30-FT12NMA160SH-M669F08 Maximum Ratings

30-FT12NMA160SH-M669F08
flow2 MNPC
1200V/160A
Features
flow2 13mm housing
● mixed voltage NPC topology
● reactive power capability
● low inductance layout
● Split output
● Common collector neutral connection
Target Applications
Schematic
● solar inverter
● UPS
● Active frontend
Types
● 30-FT12NMA160SH-M669F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Half Bridge IGBT Inverse Diode
Repetitive peak reverse voltage
VRRM
Th=80°C
Tc=80°C
17
IF
Tj=Tjmax
IFRM
tp=10ms
14
A
I2t-value
I2t
Tj=Tjmax
40
A 2s
Power dissipation per Diode
Ptot
40
60
W
Maximum Junction Temperature
Tjmax
150
°C
VCE
1200
V
157
202
A
tp limited by Tjmax
480
A
VCEmax = 1200V, Tvj ≤ 150°C
320
A
398
604
W
±20
V
10
800
µs
V
175
°C
DC forward current
Maximum repetitive forward current
Th=80°C
Tc=80°C
22
A
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
30-FT12NMA160SH-M669F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
96
129
A
1200
A
110
166
W
Tjmax
150
°C
VCE
600
V
91
121
A
tp limited by Tjmax
300
A
VCE ≤ 600V, Tj ≤ 175°C
300
A
Neutral Point FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Non-repetitive Peak Surge Current
IFSM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
Icpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
174
264
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
38
51
A
60
A
65
99
W
Tjmax
175
°C
VRRM
1200
V
50
66
A
650
A
94
143
W
150
°C
Tj≤150°C
VGE=15V
Neutral Point Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Maximum repetitive forward current
Power dissipation per Diode
Maximum Junction Temperature
IF
IFRM
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Nonrepetitive peak surge current
IFRM
tp limited by Tjmax (Halfwave 1 Phase 60Hz)
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Revision: 2
30-FT12NMA160SH-M669F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 2
30-FT12NMA160SH-M669F08
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
1,97
1,65
1,33
1,01
91
91
3,4
Half Bridge IGBT Inverse Diode
Forward voltage
Vf
7
Threshold voltage (for power loss calc. only)
Vto
7
Slope resistance (for power loss calc. only)
rt
7
Reverse current
Ir
1200
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
0,25
mA
1,77
K/W
1,17
Halfbridge IGBT
Gate emitter threshold voltage
0,006
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(ON)
Rise time
Turn-off delay time
Fall time
160
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
5,2
5,8
6,5
2
2,02
2,37
2,4
0,02
480
none
tr
td(OFF)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
133
135
20
23
225
276
38
64
1,80
3,18
2,52
4,03
ns
mWs
9200
f=1MHz
0
25
920
pF
Tj=25°C
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
540
15
960
160
740
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,24
K/W
0,16
Neutral Point FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
120
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
100
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,47
1,29
127
151
40
81
3,02
7,13
12386
3767
0,31
1,01
1,7
V
A
ns
µC
A/µs
mWs
0,64
K/W
0,42
Neutral Point IGBT
Gate emitter threshold voltage
0,0016
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
5
5,8
6,5
1,05
1,58
1,8
1,85
0,0052
1200
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
103
103
17
19
158
179
44
64
1,06
1,52
2,48
3,32
V
V
mA
nA
Ω
ns
µWs
6280
f=1MHz
0
25
400
pF
Tj=25°C
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright by Vincotech
186
15
Thermal grease
thickness≤50um
λ = 1 W/mK
4
480
100
620
nC
0,54
K/W
0,36
Revision: 2
30-FT12NMA160SH-M669F08
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
Unit
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Max
30
Tj=25°C
Tj=125°C
1,00
1,64
1,55
1,95
Neutral Point Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Coupled thermal resistance inverter transistor-diode
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,45
K/W
