INFINEON SKA06N60

SKP06N60,
SKB06N60
SKA06N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
• 75% lower Eoff compared to previous generation
C
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
G
E
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
P-TO-220-3-1
P-TO-263-3-2 (D²-PAK)
- parallel switching capability
(TO-220AB)
(TO-263AB)
• Very soft, fast recovery anti-parallel EmCon diode
• Isolated TO-220, 2.5kV, 60s
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SKP06N60
VCE
IC
VCE(sat)
Tj
600V
6A
2.3V
150°C
SKB06N60
SKA06N60
5A
P-TO-220-3-31
(FullPAK)
Package
Ordering Code
TO-220AB
Q67040-S4230
TO-263AB
Q67040-S4231
TO-220-3-31
Q67040-S4340
Maximum Ratings
Parameter
Value
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Unit
SKP06N60
SKB06N60
SKA06N60
600
600
A
TC = 25°C
12
9
TC = 100°C
6.9
5.0
24
24
24
24
TC = 25°C
12
12
TC = 100°C
6
6
Pulsed collector current, tp limited by Tjmax
ICpul s
Turn off safe operating area
-
VCE ≤ 600V, Tj ≤ 150°C
IF
Diode forward current
Diode pulsed current, tp limited by Tjmax
IFpul s
24
24
Gate-emitter voltage
VGE
±20
±20
10
10
68
32
1)
tSC
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Ptot
Power dissipation
TC = 25°C
2)
Mounting Torque, M3 Screw
M
Operating junction and storage temperature
Tj , Tstg
1)
2)
V
1.0
V
µs
W
Nm
-55...+150 -55...+150 °C
Allowed number of short circuits: <1000; time between short circuits: >1s.
Maximum mounting processes: 3
1
Jul-02
SKP06N60,
SKB06N60
SKA06N60
Thermal Resistance
Parameter
Symbol
Conditions
Unit
Max. Value
SKP06N60
SKB06N60
SKA06N60
Characteristic
IGBT thermal resistance,
RthJC
1.85
3.9
RthJCD
3.5
5.0
K/W
junction – case
Diode thermal resistance,
junction – case
RthJA
Thermal resistance,
TO-220AB
junction – ambient
62
TO220-3-31
1)
SMD version, device on PCB
RthJA
65
TO-263AB
40
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2.0
2.4
-
2.3
2.8
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V , I C = 6 A
T j =2 5 °C
T j =1 5 0° C
VF
Diode forward voltage
V
V G E = 0V , I F = 6 A
T j =2 5 °C
1.2
1.4
1.8
T j =1 5 0° C
-
1.25
1.65
3
4
5
Gate-emitter threshold voltage
VGE(th)
I C = 25 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
20
T j =1 5 0° C
-
-
700
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 6 A
-
4.2
-
S
Input capacitance
Ciss
V C E = 25 V ,
-
350
420
pF
Output capacitance
Coss
V G E = 0V ,
-
38
46
Reverse transfer capacitance
Crss
f= 1 MH z
-
23
28
Gate charge
QGate
V C C = 48 0 V, I C =6 A
-
32
42
nC
Dynamic Characteristic
V G E = 15 V
Internal emitter inductance
LE
T O - 22 0A B
-
7
-
nH
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 1 5 0° C
-
60
-
A
measured 5mm (0.197 in.) from case
2)
Short circuit collector current
1)
2
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Jul-02
SKP06N60,
SKB06N60
SKA06N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
25
30
-
18
22
-
220
264
-
54
65
-
0.110
0.127
-
0.105
0.137
-
0.215
0.263
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C ,
V C C = 40 0 V, I C = 6 A,
V G E = 0/ 15 V ,
R G =50Ω ,
1)
L σ = 18 0 nH ,
1)
C σ = 25 0 pF
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =2 5 °C ,
-
200
-
tS
V R = 2 00 V , I F = 6 A,
-
17
-
tF
d i F / d t =2 0 0 A/ µs
-
183
-
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
200
-
nC
Diode peak reverse recovery current
Irrm
-
2.8
-
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
180
-
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
24
29
-
17
20
-
248
298
-
70
84
-
0.167
0.192
-
0.153
0.199
-
0.320
0.391
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =1 5 0° C
V C C = 40 0 V, I C = 6 A,
V G E = 0/ 15 V ,
R G = 50 Ω,
1)
L σ =1 8 0n H,
1)
C σ = 2 50 pF
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =1 5 0° C
-
290
-
tS
V R = 2 00 V , I F = 6 A,
-
27
-
tF
d i F / d t =2 0 0 A/ µs
-
263
-
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
500
-
nC
Diode peak reverse recovery current
Irrm
-
5.0
-
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
200
-
A/µs
1)
Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E.
