IRG7RA13UPbF PDP TRENCH IGBT Key Parameters Features Advanced Trench IGBT Technology Optimized for Sustain and Energy Recovery circuits in PDP applications Low VCE(on) and Energy per Pulse (EPULSETM) for improved panel efficiency High repetitive peak current capability Lead Free package VCE min 360 V VCE(ON) typ. @ IC = 20A 1.42 V IRP max @ TC= 25°C 276 A TJ max 150 °C C Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Ordering Information Base part number Package Type IRG7RA13UPbF D-Pak C G E G E n-channel G Gate D-Pak C Collector Standard Pack Form Quantity Tube 75 Tape and Reel 2000 Tape and Reel Left 3000 Tape and Reel Right 3000 E Emitter Complete Part Number IRG7RA13UPbF IRG7RA13UTRPbF IRG7RA13UTRLPbF IRG7RA13UTRRPbF Absolute Maximum Ratings VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Parameter Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Max. ±30 40 20 276 78 31 0.63 -40 to + 150 Units V A W W/°C °C 300 Thermal Resistance Parameter Junction-to-Case Junction-to-Ambient (PCB Mount) RJC RJA 1 www.irf.com © 2012 International Rectifier Typ. ––– — Max. 1.6 50 Units °C/W November 5th, 2012 IRG7RA13UPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVCES Collector-to-Emitter Breakdown Voltage 360 ––– ––– V VGE = 0V, ICE = 250µA ––– 0.4 ––– V/°C Reference to 25°C, ICE = 1mA BVCES/TJ Breakdown Voltage Temp. Coefficient ––– 1.26 1.52 VGE = 15V, ICE = 12A ––– 1.42 ––– VGE = 15V, ICE = 20A VCE(on) Static Collector-to-Emitter Voltage 1.84 ––– VGE = 15V, ICE = 40A V ––– 2.25 ––– VGE = 15V, ICE = 60A ––– 1.48 ––– VGE = 15V, ICE = 20A, TJ = 150°C Gate Threshold Voltage 2.2 ––– 4.7 V VCE = VGE, ICE = 1.0mA VGE(th) ––– -10 ––– mV/°C VGE(th)/TJ Gate Threshold Voltage Coefficient ––– 1.0 10 VCE = 360V, VGE = 0V ICES Collector-to-Emitter Leakage Current ––– 25 150 µA VCE = 360V, VGE = 0V, TJ = 125°C ––– 75 ––– VCE = 360V, VGE = 0V, TJ = 150°C Gate-to-Emitter Forward Leakage ––– ––– 100 VGE = 30V IGES nA Gate-to-Emitter Reverse Leakage ––– ––– -100 VGE = -30V Forward Transconductance ––– 47 ––– S VCE = 25V, ICE = 12A gfe Total Gate Charge ––– 33 ––– VCE = 240V, IC = 12A, VGE = 15V Qg nC Gate-to-Collector Charge ––– 12 ––– Qgc td(on) Turn-On delay time ––– 11 ––– IC = 12A, VCC = 196V Rise time ––– 13 ––– tr RG = 10, L=210µH ns TJ = 25°C Turn-Off delay time ––– 75 ––– td(off) tf Fall time ––– 120 ––– td(on) Turn-On delay time ––– 11 ––– IC = 12A, VCC = 196V Rise time ––– 14 ––– tr RG = 10, L=200µH, LS= 150nH ns TJ = 150°C Turn-Off delay time ––– 86 ––– td(off) tf Fall time ––– 190 ––– tst Shoot Through Blocking Time 100 ––– ––– ns VCC = 240V, VGE = 15V, RG= 5.1 ––– 480 ––– L = 220nH, C= 0.20µF, VGE = 15V VCC = 240V, RG= 5.1, TJ = 25°C EPULSE Energy per Pulse µJ ––– 570 ––– L = 220nH, C= 0.20µF, VGE = 15V VCC = 240V, RG= 5.1, TJ = 100°C ESD Human Body Model Class 1C (Per JEDEC standard JESD22-A114) Machine Model Class B (Per EIA/JEDEC standard EIA/JESD22-A115) Input Capacitance ––– 880 ––– VGE = 0V Cies Output Capacitance ––– 47 ––– Coes pF VCE = 30V Reverse Transfer Capacitance ––– 26 ––– ƒ = 1.0MHz Cres Internal Collector Inductance ––– 4.5 ––– Between lead, LC 6mm (0.25in.) nH from package LE Internal Emitter Inductance ––– 7.5 ––– and center of die contact Notes: Half sine wave with duty cycle = 0.01, ton = 1.0µsec. R is measured at TJ approximately 90°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com © 2012 International Rectifier November 5th, 2012 IRG7RA13UPbF 200 200 VGE = 18V 160 VGE = 12V VGE = 10V VGE = 8.0V 120 VGE = 15V 160 ICE (A) ICE (A) VGE = 18V VGE = 15V VGE = 6.0V 80 VGE = 12V VGE = 10V VGE = 8.0V 120 40 VGE = 6.0V 80 40 0 0 0 2 4 6 8 10 0 2 4 Fig 1. Typical Output Characteristics @ 25°C 200 VGE = 18V VGE = 18V VGE = 15V VGE = 15V 160 VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V ICE (A) ICE (A) 10 Fig 2. Typical Output Characteristics @ 75°C 200 120 8 V CE (V) V CE (V) 160 6 80 40 VGE = 12V VGE = 10V VGE = 8.0V 120 VGE = 6.0V 80 40 0 0 0 2 4 6 8 10 0 2 4 V CE (V) 6 8 10 V CE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 200 14 IC = 12A 12 160 10 VCE (V) ICE (A) 120 T J = 25°C T J = 150°C 80 TJ = 25°C TJ = 150°C 8 6 4 40 2 0 0 2 4 6 8 10 12 14 16 V GE (V) Fig 5. Typical Transfer Characteristics 3 www.irf.com © 2012 International Rectifier 0 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage November 5th, 2012 IRG7RA13UPbF 300 40 Repetitive Peak Current (A) 250 IC (A) 30 20 10 200 150 100 ton= 1µs Duty cycle = 0.01 Half Sine Wave 50 0 25 50 75 100 125 0 150 25 TC (°C) 75 100 125 150 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1300 1300 VCC = 240V 1100 L = 220nH C = 0.4µF 1200 L = 220nH C = variable 100°C Energy per Pulse (µJ) 1200 Energy per Pulse (µJ) 50 1000 900 25°C 800 700 1100 100°C 1000 25°C 900 800 600 700 500 400 600 160 170 180 190 200 210 220 230 195 200 205 210 215 220 225 230 235 240 IC, Peak Collector Current (A) VCE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1600 100 VCC = 240V 100µsec 1000 C= 0.3µF 1msec 1 800 Tc = 25°C Tj = 150°C Single Pulse C= 0.2µF 600 0.1 400 1 25 50 75 100 125 150 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 10µsec 10 1200 IC (A) Energy per Pulse (µJ) C= 0.4µF L = 220nH t = 1µs half sine 1400 www.irf.com © 2012 International Rectifier 10 100 1000 V CE (V) Fig 12. Forward Bias Safe Operating Area November 5th, 2012 IRG7RA13UPbF 20 VGE, Gate-to-Source Voltage (V) 1000 Cies 100 Coes ID= 12A VDS = 240V VDS = 150V VDS = 60V 16 12 8 4 Cres 0 10 0 100 0 200 10 20 30 40 QG Total Gate Charge (nC) VCE (V) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 10 Thermal Response ( Z thJC ) Capacitance (pF) 10000 1 D = 0.50 0.20 0.10 0.05 0.1 J 0.02 0.01 R1 R1 J 1 R2 R2 R3 R3 C 1 2 3 2 3 Ci= iRi Ci= iRi 0.01 1E-005 0.0001 4 4 C i (sec) 0.018744 0.000006 0.575445 0.000170 0.687910 0.001311 0.314901 0.006923 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R4 R4 Ri(°C/W) 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case 5 www.irf.com © 2012 International Rectifier November 5th, 2012 IRG7RA13UPbF A RG C DRIVER PULSE A L VCC B PULSE B Ipulse RG DUT tST Fig 16a. tst and EPULSE Test Circuit VCE Fig 16b. tst Test Waveforms Energy IC Current L VCC DUT 0 1K Fig 16c. EPULSE Test Waveforms 6 www.irf.com © 2012 International Rectifier Fig 17. - Gate Charge Circuit (turn-off) November 5th, 2012 IRG7RA13UPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 2001 IN THE ASSEMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in assembly line position indicates "Lead-Free" IRFR120 12 116A 34 ASSEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 16 LINE A "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level OR INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFR120 12 ASSEMBLY LOT CODE 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) P = DESIGNATES LEAD-FREE PRODUCT QUALIFIED TO THE CONSUMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = ASSEMBLY SITE CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 7 www.irf.com © 2012 International Rectifier November 5th, 2012 IRG7RA13UPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Qualification information† Industrial†† Qualification level (per JEDEC JESD47F ††† guidelines ) Moisture Sensitivity Level D-Pak RoHS compliant † MSL1 (per JEDEC J‐STD‐020D††† ) Yes Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/ ††† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245 To contact International Rectifier, please visit http://www.irf.com/whoto-call/ Visit us at www.irf.com for sales contact information. 8 www.irf.com © 2012 International Rectifier November 5th, 2012