MICROSEMI APT47GA60JD40

APT47GA60JD40
600V
High Speed PT IGBT
E
E
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
7
22
C
G
through leading technology silicon design and lifetime control processes. A reduced Eoff TO S
VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
"UL Recognized"
ISOTOP ®
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT47GA60JD40
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Combi (IGBT and Diode)
®
file # E145592
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
600
V
IC1
Continuous Collector Current @ TC = 25°C
87
IC2
Continuous Collector Current @ TC = 100°C
47
ICM
Pulsed Collector Current 1
139
VGE
Gate-Emitter Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
283
W
Vces
Parameter
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
139A @ 600V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
°C
300
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 1.0mA
600
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 47A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
TJ = 25°C
275
VGE = 0V
TJ = 125°C
3000
Microsemi Website - http://www.microsemi.com
V
6
VCE = 600V,
VGS = ±30V
Unit
±100
μA
nA
052-6338 Rev B 4 - 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg
Total Gate Charge 3
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
APT47GA60JD40
TJ = 25°C unless otherwise specified
Min
6320
VGE = 0V, VCE = 25V
580
f = 1MHz
63
Gate Charge
226
VGE = 15V
46
VCE= 300V
Gate- Collector Charge
Turn-On Delay Time
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,
24
Current Rise Time
VCC = 400V
26
Turn-Off Delay Time
VGE = 15V
158
IC = 47A
56
Turn-On Switching Energy
RG = 4.7Ω4
1119
Eoff
Turn-Off Switching Energy 6
TJ = +25°C
693
td(on)
Turn-On Delay Time
Inductive Switching (125°C)
23
tr
tf
Current Rise Time
VCC = 400V
28
Turn-Off Delay Time
VGE = 15V
190
Current Fall Time
Eon2
Turn-On Switching Energy
Eoff
Turn-Off Switching Energy
6
nC
A
Eon2
td(off)
Unit
pF
139
L= 100uH, VCE = 600V
Inductive Switching (25°C)
Current Fall Time
Max
78
IC = 47A
Switching Safe Operating Area
Typ
Capacitance
IC = 47A
109
RG = 4.7Ω4
1984
TJ = +125°C
1037
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol
Characteristic
RθJC
Junction to Case Thermal Resistance (IGBT)
RθJC
Junction to Case Thermal Resistance (Diode)
WT
Package Weight
VIsolation
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
Min
Typ
Max
-
-
.44
1.21
2500
29.2
-
Unit
°C/W
g
in·lbf
052-6338 Rev B 4 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT47GA60JD40
350
150
V
300
125
100
TJ= 125°C
TJ= 25°C
75
50
25
60
40
TJ= 125°C
0
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
3
IC = 94A
IC = 47A
2
IC = 23.5A
1
8
10
0
5V
0
4
8
12 16 20 24 28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
12
14
16
I = 47A
C
T = 25°C
J
VCE = 120V
15
VCE = 300V
10
VCE = 480V
5
0
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
50
5
100
150
200
GATE CHARGE (nC)
FIGURE 4, Gate charge
250
4
IC = 94A
3
IC = 47A
2
IC = 23.5A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
1.15
IC, DC COLLECTOR CURRENT (A)
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
6V
50
2
4
6
8
10 12 14 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
7V
100
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
100
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6338 Rev B 4 - 2009
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ= -55°C
TJ= 25°C
4
0
8V
150
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
0
200
20
250μs PULSE
TEST<0.5 % DUTY
CYCLE
20
9V
250
0
1
2
3
4
5
6
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
100
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
TJ= 55°C
TJ= 150°C
0
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
15V 13V
10V
= 15V
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
Typical Performance Curves
APT47GA60JD40
200
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
50
40
VGE = 15V
30
20
VCE = 400V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
10
175
VGE =15V,TJ=125°C
150
VGE =15V,TJ=25°C
125
VCE = 400V
RG = 4.7Ω
L = 100μH
0
100
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
100
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
RG = 4.7Ω, L = 100μH, VCE = 400V
RG = 4.7Ω, L = 100μH, VCE = 400V
120
80
TJ = 125°C, VGE = 15V
tr, FALL TIME (ns)
tr, RISE TIME (ns)
100
60
40
80
60
TJ = 25°C, VGE = 15V
