PD - 97124D IRF6710S2TRPbF IRF6710S2TR1PbF DirectFET Power MOSFET l RoHS Compliant Containing No Lead and Halogen Free Typical values (unless otherwise specified) l Low Profile (<0.7 mm) VDSS VGS RDS(on) RDS(on) l Dual Sided Cooling Compatible l Ultra Low Package Inductance 25V max ±20V max 4.5mΩ@ 10V 9.0mΩ@ 4.5V l Optimized for High Frequency Switching Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) l Ideal for CPU Core DC-DC Converters l Optimized for Control FET Application 8.8nC 3.0nC 1.3nC 8.0nC 4.4nC 1.8V l Compatible with existing Surface Mount Techniques l 100% Rg tested Applicable DirectFET Outline and Substrate Outline S2 S1 SB DirectFET ISOMETRIC S1 M2 M4 L4 L6 L8 Description The IRF6710S2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve improved performance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6710S2TRPbF has low gate resistance and low charge along with ultra low package inductance providing significant reduction in switching losses. The reduced losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6710S2TRPbF has been optimized for the control FET socket of synchronous buck operating from 12 volt bus converters. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical R DS (on) (mΩ) 20 ID = 12A 15 10 TJ = 125°C 5 TJ = 25°C 0 2.0 e e f 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage VGS, Gate-to-Source Voltage (V) VDS Max. Units 25 ±20 12 10 37 100 24 10 V A mJ A 12 ID= 10A 10 VDS = 20V VDS= 13V 8 6 4 2 0 0 4 8 12 16 20 24 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.49mH, RG = 25Ω, IAS = 10A. 1 03/16/10 IRF6710S2TR/TR1PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Drain-to-Source Breakdown Voltage 25 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 17 ––– Static Drain-to-Source On-Resistance ––– 4.5 5.9 ––– 9.0 11.9 VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 12A VGS = 4.5V, ID VGS(th) Gate Threshold Voltage 1.4 1.8 2.4 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -7.0 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– IGSS gfs Qg Conditions Typ. Max. Units BVDSS i = 10A i VDS = VGS, ID = 25µA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C nA VGS = 20V -100 VGS = -20V S VDS = 15V, ID =10A Forward Transconductance 21 ––– ––– Total Gate Charge ––– 8.8 13 Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.3 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.3 ––– VDS = 13V nC VGS = 4.5V Qgd Gate-to-Drain Charge ––– 3.0 ––– ID = 10A Qgodr ––– 2.2 ––– See Fig. 15 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 4.3 ––– Qoss Output Charge ––– 4.4 ––– nC RG Gate Resistance ––– 0.3 td(on) Turn-On Delay Time ––– 7.9 ––– tr Rise Time ––– 20 ––– td(off) Turn-Off Delay Time ––– 5.2 ––– tf Fall Time ––– 6.0 ––– Ciss Input Capacitance ––– 1190 ––– Coss Output Capacitance ––– 320 ––– Crss Reverse Transfer Capacitance ––– 150 ––– Min. Typ. Max. Units VDS = 10V, VGS = 0V Ω i VDD = 13V, VGS = 4.5V ID = 10A ns RG= 6.2Ω VGS = 0V pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ––– ––– 19 (Body Diode) ISM Pulsed Source Current g A ––– ––– Conditions MOSFET symbol showing the 100 integral reverse VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 10A, VGS = 0V trr Reverse Recovery Time ––– 14 21 ns TJ = 25°C, IF =10A Qrr Reverse Recovery Charge ––– 8.0 12 nC di/dt = 200A/µs (Body Diode) i i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6710S2TR/TR1PbF Absolute Maximum Ratings Max. Units 1.8 1.3 15 270 -55 to + 175 W Parameter e e f Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 82 ––– ––– 9.8 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e 0.012 W/°C 100 Thermal Response ( ZthJA ) D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci= τi/Ri 0.1 Ri (°C/W) τC SINGLE PULSE ( THERMAL RESPONSE ) τ τι (sec) 11.759 0.009459 48.48669 0.9378 21.76032 37.2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF6710S2TR/TR1PbF 1000 1000 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 2.5V 100 BOTTOM VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 