3
Jul-02
SKP06N60,
30A
SKP06N60
SKB06N60
SKA06N60
SKB06N60
SKA06N60
Ic
tp=2µs
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
10A
20A
TC=80°C
TC=110°C
10A
Ic
0A
10Hz
15µs
50µs
1A
200µs
100Hz
1kHz
10kHz
100kHz
1V
100V
1000V
SKP06N60
SKB06N60
SKP06N60
SKB06N60
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
80W
40W
SKA06N60
20W
0W
25°C
DC
0,1A
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 50Ω)
60W
1ms
SKP06N60
SKB06N60
SKA06N60
50°C
75°C
100°C
10A
SKA06N60
5A
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Jul-02
20A
20A
15A
15A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKP06N60,
VGE=20V
10A
5A
0A
0V
15V
13V
11V
9V
7V
5V
1V
2V
3V
4V
18A
Tj=+25°C
-55°C
+150°C
IC, COLLECTOR CURRENT
16A
14A
12A
10A
8A
6A
4A
2A
0A
0V
2V
4V
6V
8V
10V
10A
15V
13V
11V
9V
7V
5V
5A
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
20A
VGE=20V
0A
0V
5V
SKB06N60
SKA06N60
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
4.0V
IC = 12A
3.5V
3.0V
IC = 6A
2.5V
2.0V
1.5V
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Jul-02
SKP06N60,
SKB06N60
SKA06N60
100ns
td(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
t d(off)
tf
t d(on)
tf
100ns
t d(on)
tr
tr
10ns
0A
3A
6A
9A
12A
10ns
0Ω
15A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 50Ω,
Dynamic test circuit in Figure E)
50 Ω
100 Ω
150 Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 6A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.5V
t, SWITCHING TIMES
t d(off)
100ns
tf
td(on)
tr
10ns
0°C
50°C
100°C
5.0V
4.5V
4.0V
max.
3.5V
typ.
3.0V
2.5V
min.
2.0V
150°C
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 6A, RG = 50Ω,
Dynamic test circuit in Figure E)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.25mA)
6
Jul-02
SKP06N60,
SKB06N60
SKA06N60
0.6mJ
0.8mJ
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
E ts *
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
E ts *
0.6mJ
0.4mJ
E on *
E off
0.2mJ
0.0mJ
0A
3A
6A
9A
12A
0.4mJ
E off
0.0mJ
0Ω
15A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 50Ω,
Dynamic test circuit in Figure E)
E on *
0.2mJ
50 Ω
100 Ω
150 Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 6A,
Dynamic test circuit in Figure E)
0.4mJ
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
E ts *
0.3mJ
0.2mJ
E on *
E off
0.1mJ
0.0mJ
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 6A, RG = 50Ω,
Dynamic test circuit in Figure E)
7
Jul-02
SKP06N60,
SKB06N60
SKA06N60
1nF
25V
C iss
120V
480V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
15V
10V
100pF
C oss
5V
C rss
0V
0nC
15nC
30nC
10pF
0V
45nC
QGE, GATE CHARGE
Figure 16. Typical gate charge
(IC = 6A)
20V
30V
100A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
tsc, SHORT CIRCUIT WITHSTAND TIME
25 µ s
20 µ s
15 µ s
10 µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
11V
12V
13V
14V
80A
60A
40A
20A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 18. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Jul-02
500ns
1000nC
400ns
800nC
IF = 12A
300ns
200ns
IF = 6A
IF = 3A
100ns
Qrr, REVERSE RECOVERY CHARGE
trr, REVERSE RECOVERY TIME
SKP06N60,
d i F / d t, DIODE CURRENT SLOPE
Figure 20. Typical reverse recovery time as
a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
600nC
400nC
10A
500A/µs
IF = 6A
IF = 3A
4A
2A
0A
50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
OF REVERSE RECOVERY CURRENT
600A/µs
6A
IF = 3A
200nC
12A
IF = 12A
IF = 6A
d i F / d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery charge
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
d i r r /d t, DIODE PEAK RATE OF FALL
Irr, REVERSE RECOVERY CURRENT
IF = 12A
0nC
50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