0,96
Half Bridge FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
60
1200
IRRM
trr
Qrr
Rgon=4 Ω
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,50
2,47
2,11
3,30
200
107
142
51
69
6
13
5985
2890
1,71
3,61
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
0,74
K/W
0,49
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Power dissipation constant
Tj=100°C
Ω
22000
-5
+5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3998
K
Vincotech NTC Reference
copyright by Vincotech
B
5
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
320
IC (A)
320
240
240
160
160
80
80
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
NP FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
300
IC (A)
IF (A)
100
V CE (V)
250
80
200
60
150
40
100
Tj = Tjmax-25°C
20
Tj = Tjmax-25°C
50
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
Tj =
2
250
10
25/150
copyright by Vincotech
4
6
8
10
V GE (V)
12
0,0
At
tp =
Tj =
µs
V
°C
6
0,5
250
25/150
1,0
1,5
2,0
V F (V)
2,5
µs
°C
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
8
Eon High T
E (mWs)
E (mWs)
Eoff High T
Eon High T
6
6
Eon Low T
Eoff Low T
Eoff High T
4
4
Eon Low T
Eoff Low T
2
2
0
0
0
50
150
100
I C (A)
0
200
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
100
NP FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
NP FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1,6
E (mWs)
1,6
Erec High T
1,2
1,2
0,8
0,8
Erec Low T
Erec High T
0,4
0,4
0
0
Erec Low T
0
40
80
120
160
I C (A)
200
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
7
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
tdon
0,10
tdon
0,10
tf
tf
tr
tr
0,01
0,01
0,00
0,00
0
40
80
120
160
200
I C (A)
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
100
NP FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
NP FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,10
0,15
trr High T
t rr(ms)
t rr(ms)
trr High T
0,08
0,12
0,06
0,09
trr Low T
0,04
0,06
trr Low T
0,02
0,03
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4
copyright by Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
NP FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
NP FWD
Figure 14
Typical reverse recovery charge as a
function of JFET turn on gate resistor
Qrr = f(Rgon)
10
12
Qrr (mC)
Qrr (mC)
Qrr High T
10
8
8
6
Qrr High T
6
Qrr Low T
4
4
2
Qrr Low T
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
80
40
25/125
350
±15
4
120
160
I C (A)
200
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
NP FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
NP FWD
Figure 16
Typical reverse recovery current as a
function of JFET turn on gate resistor
IRRM = f(Rgon)
250
180
IrrM (A)
IrrM (A)
IRRM High T
IRRM Low T
150
200
120
150
90
100
60
IRRM High T
50
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
IRRM Low T
40
25/125
350
±15
4
copyright by Vincotech
80
120
160
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
NP FWD
NP FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of JFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
14000
30000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dt T
dI0/dt T
12000
dI0/dt T
dIrec/dt T
25000
10000
20000
8000
15000
6000
10000
4000
5000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
40
25/125
350
±15
4
80
120
160
200
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
NP FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
101
100
10
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
-1
10-3
-3
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
101
At
D=
RthJH =
tp / T
0,24
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
K/W
10-4
10-3
R (C/W)
0,08
0,06
0,07
0,02
0,01
R (C/W)
0,17
0,11
0,08
0,20
0,04
0,03
10
100
t p (s)
101
K/W
FWD thermal model values
copyright by Vincotech
10-1
tp / T
0,64
IGBT thermal model values
Tau (s)
2,26
0,29
0,05
0,01
0,002
10-2
Tau (s)
3,90
0,85
0,18
0,04
0,01
0,001
