APT47GA60JD40 600V High Speed PT IGBT E E POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved 7 22 C G through leading technology silicon design and lifetime control processes. A reduced Eoff TO S VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short "UL Recognized" ISOTOP ® delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT47GA60JD40 poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Combi (IGBT and Diode) ® file # E145592 FEATURES TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 600 V IC1 Continuous Collector Current @ TC = 25°C 87 IC2 Continuous Collector Current @ TC = 100°C 47 ICM Pulsed Collector Current 1 139 VGE Gate-Emitter Voltage ±30 V PD Total Power Dissipation @ TC = 25°C 283 W Vces Parameter 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol 139A @ 600V -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A °C 300 TJ = 25°C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 1.0mA 600 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25°C 2.0 IC = 47A TJ = 125°C 1.9 VGE =VCE , IC = 1mA ICES Typ 3 4.5 TJ = 25°C 275 VGE = 0V TJ = 125°C 3000 Microsemi Website - http://www.microsemi.com V 6 VCE = 600V, VGS = ±30V Unit ±100 μA nA 052-6338 Rev B 4 - 2009 Symbol Dynamic Characteristics Symbol Parameter Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg Total Gate Charge 3 Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf APT47GA60JD40 TJ = 25°C unless otherwise specified Min 6320 VGE = 0V, VCE = 25V 580 f = 1MHz 63 Gate Charge 226 VGE = 15V 46 VCE= 300V Gate- Collector Charge Turn-On Delay Time TJ = 150°C, RG = 4.7Ω4, VGE = 15V, 24 Current Rise Time VCC = 400V 26 Turn-Off Delay Time VGE = 15V 158 IC = 47A 56 Turn-On Switching Energy RG = 4.7Ω4 1119 Eoff Turn-Off Switching Energy 6 TJ = +25°C 693 td(on) Turn-On Delay Time Inductive Switching (125°C) 23 tr tf Current Rise Time VCC = 400V 28 Turn-Off Delay Time VGE = 15V 190 Current Fall Time Eon2 Turn-On Switching Energy Eoff Turn-Off Switching Energy 6 nC A Eon2 td(off) Unit pF 139 L= 100uH, VCE = 600V Inductive Switching (25°C) Current Fall Time Max 78 IC = 47A Switching Safe Operating Area Typ Capacitance IC = 47A 109 RG = 4.7Ω4 1984 TJ = +125°C 1037 ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic RθJC Junction to Case Thermal Resistance (IGBT) RθJC Junction to Case Thermal Resistance (Diode) WT Package Weight VIsolation RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) Min Typ Max - - .44 1.21 2500 29.2 - Unit °C/W g in·lbf 052-6338 Rev B 4 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT47GA60JD40 350 150 V 300 125 100 TJ= 125°C TJ= 25°C 75 50 25 60 40 TJ= 125°C 0 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 3 IC = 94A IC = 47A 2 IC = 23.5A 1 8 10 0 5V 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 12 14 16 I = 47A C T = 25°C J VCE = 120V 15 VCE = 300V 10 VCE = 480V 5 0 0 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 50 5 100 150 200 GATE CHARGE (nC) FIGURE 4, Gate charge 250 4 IC = 94A 3 IC = 47A 2 IC = 23.5A 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 120 1.15 IC, DC COLLECTOR CURRENT (A) 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 6V 50 2 4 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 6 7V 100 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature 100 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6338 Rev B 4 - 2009 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ= -55°C TJ= 25°C 4 0 8V 150 VGE, GATE-TO-EMITTER VOLTAGE (V) 80 0 200 20 250μs PULSE TEST<0.5 % DUTY CYCLE 20 9V 250 0 1 2 3 4 5 6 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 100 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) TJ= 55°C TJ= 150°C 0 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 15V 13V 10V = 15V VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) GE Typical Performance Curves APT47GA60JD40 200 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 50 40 VGE = 15V 30 20 VCE = 400V TJ = 25°C, or 125°C RG = 4.7Ω L = 100μH 10 175 VGE =15V,TJ=125°C 150 VGE =15V,TJ=25°C 125 VCE = 400V RG = 4.7Ω L = 100μH 0 100 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 100 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 140 RG = 4.7Ω, L = 100μH, VCE = 400V RG = 4.7Ω, L = 100μH, VCE = 400V 120 80 TJ = 125°C, VGE = 15V tr, FALL TIME (ns) tr, RISE TIME (ns) 100 60 40 80 60 TJ = 25°C, VGE = 15V 40 20 20 TJ = 25 or 125°C,VGE = 15V 0 0 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current V = 400V CE V = +15V GE R = 4.7Ω G 4000 TJ = 125°C 3000 2000 1000 TJ = 25°C EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 5000 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 4000 J Eon2,94A 6000 Eon2,47A Eoff,47A Eoff,23.5A SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 052-6338 Rev B 4 - 2009 Eon2,94A 9000 0 2500 TJ = 125°C 2000 1500 1000 TJ = 25°C 500 5000 V = 400V CE V = +15V GE T = 125°C 3000 3000 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 0 20 40 60 80 100 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 12000 G 0 0 15000 V = 400V CE V = +15V GE R = 4.7Ω 3500 V = 400V CE V = +15V GE R = 4.7Ω G 4000 Eon2,94A 3000 2000 Eoff,47A Eoff,47A 1000 Eon2,23.5A Eon2,23.