SKP06N60, SKB06N60 SKA06N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation C combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls G E - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour P-TO-220-3-1 P-TO-263-3-2 (D²-PAK) - parallel switching capability (TO-220AB) (TO-263AB) • Very soft, fast recovery anti-parallel EmCon diode • Isolated TO-220, 2.5kV, 60s • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKP06N60 VCE IC VCE(sat) Tj 600V 6A 2.3V 150°C SKB06N60 SKA06N60 5A P-TO-220-3-31 (FullPAK) Package Ordering Code TO-220AB Q67040-S4230 TO-263AB Q67040-S4231 TO-220-3-31 Q67040-S4340 Maximum Ratings Parameter Value Symbol Collector-emitter voltage VCE DC collector current IC Unit SKP06N60 SKB06N60 SKA06N60 600 600 A TC = 25°C 12 9 TC = 100°C 6.9 5.0 24 24 24 24 TC = 25°C 12 12 TC = 100°C 6 6 Pulsed collector current, tp limited by Tjmax ICpul s Turn off safe operating area - VCE ≤ 600V, Tj ≤ 150°C IF Diode forward current Diode pulsed current, tp limited by Tjmax IFpul s 24 24 Gate-emitter voltage VGE ±20 ±20 10 10 68 32 1) tSC Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Ptot Power dissipation TC = 25°C 2) Mounting Torque, M3 Screw M Operating junction and storage temperature Tj , Tstg 1) 2) V 1.0 V µs W Nm -55...+150 -55...+150 °C Allowed number of short circuits: <1000; time between short circuits: >1s. Maximum mounting processes: 3 1 Jul-02 SKP06N60, SKB06N60 SKA06N60 Thermal Resistance Parameter Symbol Conditions Unit Max. Value SKP06N60 SKB06N60 SKA06N60 Characteristic IGBT thermal resistance, RthJC 1.85 3.9 RthJCD 3.5 5.0 K/W junction – case Diode thermal resistance, junction – case RthJA Thermal resistance, TO-220AB junction – ambient 62 TO220-3-31 1) SMD version, device on PCB RthJA 65 TO-263AB 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2.0 2.4 - 2.3 2.8 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 6 A T j =2 5 °C T j =1 5 0° C VF Diode forward voltage V V G E = 0V , I F = 6 A T j =2 5 °C 1.2 1.4 1.8 T j =1 5 0° C - 1.25 1.65 3 4 5 Gate-emitter threshold voltage VGE(th) I C = 25 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 20 T j =1 5 0° C - - 700 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 6 A - 4.2 - S Input capacitance Ciss V C E = 25 V , - 350 420 pF Output capacitance Coss V G E = 0V , - 38 46 Reverse transfer capacitance Crss f= 1 MH z - 23 28 Gate charge QGate V C C = 48 0 V, I C =6 A - 32 42 nC Dynamic Characteristic V G E = 15 V Internal emitter inductance LE T O - 22 0A B - 7 - nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 1 5 0° C - 60 - A measured 5mm (0.197 in.) from case 2) Short circuit collector current 1) 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02 SKP06N60, SKB06N60 SKA06N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 25 30 - 18 22 - 220 264 - 54 65 - 0.110 0.127 - 0.105 0.137 - 0.215 0.263 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 6 A, V G E = 0/ 15 V , R G =50Ω , 1) L σ = 18 0 nH , 1) C σ = 25 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =2 5 °C , - 200 - tS V R = 2 00 V , I F = 6 A, - 17 - tF d i F / d t =2 0 0 A/ µs - 183 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 200 - nC Diode peak reverse recovery current Irrm - 2.8 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 24 29 - 17 20 - 248 298 - 70 84 - 0.167 0.192 - 0.153 0.199 - 0.320 0.391 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0° C V C C = 40 0 V, I C = 6 A, V G E = 0/ 15 V , R G = 50 Ω, 1) L σ =1 8 0n H, 1) C σ = 2 50 pF Energy losses include “tail” and diode reverse recovery. trr T j =1 5 0° C - 290 - tS V R = 2 00 V , I F = 6 A, - 27 - tF d i F / d t =2 0 0 A/ µs - 263 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 500 - nC Diode peak reverse recovery current Irrm - 5.0 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/µs 1) Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02 SKP06N60, 30A SKP06N60 SKB06N60 SKA06N60 SKB06N60 SKA06N60 Ic tp=2µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 10A 20A TC=80°C TC=110°C 10A Ic 0A 10Hz 15µs 50µs 1A 200µs 100Hz 1kHz 10kHz 100kHz 1V 100V 1000V SKP06N60 SKB06N60 SKP06N60 SKB06N60 IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 80W 40W SKA06N60 20W 0W 25°C DC 0,1A f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 50Ω) 60W 1ms SKP06N60 SKB06N60 SKA06N60 50°C 75°C 100°C 10A SKA06N60 5A 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 20A 20A 15A 15A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKP06N60, VGE=20V 10A 5A 0A 0V 15V 13V 11V 9V 7V 5V 1V 2V 3V 4V 18A Tj=+25°C -55°C +150°C IC, COLLECTOR CURRENT 16A 14A 12A 10A 8A 6A 4A 2A 0A 0V 2V 4V 6V 8V 10V 10A 15V 13V 11V 9V 7V 5V 5A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 20A VGE=20V 0A 0V 5V SKB06N60 SKA06N60 VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V IC = 12A 3.5V 3.0V IC = 6A 2.5V 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SKP06N60, SKB06N60 SKA06N60 100ns td(off) t, SWITCHING TIMES t, SWITCHING TIMES t d(off) tf t d(on) tf 100ns t d(on) tr tr 10ns 0A 3A 6A 9A 12A 10ns 0Ω 15A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 50Ω, Dynamic test circuit in Figure E) 50 Ω 100 Ω 150 Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 6A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES t d(off) 100ns tf td(on) tr 10ns 0°C 50°C 100°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.25mA) 6 Jul-02 SKP06N60, SKB06N60 SKA06N60 0.6mJ 0.8mJ *) Eon and Ets include losses due to diode recovery. *) Eon and Ets include losses due to diode recovery. E ts * E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES E ts * 0.6mJ 0.4mJ E on * E off 0.2mJ 0.0mJ 0A 3A 6A 9A 12A 0.4mJ E off 0.0mJ 0Ω 15A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 50Ω, Dynamic test circuit in Figure E) E on * 0.2mJ 50 Ω 100 Ω 150 Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 6A, Dynamic test circuit in Figure E) 0.4mJ E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. E ts * 0.3mJ 0.2mJ E on * E off 0.1mJ 0.0mJ 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50Ω, Dynamic test circuit in Figure E) 7 Jul-02 SKP06N60, SKB06N60 SKA06N60 1nF 25V C iss 120V 480V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 15V 10V 100pF C oss 5V C rss 0V 0nC 15nC 30nC 10pF 0V 45nC QGE, GATE CHARGE Figure 16. Typical gate charge (IC = 6A) 20V 30V 100A IC(sc), SHORT CIRCUIT COLLECTOR CURRENT tsc, SHORT CIRCUIT WITHSTAND TIME 25 µ s 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 11V 12V 13V 14V 80A 60A 40A 20A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 18. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 19. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Jul-02 500ns 1000nC 400ns 800nC IF = 12A 300ns 200ns IF = 6A IF = 3A 100ns Qrr, REVERSE RECOVERY CHARGE trr, REVERSE RECOVERY TIME SKP06N60, d i F / d t, DIODE CURRENT SLOPE Figure 20. