30-FT12NMA200SH-M660F08 flow2 MNPC 1200V/200A Features flow2 13mm housing ● mixed voltage NPC topology ● reactive power capability ● low inductance layout ● Split output ● Common collector neutral connection Target Applications Schematic ● solar inverter ● UPS ● Active frontend Types ● 30-FT12NMA200SH-M660F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Half Bridge IGBT Inverse Diode Repetitive peak reverse voltage VRRM IF Tj=Tjmax Maximum repetitive forward current IFRM tp=10ms Power dissipation per Diode Ptot Maximum Junction Temperature DC forward current Th=80°C Tc=80°C 25 30 A 30 A 52 79 W Tjmax 150 °C VCE 1200 V 171 220 A tp limited by Tjmax 600 A VCEmax = 1200V, Tvj ≤ 150°C 400 A 434 658 W ±20 V 10 800 µs V 175 °C Th=80°C Tc=80°C Half Bridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operation area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 30-FT12NMA200SH-M660F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 700 V 87 117 A 300 A 109 165 W Tjmax 150 °C VCE 600 V 124 164 A 450 A 450 A 198 300 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V 49 65 A 100 A 82 124 W Tjmax 175 °C VRRM 1200 V 84 110 A 540 A 186 282 W 175 °C Neutral Point FWD Peak Repetitive Reverse Voltage VRRM DC forward current IF Tj=Tjmax Diode maximum forward current IFM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Neutral Point IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC Icpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Maximum Junction Temperature Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 600V, Tj ≤ 175°C Turn off safe operation area Short circuit ratings Tj=Tjmax tSC VCC Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Neutral Point Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Maximum repetitive forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Nonrepetitive peak surge current IFSM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 30-FT12NMA200SH-M660F08 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 1 30-FT12NMA200SH-M660F08 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min 15 Tj=25°C Tj=125°C 1,6 Unit Typ Max 2,12 1,74 2,6 Half Bridge IGBT Inverse Diode Forward voltage Vf Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V 1,35 K/W 0,89 Halfbridge IGBT Gate emitter threshold voltage 0,0068 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(ON) Rise time Turn-off delay time Fall time 200 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5,2 5,8 6,4 2 2,17 2,58 2,4 24 480 1 tr td(OFF) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=2 Ω Rgon=2 Ω ±15 350 200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V µA nA Ω 124 126 27 32 190 234 41 61 2,38 4,20 5,02 7,97 ns mWs 11080 f=1MHz 0 1150 25 pF Tj=25°C 640 15 960 960 160 Thermal grease thickness≤50um λ = 1 W/mK nC 0,22 K/W 0,14 *additional value stands for built-in capacitor Neutral Point FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Rgon=2 Ω ±15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright by Vincotech 150 Thermal grease thickness≤50um λ = 1 W/mK 4 350 200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,4 1,80 1,61 130 169 93 118 4,47 11,00 5241 1766 0,91 2,39 3,3 V A ns µC A/µs mWs 0,64 K/W 0,42 Revision: 1 30-FT12NMA200SH-M660F08 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Neutral Point IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0024 150 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5 5,8 6,5 1,05 1,57 1,68 1,85 7,6 1200 none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=2 Ω Rgon=2 Ω ±15 350 150 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V µA nA Ω 123 114 21 21 168 177 38 59 1,18 1,72 3,59 5,13 ns µWs 9240 f=1MHz 15 480 150 pF 576 Tj=25°C 274 15 480 nC 940 150 Thermal grease thickness≤50um λ = 1 W/mK 0,48 K/W 0,32 Neutral Point Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Coupled thermal resistance inverter transistor-diode RthJC 50 Tj=25°C Tj=125°C 1,20 Thermal grease thickness≤50um λ = 1 W/mK 1,78 1,70 1,90 V 1,16 K/W 0,76 Half Bridge FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current 100 1200 IRRM trr Qrr Rgon=2 Ω ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 350 100 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,50 2,23 2,34 2,54 120 184 216 48 114 6,62 12,94 11659 9489 1,62 3,42 