40
20
20
TJ = 25 or 125°C,VGE = 15V
0
0
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
G
4000
TJ = 125°C
3000
2000
1000
TJ = 25°C
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
5000
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
4000
J
Eon2,94A
6000
Eon2,47A
Eoff,47A
Eoff,23.5A
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6338 Rev B 4 - 2009
Eon2,94A
9000
0
2500
TJ = 125°C
2000
1500
1000
TJ = 25°C
500
5000
V
= 400V
CE
V
= +15V
GE
T = 125°C
3000
3000
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
12000
G
0
0
15000
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
3500
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
G
4000
Eon2,94A
3000
2000
Eoff,47A
Eoff,47A
1000
Eon2,23.5A
Eon2,23.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
Eon2,94A
0
Eoff,23.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT47GA60JD40
800
Cies
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
10,000
1,000
Coes
100
Cres
10
100
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0
100
200
300
400
500
600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0.45
D = 0.9
0.40
0.35
0.7
0.30
0.5
0.25
Note:
PDM
0.20
0.3
0.15
t1
t2
0.10
t
0.1
0.05
0.05
0
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-2
10-3
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-5
TJ (°C)
10
TC (°C)
.0925
.26312
.0828
Dissipated Power
(Watts)
.0059
.2413
ZEXT
0.0802
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6338 Rev B 4 - 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
APT47GA60JD40
10%
Gate Voltage
td(on)
TJ = 125°C
90%
APT30DQ60
tr
IC
V CC
V CE
5%
Collector Current
10%
Collector Voltage
5%
Switching Energy
A
D.U.T.
Figure 19, Inductive Switching Test Circuit
90%
Figure 20, Turn-on Switching Waveforms and Definitions
TJ = 125°C
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6338 Rev B 4 - 2009
Figure 21, Turn-off Switching Waveforms and Definitions
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT47GA60JD40
Maximum Average Forward Current (TC = 100°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
42
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
320
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
Min
IF = 30A
1.8
IF = 60A
2.0
IF = 30A, TJ = 125°C
1.3
Forward Voltage
VF
Type
Max
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
21
-
VR = 400V, TC = 25°C
IF = 30A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
IRRM
Min
IF = 30A, diF/dt = -200A/µs
Maximum Reverse Recovery Current
trr
Test Conditions
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
VR = 400V, TC = 125°C
IF = 30A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Unit
ns
-
105
-
-
115
-
nC
-
3
-
Amps
-
125
-
ns
-
465
-
nC
-
7
-
Amps
-
60
-
ns
-
830
-
nC
-
23
-
Amps
1.20
D = 0.9
1.00
0.7
0.80
0.5
0.60
0.40
0.3
0.20
0.1
Note:
PDM
t2
t
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
0
t1
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Junction
temp (°C)
Power
(watts)
0.320
0.00278
0.515
0.0421
0.375
0.242
Case temperature (°C)
FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL
052-6338 Rev B 4 - 2009
Z JC, THERMAL IMPEDANCE (°C/W)
θ
1.40
Dynamic Characteristics
TJ = 25°C unless otherwise specified
140
80
60
TJ = 125°C
40
TJ = -55°C
20
TJ = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
0
1400
Qrr, REVERSE RECOVERY CHARGE
(nC)
trr, REVERSE RECOVERY TIME
(ns)
TJ = 175°C
100
T = 125°C
J
V = 400V
R
1200
60A
1000
800
30A
600
400
15A
200
30A
100
15A
50
35
T = 125°C
J
V = 400V
60A
R
30
25
20
15
30A
10
15A
5
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
50
Qrr
Duty cycle = 0.5
T = 175°C
45
trr
1.0
150
0
J
40
IRRM
0.8
trr
35
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
R
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
T = 125°C
J
V = 400V
60A
0
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
120
0
APT47GA60JD40
200
0.6
30
25
20
0.4
15
Qrr
0.2
10
5
0.0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
CJ, JUNCTION CAPACITANCE
(pF)
052-6338 Rev B 4 - 2009
200
150
100
50
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
Dynamic Characteristics
TJ = 25°C unless otherwise specified
APT47GA60JD40
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 9, Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 10, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6338 Rev B 4 - 2009
7.8 (.307)
8.2 (.322)