V23990 K218 F40 D2 1 14

V23990-K218-F40-PM
MiniSKiiP® 1 PACK
1200V/8A
MiniSKiiP® 1 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K218-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
10
A
tp limited by Tjmax
24
A
VCE≤1200V, Tj≤Topmax
16
A
51
W
±20
V
µs
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Tj=Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Tj≤150°C
VGE=15V
Short circuit ratings
Maximum Junction Temperature
Th=80°C
Th=80°C
tSC
10
VCC
800
V
Tjmax
175
°C
VRRM
1200
V
10
A
24
A
38
W
175
°C
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2.1
V23990-K218-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K218-F40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,85
2,25
2,15
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0003
8
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,06
200
Rgoff=64Ω
Rgon=64Ω
±15
600
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
109
108
30
36
225
292
91
121
0,54
0,85
0,49
0,79
ns
mWs
490
f=1MHz
25
0
50
Tj=25°C
pF
30
±15
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
90
nC
1,84
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
8
Rgon=64Ω
600
±15
di(rec)max
/dt
Erec
RthJH
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,3
Thermal grease
thickness≤50µm
λ=1W/mK
2,3
2,26
4,52
6,68
269
581
0,56
1,51
38
28
0,21
0,64
2,8
V
A
ns
µC
A/µs
mWs
2,53
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,313
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
R
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
250
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
Tj = 25°C
IF (A)
IC (A)
10
5
8
20
6
15
4
10
Tj = Tjmax-25°C
2
5
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
1
250
2
3
V F (V)
4
µs
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2
Eon High T
E (mWs)
Eon High T
E (mWs)
2
1,5
1,5
Eon Low T
Eoff High T
Eon Low T
1
1
Eoff High T
Eoff Low T
Eoff Low T
0,5
0,5
0
0
0
4
8
12
I C (A)
0
16
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
64
Rgoff =
64
Ω
64
128
192
256
RG( Ω )
320
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
8
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
1
E (mWs)
1
Erec
0,8
0,8
Tj = Tjmax -25°C
0,6
Tj = Tjmax -25°C
0,6
Erec
0,4
0,4
Erec
Tj = 25°C
Tj = 25°C
0,2
Erec
0,2
0
0
0
4
8
12
I C (A)
16
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
64
Ω
copyright Vincotech
64
128
192
256
RG( Ω )
320
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
5
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
tdon
t ( µs)
t ( µs)
1
tdoff
tdon
tf
0,1
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
4
8
12
I C (A)
16
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
64
Rgoff =
64
Ω
64
128
192
RG( Ω )
256
320
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
1
t rr( µs)
1
trr
trr
0,8
0,8
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
trr
trr
0,4
0,4
Tj = 25°C
0,2
0,2
Tj = 25°C
0
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
copyright Vincotech
8
12
I C (A)
64
128
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
25/150
600
8
±15
192
256
R g on ( Ω )
320
°C
V
A
V
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2
Qrr( µC)
Qrr( µC)
2
Qrr
1,6
1,6
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
1,2
1,2
Qrr
0,8
0,8
Tj = 25°C
0,4
Qrr
0,4
Tj = 25°C
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
4
25/150
600
±15
64
8
12
I C (A)
16
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
64
25/150
600
8
±15
128
192
256
R g on ( Ω)
320
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
12
IrrM (A)
IrrM (A)
8
Tj = Tjmax -25°C
10
IRRM
6
8
IRRM
Tj = Tjmax - 25°C
6
4
Tj = 25°C
4
IRRM
2
Tj = 25°C
IRRM
2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
copyright Vincotech
8
12
I C (A)
0
16
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
64
25/150
600