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
800
200
600
150
400
100
200
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
°C
175
NP FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
°C
V
NP FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
180
IF (A)
Ptot (W)
250
T h ( o C)
150
200
120
150
90
100
60
50
30
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
10
VGE (V)
IC (A)
17,5
15
3
240V
100uS
12,5
1mS
10
2
960V
10
100mS
101
10mS
7,5
DC
10
0
5
2,5
10-1
0
0
100
At
D=
Th =
VGE =
Tj =
102
101
103
At
ID =
Tj =
single pulse
80
ºC
V
±15
Tjmax
ºC
Output inverter IGBT
Figure 27
100
200
300
400
500
600
V CE (V)
160
25
Q g (nC)
800
A
ºC
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
700
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
1200
IC (sc)
tsc (µS)
17,5
15
1000
12,5
800
10
600
7,5
400
5
200
2,5
0
0
12
13
14
15
16
17
18
19
V GE (V)
20
12
13
14
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright by Vincotech
12
15
16
17
18
19
V GE (V)
20
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
600
Ic MODULE
400
VCE MAX
300
Ic CHIP
IC MAX
500
200
100
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
13
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT and Half Bridge FWD
NP IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
NP IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
NP IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
200
IF (A)
IC (A)
80
60
150
40
100
20
50
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
2
At
tp =
VCE =
Tj =
250
10
25/150
copyright by Vincotech
4
6
8
V GE (V)
10
0
At
tp =
Tj =
µs
V
°C
14
1
250
25/150
2
3
V F (V)
4
µs
°C
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT and Half Bridge FWD
NP IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
6
E (mWs)
NP IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
5
6
Eon High T
5
Eon Low T
4
4
Eoff Low T
Eoff High T
3
3
Eoff Low T
Eon High T
2
2
Eon Low T
1
1
0
0
0
50
100
150
200
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
100
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
E (mWs)
5
E (mWs)
Erec High T
4
4
Erec Low T
3
3
2
2
1
1
Erec High T
Erec Low T
0
0
0
50
100
150
I C (A)
0
200
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
15
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT and Half Bridge FWD
NP IGBT
NP IGBT
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdoff
tdon
tdoff
tdon
0,10
0,10
tr
tf
tf
tr
0,01
0,01
0,00
0,00
0
50
100
150
200
I C (A)
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
100
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,7
t rr(ms)
0,12
t rr(ms)
trr High T
trr High T
0,6
0,09
0,5
0,4
0,06
trr Low T
0,3
0,2
0,03
0,1
trr Low T
0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
350
±15
4,0
copyright by Vincotech
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
Qrr (mC)
18
Qrr (mC)
Qrr High T
15
Qrr High T
12
12
9
Qrr Low T
9
6
Qrr Low T
6
3
3
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
50
100
150
200
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
4
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
100
±15
8
12
16
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
200
IrrM (A)
180
20
R gon ( Ω)
IRRM High T
150
160
IRRM Low T
120
120
90
80
IRRM High T
60
IRRM Low T
40
30
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
350
±15
4
copyright by Vincotech
100
150
I C (A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
17
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT and Half Bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
18000
direc / dt (A/ms)
10000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt T
dIrec/dt T
dIrec/dt T
dI0/dt T
15000
8000
12000
6000
9000
4000
6000
2000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/125
350
±15
4
100
150
I C (A)
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
NP IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
