGBT Figure 10 copyright by Vincotech 29 Revision: 2 30-FT12NMA160SH-M669F08 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 13mm housing Ordering Code 30-FT12NMA160SH-M669F08 in DataMatrix as M669F08 in packaging barcode as M669F08 Outline Pinout copyright by Vincotech 30 Revision: 2 30-FT12NMA160SH-M669F08 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 31 Revision: 2