30-FT12NMA200SH-M660F08 Maximum Ratings

30-FT12NMA200SH-M660F08
flow2 MNPC
1200V/200A
Features
flow2 13mm housing
● mixed voltage NPC topology
● reactive power capability
● low inductance layout
● Split output
● Common collector neutral connection
Target Applications
Schematic
● solar inverter
● UPS
● Active frontend
Types
● 30-FT12NMA200SH-M660F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Half Bridge IGBT Inverse Diode
Repetitive peak reverse voltage
VRRM
IF
Tj=Tjmax
Maximum repetitive forward current
IFRM
tp=10ms
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC forward current
Th=80°C
Tc=80°C
25
30
A
30
A
52
79
W
Tjmax
150
°C
VCE
1200
V
171
220
A
tp limited by Tjmax
600
A
VCEmax = 1200V, Tvj ≤ 150°C
400
A
434
658
W
±20
V
10
800
µs
V
175
°C
Th=80°C
Tc=80°C
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operation area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
30-FT12NMA200SH-M660F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
700
V
87
117
A
300
A
109
165
W
Tjmax
150
°C
VCE
600
V
124
164
A
450
A
450
A
198
300
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
49
65
A
100
A
82
124
W
Tjmax
175
°C
VRRM
1200
V
84
110
A
540
A
186
282
W
175
°C
Neutral Point FWD
Peak Repetitive Reverse Voltage
VRRM
DC forward current
IF
Tj=Tjmax
Diode maximum forward current
IFM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
Icpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Maximum Junction Temperature
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 600V, Tj ≤ 175°C
Turn off safe operation area
Short circuit ratings
Tj=Tjmax
tSC
VCC
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Neutral Point Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Maximum repetitive forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Nonrepetitive peak surge current
IFSM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
30-FT12NMA200SH-M660F08
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 1
30-FT12NMA200SH-M660F08
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
15
Tj=25°C
Tj=125°C
1,6
Unit
Typ
Max
2,12
1,74
2,6
Half Bridge IGBT Inverse Diode
Forward voltage
Vf
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
1,35
K/W
0,89
Halfbridge IGBT
Gate emitter threshold voltage
0,0068
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(ON)
Rise time
Turn-off delay time
Fall time
200
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5,2
5,8
6,4
2
2,17
2,58
2,4
24
480
1
tr
td(OFF)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=2 Ω
Rgon=2 Ω
±15
350
200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
µA
nA
Ω
124
126
27
32
190
234
41
61
2,38
4,20
5,02
7,97
ns
mWs
11080
f=1MHz
0
1150
25
pF
Tj=25°C
640
15
960
960
160
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,22
K/W
0,14
*additional value stands for built-in capacitor
Neutral Point FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Rgon=2 Ω
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright by Vincotech
150
Thermal grease
thickness≤50um
λ = 1 W/mK
4
350
200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,4
1,80
1,61
130
169
93
118
4,47
11,00
5241
1766
0,91
2,39
3,3
V
A
ns
µC
A/µs
mWs
0,64
K/W
0,42
Revision: 1
30-FT12NMA200SH-M660F08
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Neutral Point IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0024
150
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5
5,8
6,5
1,05
1,57
1,68
1,85
7,6
1200
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=2 Ω
Rgon=2 Ω
±15
350
150
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
µA
nA
Ω
123
114
21
21
168
177
38
59
1,18
1,72
3,59
5,13
ns
µWs
9240
f=1MHz
15
480
150
pF
576
Tj=25°C
274
15
480
nC
940
150
Thermal grease
thickness≤50um
λ = 1 W/mK
0,48
K/W
0,32
Neutral Point Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Coupled thermal resistance inverter transistor-diode
RthJC
50
Tj=25°C
Tj=125°C
1,20
Thermal grease
thickness≤50um
λ = 1 W/mK
1,78
1,70
1,90
V
1,16
K/W
0,76
Half Bridge FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
100
1200
IRRM
trr
Qrr
Rgon=2 Ω
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
350
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,50
2,23
2,34
2,54
120
184
216
48
114
6,62
12,94
11659
9489
1,62
3,42
