PD - 97084 IRF6619PbF IRF6619TRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) VDSS RoHS Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses l High Cdv/dt Immunity l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l VGS SX ST MQ RDS(on) 20V max ±20V max 1.65mΩ@ 10V 2.2mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 13nC 3.5nC 18nC 22nC 2.0V tot 38nC Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ RDS(on) MX DirectFET ISOMETRIC MX MT Description The IRF6619PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6619PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6619PbF has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6619PbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage 20 V VGS Gate-to-Source Voltage ±20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V ID @ TA = 70°C Continuous Drain Current, VGS ID @ TC = 25°C Continuous Drain Current, VGS IDM EAS (Thermally limited) Pulsed Drain Current Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy Parameter g g e @ 10V e @ 10V f(Package Limited) g VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) TJ = 125°C 2.0 TJ = 25°C 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) 10.0 Fig 1. Typical On-Resistance Vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 240 mJ See Fig. 14, 15, 17a, 17b, A mJ 4.0 1.0 A 240 ID = 30A 3.0 24 150 h 6.0 5.0 30 12 ID= 16A 10 VDS = 16V VDS= 10V 8 6 4 2 0 0 20 40 60 80 100 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.86mH, RG = 25Ω, IAS = 24A, VGS =10V. Part not recommended for use above this value. 1 5/3/06 IRF6619PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 20 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 14 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 1.65 2.2 ––– 2.2 3.0 V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 30A i VGS = 4.5V, ID = 24A i VDS = VGS, ID = 250µA VGS(th) Gate Threshold Voltage 1.55 ––– 2.45 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.8 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 16V, VGS = 0V ––– ––– 150 VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V IGSS Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 89 ––– ––– Qg VGS = -20V S VDS = 10V, ID = 24A Total Gate Charge ––– 38 57 Qgs1 Pre-Vth Gate-to-Source Charge ––– 10.2 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 3.5 ––– Qgd Gate-to-Drain Charge ––– 13.2 ––– ID = 16A Qgodr See Fig. 18 VDS = 10V nC VGS = 4.5V Gate Charge Overdrive ––– 11.1 ––– Qsw Switch Charge (Qgs2 + Qgd) ––– 16.7 ––– Qoss Output Charge ––– 22 ––– nC RG Gate Resistance ––– ––– 2.3 Ω td(on) Turn-On Delay Time ––– 21 ––– VDD = 16V, VGS = 4.5Vi tr Rise Time ––– 71 ––– ID = 24A td(off) Turn-Off Delay Time ––– 25 ––– tf Fall Time ––– 9.3 ––– Ciss Input Capacitance ––– 5040 ––– Coss Output Capacitance ––– 1580 ––– Crss Reverse Transfer Capacitance ––– 780 ––– Min. Typ. Max. Units ––– ––– ns VDS = 10V, VGS = 0V Clamped Inductive Load VGS = 0V pF VDS = 10V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current @TC=25°C ISM Pulsed Source Current MOSFET symbol 110 (Body Diode) A ––– ––– Conditions showing the integral reverse 240 p-n junction diode. (Body Diode)g VSD Diode Forward Voltage ––– 0.8 1.0 V TJ = 25°C, IS = 24A, VGS = 0V i trr Reverse Recovery Time ––– 29 44 ns TJ = 25°C, IF = 24A Qrr Reverse Recovery Charge ––– 18 27 nC di/dt = 100A/µs i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6619PbF Absolute Maximum Ratings Parameter PD @TC = 25°C e Power Dissipation e Power Dissipation f TP Peak Soldering Temperature Power Dissipation PD @TA = 25°C PD @TA = 70°C Max. Units 2.8 W 1.8 89 270 °C -40 to + 150 TJ Operating Junction and TSTG Storage Temperature Range Thermal Resistance el Junction-to-Ambient jl Junction-to-Ambient kl Junction-to-Case fl RθJA Parameter Junction-to-Ambient RθJA RθJA RθJC RθJ-PCB Junction-to-PCB Mounted Linear Derating Factor Typ. Max. ––– 45 12.5 ––– 20 ––– ––– 1.4 1.0 e Units °C/W ––– 0.017 W/°C 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 ττCA τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 τi (sec) Ri (°C/W) R4 R4 0.6784 0.00086 17.299 0.57756 17.566 8.94 9.4701 106 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling, mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6619PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 2.5V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 100 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 2.5V 10 ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 1 0.1 1 10 0.1 VDS , Drain-to-Source Voltage (V) 1 10 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1.5 100 Typical R DS(on) (Normalized) ID, Drain-to-Source Current (A) ID = 30A TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VDS = 10V VGS = 10V 1.0 ≤ 60µs PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 0.5 4.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) (mΩ) DS(on) Ciss 4000 Typical R C, Capacitance (pF) 80 100 120 140 160 TA= 25°C 9 VGS = 3.0V 8 VGS = 3.5V 7 VGS = 4.5V VGS = 4.0V VGS = 5.0V 6 VGS = 10V 5 4 Coss 3 Crss 2 1 0 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 60 10 Coss = Cds + Cgd 2000 40 Fig 7. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 6000 20 TJ , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics 8000 0 0 40 80 120 160 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6619PbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 100.0 TJ = 150°C TJ = 25°C 10.0 TJ = -40°C 1.0 VGS = 0V 0.6 1.0 1.4 100 100µsec 10 1msec 10msec 1 TA = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS (on) 0.01 1.8 VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 1.00 10.00 100.00 Fig11. Maximum Safe Operating Area 180 2.5 LIMITED BY PACKAGE VGS(th) Gate threshold Voltage (V) 160 140 ID , Drain Current (A) 0.10 VDS , Drain-toSource Voltage (V) 120 100 80 60 40 20 0 25 50 75 100 125 2.0 ID = 250µA 1.5 1.0 0.5 150 -75 TC , Case Temperature (°C) -50 -25 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 100 10 0.01 1 0.05 0.10 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth www.irf.com 5 IRF6619PbF EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 3) Single Pulse ID = 24A 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav EAS, Single Pulse Avalanche Energy (mJ) 1000 15V ID 12A 15A BOTTOM 24A TOP 800 D.U.T RG 600 20V VGS 400 DRIVER L VDS + V - DD IAS A 0.01Ω tp Fig 17a. Unclamped Inductive Test Circuit V(BR)DSS tp 200 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Drain Current I AS Fig 17b. Unclamped Inductive Waveforms LD VDS L + VCC DUT 0 VDD D.U.T 1K VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 19a. Switching Time Test Circuit Fig 18a. Gate Charge Test Circuit Id Vds Vgs VDS 90% 10% Vgs(th) VGS Qgs1 Qgs2 td(on) Qgd Qgodr Fig 18b. Gate Charge Waveform 6 tr td(off) tf Fig 19b. Switching Time Waveforms www.irf.com IRF6619PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 20. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. VGS This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6619PbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET Part Marking 8 www.irf.com IRF6619PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6619TRPBF). For 1000 parts on 7" reel, order IRF6619TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MAX CODE MIN MIN MIN MIN MAX MAX MAX 6.9 12.992 N.C A N.C 330.0 177.77 N.C N.C B 0.75 0.795 N.C 20.2 19.06 N.C N.C N.C C 0.53 0.504 0.50 12.8 13.5 0.520 13.2 12.8 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 100.0 N.C 58.72 N.C N.C N.C F N.C N.C N.C 0.53 N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 11.9 N.C 11.9 0.606 15.4 12.01 LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 7.90 0.319 8.10 0.154 0.161 3.90 4.10 0.469 11.90 0.484 12.30 0.215 5.45 0.219 5.55 0.201 0.209 5.10 5.30 0.256 6.50 0.264 6.70 0.059 N.C 1.50 N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/