8
±15
128
192
256
R gon ( Ω ) 320
°C
V
A
V
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
400
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
dI0/dt
dIrec/dt
1000
320
dIrec/dt
dI0/dt
800
dIo/dtLow T
240
600
di0/dtHigh T
160
400
80
200
dIrec/dtHigh T
dIrec/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/150
600
±15
64
8
12
I C (A)
16
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
64
25/150
600
8
±15
128
R gon ( Ω )
192
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
256
10
0
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
10-4
At
D=
RthJH =
tp / T
1,84
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
K/W
10-4
10-3
R (C/W)
0,05
0,15
0,66
0,45
0,29
0,13
R (C/W)
0,06
0,33
1,12
0,63
0,54
0,29
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
2,53
IGBT thermal model values
Tau (s)
4,8E+00
5,9E-01
1,2E-01
3,8E-02
8,5E-03
1,7E-03
10-2
Tau (s)
5,7E+00
4,5E-01
8,6E-02
1,7E-02
2,8E-03
5,0E-04
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
12
IC (A)
Ptot (W)
100
10
80
8
60
6
40
4
20
2
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
12
IF (A)
Ptot (W)
75
200
10
60
8
45
6
30
4
15
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K218-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
102
IC (A)
VGE (V)
16
14
240V
10uS
10
1
12
960V
10
100uS
8
100
1mS
6
10mS
4
10-1
100mS
2
DC
0
10-2
100
At
D=
Th =
VGE =
Tj =
101
102
103
0
10
20
V CE (V)
30
40
50
60
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
8
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
10
Revision: 2.1
V23990-K218-F40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 64 Ω
Rgoff
= 64 Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
200
%
%
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
tdoff
IC
160
VCE
100
VGE 90%
VCE 90%
120
80
IC
60
VCE
VGE
80
tdon
tEoff
40
40
IC 1%
20
IC10%
VGE10%
VCE 3%
0
0
VGE
tEon
-20
-0,25
-0,05
0,15
0,35
0,55
-40
0,75
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
8
0,29
0,67
2,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
-15
15
600
8
0,11
0,36
3,3
time(us)
3,7
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,5
Turn-on Switching Waveforms & definition of tr
140
220
%
%
Ic
fitted
120
180
IC
100
VCE
IC 90%
140
80
VCE
IC 60%
60
100
IC90%
IC 40%
40
tr
60
20
IC10%
-20
0,15
20
tf
0
0,2
0,25
IC10%
0,3
0,35
0,4
-20
3,05
0,45
3,1
3,15
3,2
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
8
0,12
3,25
3,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
8
0,04
V
A
µs
Revision: 2.1
V23990-K218-F40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Pon
%
Eoff
100
140
80
Eon
100
60
40
60
20
VGE 90%
20
0
VGE 10%
VCE 3%
tEoff
tEon
IC 1%
-20
-0,2
0
0,2
0,4
0,6
-20
2,95
0,8
3,05
3,15
3,25
Poff (100%) =
Eoff (100%) =
tEoff =
4,79
0,79
0,67
3,35
3,45
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
4,79
0,85
0,36
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
IRRM90%
-80
IRRM100%
fitted
-120
3
3,15
3,3
3,45
3,6
3,75
3,9
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
600
8
-7
0,58
V
A
A
µs
12
Revision: 2.1
V23990-K218-F40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Id
Qrr
100
100
80
50
tErec
60
tQrr
40
0
20
Prec
-50
0
-100
2,9
3,15
3,4
3,65
3,9
4,15
4,4
-20
2,75
4,65
3,15
3,55
3,95
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
8
1,51
1,18
4,35
4,75
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
4,79
0,64
1,18
kW
mJ
µs
Revision: 2.1
V23990-K218-F40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K218-F40-/0A/-PM
V23990-K218-F40-/1A/-PM
V23990-K218-F40-/0B/-PM
V23990-K218-F40-/1B/-PM
K218F40
K218F40
K218F40
K218F40
in packaging barcode as
K218F40-/0A/
K218F40-/1A/
K218F40-/0B/
K218F40-/1B/
Outline
Pinout
copyright Vincotech
14
Revision: 2.1
V23990-K218-F40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
Revision: 2.1