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 600nC 400nC 10A 500A/µs IF = 6A IF = 3A 4A 2A 0A 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs OF REVERSE RECOVERY CURRENT 600A/µs 6A IF = 3A 200nC 12A IF = 12A IF = 6A d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) d i r r /d t, DIODE PEAK RATE OF FALL Irr, REVERSE RECOVERY CURRENT IF = 12A 0nC 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs 0ns 50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs 8A SKB06N60 SKA06N60 400A/µs 300A/µs 200A/µs 100A/µs 0A/µs 50A/µs d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Jul-02 SKP06N60, SKB06N60 SKA06N60 2.0V 12A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 10A 8A 150°C 6A 100°C 4A 25°C I F = 12A 1.5V I F = 6A -55°C 2A 0A 0.0V 0.5V 1.0V 1.5V 1.0V 2.0V VF, FORWARD VOLTAGE Figure 24. Typical diode forward current as a function of forward voltage -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 25. Typical diode forward voltage as a function of junction temperature 1 10 K/W ZthJCD, TRANSIENT THERMAL IMPEDANCE ZthJCD, TRANSIENT THERMAL IMPEDANCE D=0.5 0 10 K/W 0.2 SKP06N60 SKB06N60 0.1 0.05 R,(K/W) 0.523 0.550 0.835 1.592 0.02 -1 10 K/W 0.01 R1 τ, (s)= 7.25*10-2 6.44*10-3 7.13*10-4 7.16*10-5 R2 single pulse C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 D=0.5 0 0.2 10 K/W 0.1 SKA06N60 0.05 R,(K/W) 2.852 0.654 0.665 0.828 0.02 -1 10 K/W τ, (s)= 1.887 4.64*10-2 2.88*10-3 3.83*10-4 R1 0.01 single pulse R2 C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -2 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms -2 10 K/W 10µs 1s tp, PULSE WIDTH Figure 26. Diode transient thermal impedance as a function of pulse width (D = tp / T) 100µs 1ms 10ms 100ms 1s 10s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Jul-02 SKP06N60, SKB06N60 SKA06N60 1 10 K/W D=0.5 0 ZthJC, TRANSIENT THERMAL IMPEDANCE ZthJC, TRANSIENT THERMAL IMPEDANCE 10 K/W 0.2 0.1 0.05 SKP06N60 SKB06N60 -1 10 K/W 0.02 -2 R,(K/W) 0.705 0.561 0.583 0.01 10 K/W R1 τ, (s)= 0.0341 3.74E-3 3.25E-4 R2 single pulse C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -3 10 K/W 1µs 10µs 100µs 1m s 10m s 100m s D=0.5 0 10 K/W 0.2 0.1 0.05 -1 10 K/W 0.02 0.01 -2 10 K/W τ, (s)= 1.83 2.93*10-2 2.46*10-3 3.45*10-4 R2 single pulse -3 1s R,(K/W) 2.73 0.395 0.353 0.323 R1 10 K/W 1µs tp, PULSE WIDTH Figure 28. IGBT transient thermal impedance as a function of pulse width (D = tp / T) SKA06N60 C1=τ1/R1 C 2=τ2/R2 10µs 100µs 1ms 10ms 100ms 1s 10s tp, PULSE WIDTH Figure 29. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 11 Jul-02 SKP06N60, SKB06N60 SKA06N60 dimensions TO-220AB symbol [mm] [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-263AB (D2Pak) symbol [inch] max min max A 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E F G H 2.54 typ. 0.65 0.85 5.08 typ. 4.30 4.50 0.1 typ. 0.0256 0.0335 0.2 typ. 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 12 [mm] min 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Jul-02 SKP06N60, SKB06N60 SKA06N60 P-TO220-3-31 Please refer to mounting instructions (application note AN-TO220-3-31-01) dimensions symbol [mm] [inch] min max min max A 10.37 10.63 0.4084 0.4184 B 15.86 16.12 0.6245 0.6345 C 0.65 0.78 0.0256 0.0306 D 2.95 typ. 0.1160 typ. E 3.15 3.25 0.124 0.128 F 6.05 6.56 0.2384 0.2584 G 13.47 13.73 0.5304 0.5404 H 3.18 3.43 0.125 0.135 K 0.45 0.63 0.0177 0.0247 L 1.23 1.36 0.0484 0.0534 M 2.54 typ. 0.100 typ. N 4.57 4.83 0.1800 0.1900 P 2.57 2.83 0.1013 0.1113 T 2.51 2.62 0.0990 0.1030 13 Jul-02 SKP06N60, SKB06N60 SKA06N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =250pF. Figure B. Definition of switching losses 14 Jul-02 SKP06N60, SKB06N60 SKA06N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 15 Jul-02