0ns
50A/µs 150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
8A
SKB06N60
SKA06N60
400A/µs
300A/µs
200A/µs
100A/µs
0A/µs
50A/µs
d i F / d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery current
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
150A/µs 250A/µs 350A/µs 450A/µs 550A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
9
Jul-02
SKP06N60,
SKB06N60
SKA06N60
2.0V
12A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
10A
8A
150°C
6A
100°C
4A
25°C
I F = 12A
1.5V
I F = 6A
-55°C
2A
0A
0.0V
0.5V
1.0V
1.5V
1.0V
2.0V
VF, FORWARD VOLTAGE
Figure 24. Typical diode forward current as
a function of forward voltage
-40°C
0°C
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 25. Typical diode forward voltage as
a function of junction temperature
1
10 K/W
ZthJCD, TRANSIENT THERMAL IMPEDANCE
ZthJCD, TRANSIENT THERMAL IMPEDANCE
D=0.5
0
10 K/W 0.2
SKP06N60
SKB06N60
0.1
0.05
R,(K/W)
0.523
0.550
0.835
1.592
0.02
-1
10 K/W
0.01
R1
τ, (s)=
7.25*10-2
6.44*10-3
7.13*10-4
7.16*10-5
R2
single pulse
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
D=0.5
0
0.2
10 K/W
0.1
SKA06N60
0.05
R,(K/W)
2.852
0.654
0.665
0.828
0.02
-1
10 K/W
τ, (s)=
1.887
4.64*10-2
2.88*10-3
3.83*10-4
R1
0.01
single pulse
R2
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
-2
10 K/W
1µs
10µs
100µs
1ms
10ms 100ms
-2
10 K/W
10µs
1s
tp, PULSE WIDTH
Figure 26. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
100µs
1ms
10ms 100ms
1s
10s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
10
Jul-02
SKP06N60,
SKB06N60
SKA06N60
1
10 K/W
D=0.5
0
ZthJC, TRANSIENT THERMAL IMPEDANCE
ZthJC, TRANSIENT THERMAL IMPEDANCE
10 K/W
0.2
0.1
0.05
SKP06N60
SKB06N60
-1
10 K/W
0.02
-2
R,(K/W)
0.705
0.561
0.583
0.01
10 K/W
R1
τ, (s)=
0.0341
3.74E-3
3.25E-4
R2
single pulse
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
-3
10 K/W
1µs
10µs 100µs
1m s
10m s 100m s
D=0.5
0
10 K/W 0.2
0.1
0.05
-1
10 K/W 0.02
0.01
-2
10 K/W
τ, (s)=
1.83
2.93*10-2
2.46*10-3
3.45*10-4
R2
single pulse
-3
1s
R,(K/W)
2.73
0.395
0.353
0.323
R1
10 K/W
1µs
tp, PULSE WIDTH
Figure 28. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
SKA06N60
C1=τ1/R1
C 2=τ2/R2
10µs 100µs 1ms 10ms 100ms
1s
10s
tp, PULSE WIDTH
Figure 29. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
11
Jul-02
SKP06N60,
SKB06N60
SKA06N60
dimensions
TO-220AB
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
dimensions
TO-263AB (D2Pak)
symbol
[inch]
max
min
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
F
G
H
2.54 typ.
0.65
0.85
5.08 typ.
4.30
4.50
0.1 typ.
0.0256
0.0335
0.2 typ.
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
12
[mm]
min
8° max
8° max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Jul-02
SKP06N60,
SKB06N60
SKA06N60
P-TO220-3-31
Please refer to mounting instructions (application note AN-TO220-3-31-01)
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
10.37
10.63
0.4084
0.4184
B
15.86
16.12
0.6245
0.6345
C
0.65
0.78
0.0256
0.0306
D
2.95 typ.
0.1160 typ.
E
3.15
3.25
0.124
0.128
F
6.05
6.56
0.2384
0.2584
G
13.47
13.73
0.5304
0.5404
H
3.18
3.43
0.125
0.135
K
0.45
0.63
0.0177
0.0247
L
1.23
1.36
0.0484
0.0534
M
2.54 typ.
0.100 typ.
N
4.57
4.83
0.1800
0.1900
P
2.57
2.83
0.1013
0.1113
T
2.51
2.62
0.0990
0.1030
13
Jul-02
SKP06N60,
SKB06N60
SKA06N60
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
tr r
IF
tS
QS
Ir r m
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
an d Stray capacity C σ =250pF.
Figure B. Definition of switching losses
14
Jul-02
SKP06N60,
SKB06N60
SKA06N60
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2000
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
15
Jul-02