20
100
100
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-5
At
D=
RthJH =
10
-4
tp / T
0,54
10
-3
10
-2
10
-1
10
0
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10
-1
10-3
1
10 10
K/W
10-5
10-4
At
D=
RthJH =
tp / T
0,74
10-3
FWD thermal model values
R (C/W)
0,11
0,09
0,12
0,17
0,03
R (C/W)
0,07
0,10
0,20
0,26
0,07
copyright by Vincotech
18
10-1
100
t p (s)
101 10
K/W
IGBT thermal model values
Tau (s)
2,87
0,46
0,10
0,02
0,004
10-2
Tau (s)
3,67
0,54
0,10
0,03
0,005
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT and Half Bridge FWD
NP IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
NP IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
150
IC (A)
Ptot (W)
350
300
125
250
100
200
75
150
50
100
25
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
Ptot (W)
IF (A)
250
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
50
150
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
150
100
150
Th ( o C)
200
ºC
Revision: 2
30-FT12NMA160SH-M669F08
Neutral Point IGBT
Neutral Point IGBT
NP IGBT
Figure 25
Reverse bias safe operating area
NP IGBT
Figure 26
Gate voltage vs Gate charge
IC = f(VCE)
VGE = f(Qg)
16
VGE (V)
IC (A)
350
IC MAX
120V
14
Ic MODULE
300
12
480V
Ic CHIP
250
200
10
8
VCE MAX
150
100
6
4
50
2
0
0
0
100
200
300
400
500
600
700
0
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
Switching mode :
Figure 27
100
At
ID =
Tj =
ºC
100
25
200
300
400
500
600
Q g (nC)
700
A
ºC
3 level switching
Output inverter IGBT
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
1800
tsc (µS)
IC (sc)
14
1600
12
1400
10
1200
8
1000
6
800
600
4
400
2
200
0
0
10
11
12
13
14
V GE (V)
15
12
13
14
At
VCE =
600
V
At
VCE ≤
400
V
Tj ≤
150
ºC
Tj =
125
ºC
copyright by Vincotech
20
15
16
17
18
19 V (V) 20
GE
Revision: 2
30-FT12NMA160SH-M669F08
NP IGBT Inverse Diode
NP Inverse Diode
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
NP Inverse Diode
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
80
10
0
10
-1
10
-2
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,5
1,0
1,5
2,0
2,5
V F (V)
3,0
10-5
At
D=
RthJH =
µs
250
NP Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
1,45
K/W
10-2
10-1
100
t p (s)
10110
NP Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
60
Ptot (W)
IF (A)
125
50
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
21
50
175
100
150
Th ( o C)
200
ºC
Revision: 2
30-FT12NMA160SH-M669F08
Half Bridge Inverse Diode
Halfbridge IGBT Inverse Diode
Figure 1
Typical FWD forward current as
a function of forward voltage
IF= f(VF)
Halfbridge IGBT Inverse Diode
Figure 2
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
ZthJC (K/W)
IF (A)
101
25
20
100
15
10
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = Tjmax-25°C
5
Tj = 25°C
0
0
1
At
tp =
2
3
V F (V)
4
10-5
At
D=
RthJH =
µs
250
10-4
Halfbridge IGBT Inverse Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
100
t p (s)
10110
tp / T
1,77
K/W
Halfbridge IGBT Inverse Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
100
10-1
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
22
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
30-FT12NMA160SH-M669F08
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
23
Revision: 2
30-FT12NMA160SH-M669F08
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
IC
%
100
200
VGE 90%
IC
75
150
VGE
VCE
50
VGE
100
VCE 90%
tEoff
25
50
IC 1%
0
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
0,6
time (us)
3,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
700
100
0,28
0,66
tEon
-50
2,95
0,8
Half Bridge IGBT
Figure 3
VCE5%
IC10%
VGE10%
0
-25
-0,2
tdon
VCE
3,15
-15
15
700
100
0,14
0,27
3,25
3,35
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
250
%
fitted
Ic
%
IC
100
200
IC 90%
75
150
IC 60%
VCE
50
100
IC90%
IC 40%
25
VCE
50
IC10%
0
IC10%
0
tf
-25
tr
-50
0,1
0,15
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,2
700
100
0,06
0,25
0,3
time (us)
0,35