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance Eon2,94A 0 Eoff,23.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT47GA60JD40 800 Cies IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 10,000 1,000 Coes 100 Cres 10 100 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0 100 200 300 400 500 600 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0.45 D = 0.9 0.40 0.35 0.7 0.30 0.5 0.25 Note: PDM 0.20 0.3 0.15 t1 t2 0.10 t 0.1 0.05 0.05 0 10 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-2 10-3 0.1 1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration -5 TJ (°C) 10 TC (°C) .0925 .26312 .0828 Dissipated Power (Watts) .0059 .2413 ZEXT 0.0802 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 052-6338 Rev B 4 - 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 APT47GA60JD40 10% Gate Voltage td(on) TJ = 125°C 90% APT30DQ60 tr IC V CC V CE 5% Collector Current 10% Collector Voltage 5% Switching Energy A D.U.T. Figure 19, Inductive Switching Test Circuit 90% Figure 20, Turn-on Switching Waveforms and Definitions TJ = 125°C td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6338 Rev B 4 - 2009 Figure 21, Turn-off Switching Waveforms and Definitions ULTRAFAST SOFT RECOVERY RECTIFIER DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT47GA60JD40 Maximum Average Forward Current (TC = 100°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 42 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 320 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Min IF = 30A 1.8 IF = 60A 2.0 IF = 30A, TJ = 125°C 1.3 Forward Voltage VF Type Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Time Qrr Reverse Recovery Charge Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 21 - VR = 400V, TC = 25°C IF = 30A, diF/dt = -200A/µs Maximum Reverse Recovery Current IRRM Min IF = 30A, diF/dt = -200A/µs Maximum Reverse Recovery Current trr Test Conditions trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current VR = 400V, TC = 125°C IF = 30A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Unit ns - 105 - - 115 - nC - 3 - Amps - 125 - ns - 465 - nC - 7 - Amps - 60 - ns - 830 - nC - 23 - Amps 1.20 D = 0.9 1.00 0.7 0.80 0.5 0.60 0.40 0.3 0.20 0.1 Note: PDM t2 t 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 0 t1 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL Junction temp (°C) Power (watts) 0.320 0.00278 0.515 0.0421 0.375 0.242 Case temperature (°C) FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL 052-6338 Rev B 4 - 2009 Z JC, THERMAL IMPEDANCE (°C/W) θ 1.40 Dynamic Characteristics TJ = 25°C unless otherwise specified 140 80 60 TJ = 125°C 40 TJ = -55°C 20 TJ = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage 0 1400 Qrr, REVERSE RECOVERY CHARGE (nC) trr, REVERSE RECOVERY TIME (ns) TJ = 175°C 100 T = 125°C J V = 400V R 1200 60A 1000 800 30A 600 400 15A 200 30A 100 15A 50 35 T = 125°C J V = 400V 60A R 30 25 20 15 30A 10 15A 5 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change 50 Qrr Duty cycle = 0.5 T = 175°C 45 trr 1.0 150 0 J 40 IRRM 0.8 trr 35 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 R 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change 0 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change T = 125°C J V = 400V 60A 0 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 120 0 APT47GA60JD40 200 0.6 30 25 20 0.4 15 Qrr 0.2 10 5 0.0 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature CJ, JUNCTION CAPACITANCE (pF) 052-6338 Rev B 4 - 2009 200 150 100 50 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature Dynamic Characteristics TJ = 25°C unless otherwise specified APT47GA60JD40 Vr diF /dt Adjust +18V APT6017LLL 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 9, Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 10, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) Collector/Cathode * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode Gate Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6338 Rev B 4 - 2009 7.8 (.307) 8.2 (.322)