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
0,51
K/W
0,34
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Power dissipation constant
Tj=100°C
-5
+5
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B(25/100)
Tol. ±3%
Tj=25°C
3998
copyright by Vincotech
%
Tj=25°C
B-value
Vincotech NTC Reference
Ω
22000
Tj=25°C
R100=1486 Ω
K
B
5
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Half Bridge IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Half Bridge IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
600
IC (A)
IC (A)
600
500
500
400
400
300
300
200
200
100
100
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Half Bridge IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
NP FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
500
IC (A)
IF (A)
200
160
400
120
300
80
200
Tj = Tjmax-25°C
Tj = 25°C
40
100
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VCE =
Tj =
2
250
10
25/150
copyright by Vincotech
4
6
8
10 V (V)
GE
0
12
At
tp =
Tj =
µs
V
°C
6
0,5
250
25/150
1
1,5
2
2,5
V F (V)
3
µs
°C
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Half Bridge IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Half Bridge IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
16
E (mWs)
16
Eoff High T
12
12
Eon High T
Eoff Low T
8
Eon Low T
Eoff High T
8
Eon High T
Eoff Low T
4
Eon Low T
4
0
0
100
200
300
I C (A)
0
400
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
198
NP FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
NP FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
4
E (mWs)
E (mWs)
3,0
Erec High T
2,5
3
2,0
2
1,5
Erec High T
Erec Low T
1,0
1
0,5
0
Erec Low T
0,0
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
198
A
7
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Half Bridge IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Half Bridge IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdoff
tdoff
tdon
0,10
tdon
0,10
tf
tr
tf
0,01
tr
0,01
0,00
0,00
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
198
NP FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
NP FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,25
trr High T
t rr(ms)
t rr(ms)
0,25
0,20
0,20
0,15
0,15
trr High T
trr Low T
trr Low T
0,10
0,10
0,05
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
2
copyright by Vincotech
200
300
I C (A)
0
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
2
25/125
350
198
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
NP FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
NP FWD
Figure 14
Typical reverse recovery charge as a
function of JFET turn on gate resistor
Qrr = f(Rgon)
12
Qrr (mC)
Qrr (mC)
20
Qrr High T
Qrr High T
10
16
8
12
6
8
Qrr Low T
4
Qrr Low T
4
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
100
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
2
NP FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
350
198
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
NP FWD
Figure 16
Typical reverse recovery current as a
function of JFET turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
250
IRRM High T
200
200
150
150
IRRM Low T
100
100
IRRM High T
IRRM Low T
50
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
2
copyright by Vincotech
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
2
25/125
350
198
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
NP FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
NP FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of JFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
12000
direc / dt (A/ms)
12000
direc / dt (A/ms)
dIo/dt T
dIrec/dt T
10000
dI0/dt T
dIrec/dt T
10000
8000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
2
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Half Bridge IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25/125
350
198
±15
4
6
8
R gon ( Ω)
°C
V
A
V
NP FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
101
10
100
10
-1
10
-2
10
-3
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
-3
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
1011
10
-5
At
D=
RthJH =
tp / T
0,22
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
K/W
10
-4
10
R (C/W)
0,04
0,05
0,04
0,07
0,02
0,01
R (C/W)
0,09
0,11
0,16
0,23
0,03
0,03
10
-2
10
-1
10
0
t p (s)
10 1
1
K/W
FWD thermal model values