3,1
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
3,15
3,2
700
100
0,02
3,25
time(us)
3,3
V
A
µs
Revision: 2
30-FT12NMA160SH-M669F08
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 5
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Eoff
Eon
100
100
75
75
50
50
Pon
Poff
25
25
VGE 90%
VGE
VCE
10%
3%
0
0
tEon
tEoff
-25
-25
-0,2
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
70,22
4,03
0,66
0,4
0,6
time (us)
2,9
0,8
3
3,1
3,2
3,3
3,4
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
70,22
3,18
0,27
kW
mJ
µs
Neutral Point FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
0
fitted
IRRM 10%
-50
-100
IRRM 90%
-150
IRRM 100%
-200
3,1
3,15
3,2
3,25
3,3
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
700
100
-151
0,08
V
A
A
µs
25
Revision: 2
30-FT12NMA160SH-M669F08
Switching Definitions Half Bridge
Neutral Point FWD
Figure 8
Neutral Point FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
Erec
%
Id
Qrr
100
100
tQrr
50
75
0
50
tErec
Prec
-50
25
-100
0
-25
-150
3,1
3,15
Id (100%) =
Qrr (100%) =
tQrr =
3,2
100
7,13
0,16
3,25
3,3
time(us)
3,1
3,35
3,15
3,2
3,25
3,3
3,35
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
70,22
1,01
0,16
kW
mJ
µs
half bridge switching measurement circuit
Half Bridge IGBT
Figure 10
copyright by Vincotech
26
Revision: 2
30-FT12NMA160SH-M669F08
Switching Definitions Neutral Point IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
neutral point IGBT
Figure 1
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
%
100
IC
200
VGE 90%
IC
75
150
VGE
VCE
50
100
VCE 90%
tEoff
25
50
IC 1%
VGE
tdon
VCE
0
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
700
100
0,18
0,44
0,4
time (us)
tEon
-50
2,95
0,6
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
neutral point IGBT
Figure 3
VCE 3%
IC 10%
VGE 10%
0
3,05
3,1
-15
15
700
100
0,10
0,18
V
V
V
A
µs
µs
3,15
time(us)
3,25
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,2
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
%
100
Ic
200
Ic 90%
75
150
Ic 60%
VCE
50
100
IC 90%
Ic 40%
VCE
25
tr
50
IC
Ic 10%
0
-25
0,00
0,05
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,10
0,15
700
100
0,064
V
A
µs
IC 10%
0
tf
0,20
-50
3,05
0,25
0,30
time (us)
VC (100%) =
IC (100%) =
tr =
27
3,1
3,15
700
100
0,019
3,2
time(us)
3,25
V
A
µs
Revision: 2
30-FT12NMA160SH-M669F08
Switching Definitions Neutral Point IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Ic 1%
Eon
Eoff
100
100
75
75
50
50
Pon
25
25
Poff
Uge 90%
Uce 3%
Uge 10%
0
0
tEoff
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
tEon
0,2
69,93
3,32
0,44
0,4
time (us)
-25
2,95
0,6
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
3,05
69,9279
1,52
0,18
3,1
3,15
3,2
time(us)
3,25
kW
mJ
µs
half bridge FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
100
Id
trr
50
0
fitted
Ud
IRRM 10%
-50
-100
-150
3,05
IRRM 90%
IRRM 100%
3,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,15
3,2
700
100
-142
0,07
V
A
A
µs
3,25
3,3
time(us)
3,35
28
Revision: 2
30-FT12NMA160SH-M669F08
Switching Definitions Neutral Point IGBT
Figure 8
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
half bridge FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
half bridge FWD
125
%
%
Id
Erec
Qrr
100
100
tQint
50
75
0
50
-50
25
tErec
Prec
0
-100
-25
-150
3
3,5
4
4,5
3
3,2
3,4
3,6
time(us)
Id (100%) =
Qrr (100%) =
tQint =
100
12,71
1,00
3,8
4
4,2
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
69,93
3,61
1,00
kW
mJ
µs
Neutral Point IGBT switching measurement circuit
neutral point IGBT
Figure 10
copyright by Vincotech
29
Revision: 2
30-FT12NMA160SH-M669F08
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 13mm housing
Ordering Code
30-FT12NMA160SH-M669F08
in DataMatrix as
M669F08
in packaging barcode as
M669F08
Outline
Pinout
copyright by Vincotech
30
Revision: 2
30-FT12NMA160SH-M669F08
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
31
Revision: 2