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 0,51 K/W 0,34 Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Power dissipation constant Tj=100°C -5 +5 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B(25/100) Tol. ±3% Tj=25°C 3998 copyright by Vincotech % Tj=25°C B-value Vincotech NTC Reference Ω 22000 Tj=25°C R100=1486 Ω K B 5 Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD Half Bridge IGBT Figure 1 Typical output characteristics IC = f(VCE) Half Bridge IGBT Figure 2 Typical output characteristics IC = f(VCE) 600 IC (A) IC (A) 600 500 500 400 400 300 300 200 200 100 100 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Half Bridge IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V NP FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 500 IC (A) IF (A) 200 160 400 120 300 80 200 Tj = Tjmax-25°C Tj = 25°C 40 100 Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VCE = Tj = 2 250 10 25/150 copyright by Vincotech 4 6 8 10 V (V) GE 0 12 At tp = Tj = µs V °C 6 0,5 250 25/150 1 1,5 2 2,5 V F (V) 3 µs °C Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD Half Bridge IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Half Bridge IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 16 E (mWs) 16 Eoff High T 12 12 Eon High T Eoff Low T 8 Eon Low T Eoff High T 8 Eon High T Eoff Low T 4 Eon Low T 4 0 0 100 200 300 I C (A) 0 400 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = A 198 NP FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) NP FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 4 E (mWs) E (mWs) 3,0 Erec High T 2,5 3 2,0 2 1,5 Erec High T Erec Low T 1,0 1 0,5 0 Erec Low T 0,0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 198 A 7 Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD Half Bridge IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Half Bridge IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff tdon 0,10 tdon 0,10 tf tr tf 0,01 tr 0,01 0,00 0,00 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = A 198 NP FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) NP FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,25 trr High T t rr(ms) t rr(ms) 0,25 0,20 0,20 0,15 0,15 trr High T trr Low T trr Low T 0,10 0,10 0,05 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 2 copyright by Vincotech 200 300 I C (A) 0 400 At Tj = VR = IF = VGE = °C V V Ω 8 2 25/125 350 198 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD NP FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) NP FWD Figure 14 Typical reverse recovery charge as a function of JFET turn on gate resistor Qrr = f(Rgon) 12 Qrr (mC) Qrr (mC) 20 Qrr High T Qrr High T 10 16 8 12 6 8 Qrr Low T 4 Qrr Low T 4 2 0 0 0 At At Tj = VCE = VGE = Rgon = 100 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 2 NP FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 350 198 ±15 4 6 8 R gon ( Ω) 10 °C V A V NP FWD Figure 16 Typical reverse recovery current as a function of JFET turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 250 IRRM High T 200 200 150 150 IRRM Low T 100 100 IRRM High T IRRM Low T 50 50 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 2 copyright by Vincotech 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω 9 2 25/125 350 198 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD NP FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) NP FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of JFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 12000 direc / dt (A/ms) 12000 direc / dt (A/ms) dIo/dt T dIrec/dt T 10000 dI0/dt T dIrec/dt T 10000 8000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 2 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω Half Bridge IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25/125 350 198 ±15 4 6 8 R gon ( Ω) °C V A V NP FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 101 10 100 10 -1 10 -2 10 -3 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 -3 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 1011 10 -5 At D= RthJH = tp / T 0,22 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 K/W 10 -4 10 R (C/W) 0,04 0,05 0,04 0,07 0,02 0,01 R (C/W) 0,09 0,11 0,16 0,23 0,03 0,03 10 -2 10 -1 10 0 t p (s) 10 1 1 K/W FWD thermal model values copyright by Vincotech 10 tp / T 0,64 IGBT thermal model values