copyright by Vincotech
10
tp / T
0,64
IGBT thermal model values
Tau (s)
4,0E+00
9,4E-01
2,3E-01
5,4E-02
1,6E-02
2,8E-03
-3
Tau (s)
4,6E+00
1,2E+00
1,8E-01
3,8E-02
5,8E-03
7,4E-04
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Half Bridge IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Half Bridge IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
800
200
600
150
400
100
200
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
NP FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
NP FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
150
Ptot (W)
IF (A)
250
125
200
100
150
75
100
50
50
25
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Half Bridge IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Half Bridge IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
10
VGE (V)
IC (A)
20
1
18
3
240V
16
960V
100uS
1mS
10
14
2
12
10mS
100mS
101
10
8
DC
10
0
6
4
10
-1
2
0
10
At
D=
Th =
VGE =
Tj =
103
102
101
0
0
V CE (V)
At
ID =
Tj =
single pulse
80
ºC
V
±15
Tjmax
ºC
Half Bridge IGBT
Figure 27
400
160
25
800
1200
2000
A
ºC
Half Bridge IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
1600 Q (nC)
g
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
2400
IC (sc)
tsc (µS)
16
14
2000
12
1600
10
8
1200
6
800
4
400
2
0
0
12
13
14
15
16
V GE (V)
17
12
14
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright by Vincotech
12
16
18
V GE (V)
20
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Half Bridge IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
450
IC MAX
400
Ic
300
250
Ic CHIP
MODULE
350
VCE MAX
200
150
100
50
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
13
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
NP IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
450
IC (A)
IC (A)
450
375
375
300
300
225
225
150
150
75
75
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
NP IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
150
5
IC (A)
IF (A)
300
125
250
100
200
75
150
50
100
Tj = 25°C
Tj = Tjmax-25°C
25
50
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
Tj =
2
250
0
25/150
copyright by Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
Tj =
µs
V
°C
14
1
250
25/150
2
3
4
V F (V)
5
µs
°C
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
NP IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
E (mWs)
E (mWs)
8
Eoff High T
Eon High T
Eoff Low T
6
6
Eoff High T
Eon Low T
4
4
Eoff Low T
Eon High T
2
2
Eon Low T
0
0
0
50
100
150
200
250
300
I C (A)
0
With an inductive load at
Tj =
°C
25/126
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
10
R G ( Ω)
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
IC =
A
151
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
E (mWs)
E (mWs)
5
Erec High T
4
4
3
3
Erec High T
Erec Low T
2
2
1
1
Erec Low T
0
0
0
50
100
150
200
250
300
0
I C (A)
With an inductive load at
Tj =
°C
25/126
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
±15
V
IC =
151
A
15
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
NP IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tdon
0,1
0,1
tf
tf
tr
0,01
0,01
tr
0,001
0,001
0
50
100
150
200
250
0
300
I C (A)
With an inductive load at
Tj =
°C
126
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
±15
V
IC =
151
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr(ms)
t rr(ms)
0,15
trr High T
0,12
trr High T
0,3
0,09
trr Low T
0,2
0,06
trr Low T
0,1
0,03
0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/126
350
±15
2
copyright by Vincotech
100
150
200
250
I C (A)
0
300
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
2
25/126
350
151
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
Qrr (mC)
Qrr (mC)
18
Qrr High T
15
Qrr High T
12
12
Qrr Low T
9
9
Qrr Low T
6
6
3
3
0
0
0
50
At
At
Tj =
VCE =
VGE =
Rgon =
25/126
350
±15
2
100
150
200
250
300
I C (A)
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
2
At
Tj =
VR =
IF =
VGE =
25/126
350
151
±15
4
6
8
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
250
IrrM (A)
300
10
R gon ( Ω)
IRRM High T
250
200
IRRM Low T
200
150
150
IRRM High T
100
IRRM Low T
100
50
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/126
350
±15
2
copyright by Vincotech
100
150
200
250
I C (A)
300
°C
V
V
Ω
17
0
2
At
Tj =
VR =
IF =
VGE =
25/126
350
151
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT and half bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
18000
direc / dt (A/ms)
15000
dIrec/dt T
dIo/dt T
dIrec/dtT
dI0/dtT
15000
12000
12000
9000
9000
6000
6000
3000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
50
25/126
350
±15
2
100
150
200
250
I C (A)
300
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
NP IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
6
8
10
R gon ( Ω)
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
101
100
100
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
25/126
350
151
±15
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
2
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
-3
10-5
At
D=
RthJH =
10-4
tp / T
0,48
10-3
10-2
10-1
100
t p (s)
101 10
10
-5
At
D=
RthJH =
K/W
10
-4
tp / T
0,51
10
FWD thermal model values
R (C/W)
0,09
0,11
0,10
0,15
0,02
R (C/W)
0,06
0,08
0,20
0,14
0,04
copyright by Vincotech
18
10
-2
10
-1
10
0
t p (s)
1
10 10
K/W
IGBT thermal model values
Tau (s)
4,40
0,76
0,13
0,03
0,01
-3
Tau (s)
3,05
0,45
0,09
0,03
0,004
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
NP IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
200
IC (A)
Ptot (W)
400
300
150
200
100
100
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
175
50
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
150
IF (A)
Ptot (W)
350
200
300
125
250
100
200
75
150
50
100
25
50
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
0
50
100
200
At
Tj =
ºC
19
175
150
Th ( o C)
200
ºC
Revision: 1
30-FT12NMA200SH-M660F08
Neutral Point IGBT
neutral point IGBT
NP IGBT
Figure 25
Reverse bias safe operating area
NP IGBT
Figure 26
Gate voltage vs Gate charge
IC = f(VCE)
VGE = f(Qg)
16
IC (A)
VGE (V)
500
14
IC MAX
120V
12
Ic CHIP
Ic MODULE
400
10
300
480V
8
200
VCE MAX
6
4
100
2
0
0
0
100
200
300
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
400
500
600
V CE (V)
700
0
At
ID =
Tj =
NP IGBT
Figure 27
200
150
25
400
600
800
A
ºC
NP IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Q g (nC) 1000
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
2500
tsc (µS)
IC (sc)
12
10
2000
8
1500
6
1000
4
500
2
0
0
10
11
12
13
14
V GE (V)
15
12
14
At
VCE ≤
400
V
At
VCE ≤
400
V
Tj ≤
150
ºC
Tj =
150
ºC
copyright by Vincotech
20
16
18
V GE (V)
20
Revision: 1
30-FT12NMA200SH-M660F08
NP IGBT Inverse Diode
NP Inverse Diode
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
NP Inverse Diode
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
200
1
ZthJC (K/W)
IF (A)
10
160
100
120
80
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
40
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
1
2
3
V F (V)
10
4
10-5
At
D=
RthJH =
µs
250
-2
NP Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
1,16
10-2
10-1
100
t p (s)
10110
K/W
NP Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
175
150
60
125
100
40
75
50
20
25
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
21
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
30-FT12NMA200SH-M660F08
Half Bridge Inverse Diode
Half Bridge IGBT Inverse Diode
Figure 1
Typical FWD forward current as
a function of forward voltage
IF= f(VF)
Half Bridge IGBT Inverse Diode
Figure 2
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
1
ZthJC (K/W)
IF (A)
10
60
100
45
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
15
Tj = Tjmax-25°C
Tj = 25°C
0
0
1
At
tp =
2
3
V F (V)
4
10
10-5
10-4
At
D=
RthJH =
µs
250
-2
Half Bridge IGBT Inverse Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
100
t p (s)
10110
tp / T
1,35
K/W
Half Bridge IGBT Inverse Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
35
IF (A)
Ptot (W)
120
10-1
30
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
22
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
30-FT12NMA200SH-M660F08
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
23
Revision: 1
30-FT12NMA200SH-M660F08
Switching Definitions half bridge
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
half bridge IGBT
Figure 1
half bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
125
IC
tdoff
%
%
100
150
VGE 90%
IC
75
VGE
VGE
100
VCE 90%
VCE
50
tdon
tEoff
50
25
VCE
IC 1%
VGE10%
0
0
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
700
198
0,23
0,61
0,4
time (us)
-50
2,95
0,6
3,05
3,15
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