Tau (s) 4,0E+00 9,4E-01 2,3E-01 5,4E-02 1,6E-02 2,8E-03 -3 Tau (s) 4,6E+00 1,2E+00 1,8E-01 3,8E-02 5,8E-03 7,4E-04 Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD Half Bridge IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Half Bridge IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 800 200 600 150 400 100 200 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 NP FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V NP FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 150 Ptot (W) IF (A) 250 125 200 100 150 75 100 50 50 25 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD Half Bridge IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Half Bridge IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 10 VGE (V) IC (A) 20 1 18 3 240V 16 960V 100uS 1mS 10 14 2 12 10mS 100mS 101 10 8 DC 10 0 6 4 10 -1 2 0 10 At D= Th = VGE = Tj = 103 102 101 0 0 V CE (V) At ID = Tj = single pulse 80 ºC V ±15 Tjmax ºC Half Bridge IGBT Figure 27 400 160 25 800 1200 2000 A ºC Half Bridge IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 1600 Q (nC) g Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 2400 IC (sc) tsc (µS) 16 14 2000 12 1600 10 8 1200 6 800 4 400 2 0 0 12 13 14 15 16 V GE (V) 17 12 14 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC copyright by Vincotech 12 16 18 V GE (V) 20 Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Half Bridge IGBT and Neutral Point FWD Half Bridge IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 450 IC MAX 400 Ic 300 250 Ic CHIP MODULE 350 VCE MAX 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 13 Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 1 Typical output characteristics IC = f(VCE) NP IGBT Figure 2 Typical output characteristics IC = f(VCE) 450 IC (A) IC (A) 450 375 375 300 300 225 225 150 150 75 75 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V NP IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 150 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 150 5 IC (A) IF (A) 300 125 250 100 200 75 150 50 100 Tj = 25°C Tj = Tjmax-25°C 25 50 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = Tj = 2 250 0 25/150 copyright by Vincotech 4 6 8 10 V GE (V) 12 0 At tp = Tj = µs V °C 14 1 250 25/150 2 3 4 V F (V) 5 µs °C Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) NP IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 E (mWs) E (mWs) 8 Eoff High T Eon High T Eoff Low T 6 6 Eoff High T Eon Low T 4 4 Eoff Low T Eon High T 2 2 Eon Low T 0 0 0 50 100 150 200 250 300 I C (A) 0 With an inductive load at Tj = °C 25/126 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 10 R G ( Ω) With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V IC = A 151 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 E (mWs) E (mWs) 5 Erec High T 4 4 3 3 Erec High T Erec Low T 2 2 1 1 Erec Low T 0 0 0 50 100 150 200 250 300 0 I C (A) With an inductive load at Tj = °C 25/126 VCE = 350 V VGE = ±15 V Rgon = 2 Ω copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = ±15 V IC = 151 A 15 Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) NP IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tdon 0,1 0,1 tf tf tr 0,01 0,01 tr 0,001 0,001 0 50 100 150 200 250 0 300 I C (A) With an inductive load at Tj = °C 126 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 126 °C VCE = 350 V VGE = ±15 V IC = 151 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr(ms) t rr(ms) 0,15 trr High T 0,12 trr High T 0,3 0,09 trr Low T 0,2 0,06 trr Low T 0,1 0,03 0 0,00 0 At Tj = VCE = VGE = Rgon = 50 25/126 350 ±15 2 copyright by Vincotech 100 150 200 250 I C (A) 0 300 At Tj = VR = IF = VGE = °C V V Ω 16 2 25/126 350 151 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 15 Qrr (mC) Qrr (mC) 18 Qrr High T 15 Qrr High T 12 12 Qrr Low T 9 9 Qrr Low T 6 6 3 3 0 0 0 50 At At Tj = VCE = VGE = Rgon = 25/126 350 ±15 2 100 150 200 250 300 I C (A) °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 2 At Tj = VR = IF = VGE = 25/126 350 151 ±15 4 6 8 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 250 IrrM (A) 300 10 R gon ( Ω) IRRM High T 250 200 IRRM Low T 200 150 150 IRRM High T 100 IRRM Low T 100 50 50 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/126 350 ±15 2 copyright by Vincotech 100 150 200 250 I C (A) 300 °C V V Ω 17 0 2 At Tj = VR = IF = VGE = 25/126 350 151 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT and half bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) direc / dt (A/ms) 18000 direc / dt (A/ms) 15000 dIrec/dt T dIo/dt T dIrec/dtT dI0/dtT 15000 12000 12000 9000 9000 6000 6000 3000 3000 0 0 0 At Tj = VCE = VGE = Rgon = 50 25/126 350 ±15 2 100 150 200 250 I C (A) 300 0 At Tj = VR = IF = VGE = °C V V Ω NP IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 6 8 10 R gon ( Ω) °C V A V FWD ZthJH (K/W) ZthJH (K/W) 101 100 100 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 25/126 350 151 ±15 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 2 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 -3 10-5 At D= RthJH = 10-4 tp / T 0,48 10-3 10-2 10-1 100 t p (s) 101 10 10 -5 At D= RthJH = K/W 10 -4 tp / T 0,51 10 FWD thermal model values R (C/W) 0,09 0,11 0,10 0,15 0,02 R (C/W) 0,06 0,08 0,20 0,14 0,04 copyright by Vincotech 18 10 -2 10 -1 10 0 t p (s) 1 10 10 K/W IGBT thermal model values Tau (s) 4,40 0,76 0,13 0,03 0,01 -3 Tau (s) 3,05 0,45 0,09 0,03 0,004 Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT and half bridge FWD NP IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) NP IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 200 IC (A) Ptot (W) 400 300 150 200 100 100 50 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = ºC 175 50 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 150 IF (A) Ptot (W) 350 200 300 125 250 100 200 75 150 50 100 25 50 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 0 50 100 200 At Tj = ºC 19 175 150 Th ( o C) 200 ºC Revision: 1 30-FT12NMA200SH-M660F08 Neutral Point IGBT neutral point IGBT NP IGBT Figure 25 Reverse bias safe operating area NP IGBT Figure 26 Gate voltage vs Gate charge IC = f(VCE) VGE = f(Qg) 16 IC (A) VGE (V) 500 14 IC MAX 120V 12 Ic CHIP Ic MODULE 400 10 300 480V 8 200 VCE MAX 6 4 100 2 0 0 0 100 200 300 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching 400 500 600 V CE (V) 700 0 At ID = Tj = NP IGBT Figure 27 200 150 25 400 600 800 A ºC NP IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Q g (nC) 1000 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 2500 tsc (µS) IC (sc) 12 10 2000 8 1500 6 1000 4 500 2 0 0 10 11 12 13 14 V GE (V) 15 12 14 At VCE ≤ 400 V At VCE ≤ 400 V Tj ≤ 150 ºC Tj = 150 ºC copyright by Vincotech 20 16 18 V GE (V) 20 Revision: 1 30-FT12NMA200SH-M660F08 NP IGBT Inverse Diode NP Inverse Diode Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) NP Inverse Diode Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 200 1 ZthJC (K/W) IF (A) 10 160 100 120 80 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 40 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 1 2 3 V F (V) 10 4 10-5 At D= RthJH = µs 250 -2 NP Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 1,16 10-2 10-1 100 t p (s) 10110 K/W NP Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 80 IF (A) Ptot (W) 175 150 60 125 100 40 75 50 20 25 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 21 50 175 100 150 Th ( o C) 200 ºC Revision: 1 30-FT12NMA200SH-M660F08 Half Bridge Inverse Diode Half Bridge IGBT Inverse Diode Figure 1 Typical FWD forward current as a function of forward voltage IF= f(VF) Half Bridge IGBT Inverse Diode Figure 2 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 75 1 ZthJC (K/W) IF (A) 10 60 100 45 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 15 Tj = Tjmax-25°C Tj = 25°C 0 0 1 At tp = 2 3 V F (V) 4 10 10-5 10-4 At D= RthJH = µs 250 -2 Half Bridge IGBT Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 100 t p (s) 10110 tp / T 1,35 K/W Half Bridge IGBT Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 35 IF (A) Ptot (W) 120 10-1 30 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 22 50 150 100 150 T h ( o C) 200 ºC Revision: 1 30-FT12NMA200SH-M660F08 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 23 Revision: 1 30-FT12NMA200SH-M660F08 Switching Definitions half bridge General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω half bridge IGBT Figure 1 half bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 IC tdoff % % 100 150 VGE 90% IC 75 VGE VGE 100 VCE 90% VCE 50 tdon tEoff 50 25 VCE IC 1% VGE10% 0 0 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 700 198 0,23 0,61 0,4 time (us) -50 2,95 0,6 3,05 3,15 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs half bridge IGBT Figure 3 VCE5% IC10% tEon -15 15 700 198 0,13 0,30 3,25 3,35 3,45 V V V A µs µs half bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 130 200 fitted % Ic % IC 150 100 IC 90% 70 100 IC 60% IC90% VCE tr VCE 40 50 IC 40% IC10% 10 0 IC10% tf -20 -50 0,1 0,15 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,2 700 198 0,06 0,25 0,3 0,35 time (us) 0,4 3,1 3,15 3,2 3,25 3,3 time(us) VC (100%) = IC (100%) = tr = V A µs 24 700 198 0,03 V A µs Revision: 1 30-FT12NMA200SH-M660F08 Switching Definitions half bridge half bridge IGBT Figure 5 half bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % IC 1% % Eoff Eon 100 100 75 75 50 50 25 25 Pon Poff VGE90% VCE3% VGE10% 0 0 tEoff tEon -25 -25 -0,2 0 0,2 0,4 0,6 2,9 0,8 3 3,1 3,2 3,3 3,4 time (us) Poff (100%) = Eoff (100%) = tEoff = 138,85 7,97 0,61 Pon (100%) = Eon (100%) = tEon = kW mJ µs neutral point FWD Figure 7 3,5 time(us) 138,85 4,20 0,30 kW mJ µs neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 150 150 % % Id Qrr Id 100 100 trr 50 tQrr 50 Vd 0 fitted IRRM 10% 0 -50 IRRM 90% IRRM100% -100 -50 -150 -100 3,1 3,14 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,18 700 198 -169 0,12 3,22 3,26 3,3 3,34 time(us) 3,1 Id (100%) = Qrr (100%) = tQrr = V A A µs 25 3,2 3,3 198 11,00 0,24 3,4 time(us) 3,5 A µC µs Revision: 1 30-FT12NMA200SH-M660F08 Switching Definitions half bridge neutral point FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 % Erec 100 tErec 50 Prec 0 -50 3,1 3,2 3,3 3,4 3,5 time(us) Prec (100%) = Erec (100%) = tErec = 138,85 2,39 0,24 kW mJ µs half bridge switching measurement circuit half bridge IGBT Figure 11 copyright by Vincotech 26 Revision: 1 30-FT12NMA200SH-M660F08 Switching Definitions neutral point IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω neutral point IGBT Figure 1 neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % % IC 200 100 VGE 90% IC 150 75 VGE VCE 50 VGE 100 VCE 90% tEoff VCE tdon 50 25 IC 1% VCE3% -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 time (us) -50 3,95 0,6 4,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = neutral point IGBT Figure 3 4,1 4,15 -15 15 700 151 0,11 0,19 4,2 4,25 V V V A µs µs neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 fitted % 4 time(us) V V V A µs µs -15 15 700 151 0,18 0,46 IC 10% tEon VGE 10% 0 0 Ic % 100 200 Ic 90% 75 150 VCE Ic 60% 50 100 IC90% Ic 40% VCE 25 50 IC Ic 10% 0 -25 0,05 tr 0,10 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,15 700 151 0,064 IC10% 0 tf 0,20 0,25 time (us) -50 4,05 0,30 VC (100%) = IC (100%) = tr = V A µs 27 4,1 4,15 700 151 0,019 4,2 time(us) 4,25 V A µs Revision: 1 30-FT12NMA200SH-M660F08 Switching Definitions neutral point IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Ic 1% % Eoff 100 100 75 75 Eon 50 50 25 25 Poff Uge 90% Pon Uge 10% 0 -25 -0,2 0 tEon 0,2 0,4 -25 3,95 0,6 time (us) Poff (100%) = Eoff (100%) = tEoff = 69,93 3,32 0,44 Uce 3% 0 tEoff 4 Pon (100%) = Eon (100%) = tEon = kW mJ µs half bridge FWD Figure 7 4,05 4,1 69,93 1,52 0,18 kW mJ µs 4,2 time(us) 4,25 half bridge FWD Figure 8 Turn-on Switching Waveforms & definition of tQrr Turn-off Switching Waveforms & definition of trr 150 150 % % Qrr Id Id 100 100 trr 50 0 4,15 tQint 50 Ud fitted 0 IRRM 10% -50 -50 -100 -100 IRRM 90% IRRM 100% -150 4,05 -150 4,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 4,15 700 151 -142 0,07 4,2 4,25 time(us) 4,3 4 Id (100%) = Qrr (100%) = tQint = V A A µs 28 4,1 4,2 151 12,71 1,00 4,3 time(us) 4,4 A µC µs Revision: 1 30-FT12NMA200SH-M660F08 Switching Definitions neutral point IGBT Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 % half bridge FWD Erec 100 tErec 75 50 25 Prec 0 -25 4,1 4,15 Prec (100%) = Erec (100%) = tErec = 4,2 69,93 3,61 1,00 4,25 4,3 4,35 4,4 time(us) kW mJ µs neutral point IGBT switching measurement circuit neutral point IGBT Figure 10 copyright by Vincotech 29 Revision: 1 30-FT12NMA200SH-M660F08 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 13mm housing Ordering Code 30-FT12NMA200SH-M660F08 in DataMatrix as M660F08 in packaging barcode as M660F08 Outline Pinout copyright by Vincotech 30 Revision: 1 30-FT12NMA200SH-M660F08 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 31 Revision: 1