half bridge IGBT
Figure 3
VCE5%
IC10%
tEon
-15
15
700
198
0,13
0,30
3,25
3,35
3,45
V
V
V
A
µs
µs
half bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
130
200
fitted
%
Ic
%
IC
150
100
IC 90%
70
100
IC 60%
IC90%
VCE
tr
VCE
40
50
IC 40%
IC10%
10
0
IC10%
tf
-20
-50
0,1
0,15
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,2
700
198
0,06
0,25
0,3
0,35
time (us)
0,4
3,1
3,15
3,2
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
700
198
0,03
V
A
µs
Revision: 1
30-FT12NMA200SH-M660F08
Switching Definitions half bridge
half bridge IGBT
Figure 5
half bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
IC 1%
%
Eoff
Eon
100
100
75
75
50
50
25
25
Pon
Poff
VGE90%
VCE3%
VGE10%
0
0
tEoff
tEon
-25
-25
-0,2
0
0,2
0,4
0,6
2,9
0,8
3
3,1
3,2
3,3
3,4
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
138,85
7,97
0,61
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
neutral point FWD
Figure 7
3,5
time(us)
138,85
4,20
0,30
kW
mJ
µs
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
150
150
%
%
Id
Qrr
Id
100
100
trr
50
tQrr
50
Vd
0
fitted
IRRM 10%
0
-50
IRRM 90%
IRRM100%
-100
-50
-150
-100
3,1
3,14
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,18
700
198
-169
0,12
3,22
3,26
3,3
3,34
time(us)
3,1
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
25
3,2
3,3
198
11,00
0,24
3,4
time(us)
3,5
A
µC
µs
Revision: 1
30-FT12NMA200SH-M660F08
Switching Definitions half bridge
neutral point FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
%
Erec
100
tErec
50
Prec
0
-50
3,1
3,2
3,3
3,4
3,5
time(us)
Prec (100%) =
Erec (100%) =
tErec =
138,85
2,39
0,24
kW
mJ
µs
half bridge switching measurement circuit
half bridge IGBT
Figure 11
copyright by Vincotech
26
Revision: 1
30-FT12NMA200SH-M660F08
Switching Definitions neutral point IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
neutral point IGBT
Figure 1
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
%
IC
200
100
VGE 90%
IC
150
75
VGE
VCE
50
VGE
100
VCE 90%
tEoff
VCE
tdon
50
25
IC 1%
VCE3%
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
time (us)
-50
3,95
0,6
4,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
neutral point IGBT
Figure 3
4,1
4,15
-15
15
700
151
0,11
0,19
4,2
4,25
V
V
V
A
µs
µs
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
250
fitted
%
4
time(us)
V
V
V
A
µs
µs
-15
15
700
151
0,18
0,46
IC 10%
tEon
VGE 10%
0
0
Ic
%
100
200
Ic 90%
75
150
VCE
Ic 60%
50
100
IC90%
Ic 40%
VCE
25
50
IC
Ic 10%
0
-25
0,05
tr
0,10
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,15
700
151
0,064
IC10%
0
tf
0,20
0,25
time (us)
-50
4,05
0,30
VC (100%) =
IC (100%) =
tr =
V
A
µs
27
4,1
4,15
700
151
0,019
4,2
time(us)
4,25
V
A
µs
Revision: 1
30-FT12NMA200SH-M660F08
Switching Definitions neutral point IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Ic 1%
%
Eoff
100
100
75
75
Eon
50
50
25
25
Poff
Uge 90%
Pon
Uge 10%
0
-25
-0,2
0
tEon
0,2
0,4
-25
3,95
0,6
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
69,93
3,32
0,44
Uce 3%
0
tEoff
4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
half bridge FWD
Figure 7
4,05
4,1
69,93
1,52
0,18
kW
mJ
µs
4,2 time(us) 4,25
half bridge FWD
Figure 8
Turn-on Switching Waveforms & definition of tQrr
Turn-off Switching Waveforms & definition of trr
150
150
%
%
Qrr
Id
Id
100
100
trr
50
0
4,15
tQint
50
Ud
fitted
0
IRRM 10%
-50
-50
-100
-100
IRRM 90%
IRRM 100%
-150
4,05
-150
4,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
4,15
700
151
-142
0,07
4,2
4,25
time(us)
4,3
4
Id (100%) =
Qrr (100%) =
tQint =
V
A
A
µs
28
4,1
4,2
151
12,71
1,00
4,3
time(us)
4,4
A
µC
µs
Revision: 1
30-FT12NMA200SH-M660F08
Switching Definitions neutral point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
%
half bridge FWD
Erec
100
tErec
75
50
25
Prec
0
-25
4,1
4,15
Prec (100%) =
Erec (100%) =
tErec =
4,2
69,93
3,61
1,00
4,25
4,3
4,35
4,4
time(us)
kW
mJ
µs
neutral point IGBT switching measurement circuit
neutral point IGBT
Figure 10
copyright by Vincotech
29
Revision: 1
30-FT12NMA200SH-M660F08
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 13mm housing
Ordering Code
30-FT12NMA200SH-M660F08
in DataMatrix as
M660F08
in packaging barcode as
M660F08
Outline
Pinout
copyright by Vincotech
30
Revision: 1
30-FT12NMA200SH-M660F08
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
31
Revision: 1