0.01 0.1 1 10 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 2.0 VGS = 4.5V 100 Typical RDS(on) (Normalized) ID, Drain-to-Source Current(Α) ID = 12A TJ = 175°C TJ = 25°C 10 TJ = -40°C 1 0.1 VGS = 10V 1.5 1.0 VDS = 15V ≤60µs PULSE WIDTH 0.01 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.5 5.0 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 10000 30 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd T J = 25°C 25 Typical RDS(on) ( mΩ) C, Capacitance(pF) Coss = Cds + Cgd Ciss 1000 Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V Coss 20 15 10 5 Crss 0 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6710S2TR/TR1PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C TJ = 25°C 100 TJ = -40°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 1msec 10 10msec 1 DC 0.1 TA = 25°C Tj = 175°C Single Pulse VGS = 0V 0.01 0.1 0.2 0.4 0.6 0.8 1.0 0.0 1.2 Fig 10. Typical Source-Drain Diode Forward Voltage 1.0 10.0 100.0 Fig 11. Maximum Safe Operating Area 3.0 VGS(th) Gate threshold Voltage (V) 40 ID, Drain Current (A) 0.1 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) 30 20 10 2.5 2.0 ID = 1.0A ID = 1.0mA ID = 250µA 1.5 ID = 25µA 1.0 0 25 50 75 100 125 150 -75 -50 -25 175 EAS, Single Pulse Avalanche Energy (mJ) TJ = 175°C 600 500 400 TJ = 25°C 300 200 VDS = 10V 100 380µs PULSE WIDTH 20 40 60 80 100 120 ID, Drain-to-Source Current (A) 50 75 100 125 150 175 100 I D 1.8A 3.8A BOTTOM 10A TOP 80 60 40 20 0 0 0 25 Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature 700 0 TJ , Temperature ( °C ) TC , Case Temperature (°C) Gfs, Forward Transconductance (S) 100µsec 140 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 14. Typ. Forward Transconductance vs. Drain Current Fig 15. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6710S2TR/TR1PbF 100 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 10 0.01 1 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 16. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 30 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 10A 20 10 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 17. Maximum Avalanche Energy vs. Temperature 6 Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 16, 17). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.irf.com IRF6710S2TR/TR1PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 18a. Gate Charge Test Circuit Qgs2 Qgs1 Qgd Fig 18b. Gate Charge Waveform V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + - VDD IAS 20V I AS 0.01Ω tp Fig 19a. Unclamped Inductive Test Circuit VDS VGS RG A RD Fig 19b. Unclamped Inductive Waveforms VGS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 20a. Switching Time Test Circuit www.irf.com 10% VDS td(off) tf td(on) tr Fig 20b. Switching Time Waveforms 7 IRF6710S2TR/TR1PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, S1 Outline (Small Size Can). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. CL G = GATE D = DRAIN S = SOURCE D D G D S S D Optional additional pad to allow interchangeability with S2 outline devices. Mandatory pads to fit S1 outline. 8 www.irf.com IRF6710S2TR/TR1PbF DirectFET Outline Dimension, S1 Outline (Small Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.52 E 0.48 0.62 F 0.58 0.52 G 0.48 1.12 H 1.08 N/A J N/A 0.90 K 0.80 1.80 L 1.70 M 0.740 0.68 R 0.020 0.080 0.17 P 0.08 IMPERIAL MIN 0.187 0.146 0.108 0.014 0.019 0.023 0.019 0.042 N/A 0.031 0.066 0.027 0.001 0.003 MAX 0.191 0.156 0.112 0.018 0.020 0.024 0.020 0.044 N/A 0.035 0.070 0.029 0.003 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" www.irf.com 9 IRF6710S2TR/TR1PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6710S2TRPBF). For 1000 parts on 7" reel, order IRF6710S2TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION IMPERIAL METRIC METRIC MIN MAX CODE MIN MAX MAX MIN 12.992 A N.C 177.77 N.C 330.0 N.C 0.795 B 19.06 20.2 N.C N.C N.C 0.504 C 0.520 13.5 12.8 13.2 12.8 0.059 D 1.5 1.5 N.C N.C N.C E 3.937 58.72 100.0 N.C N.C N.C N.C F 0.724 N.C N.C 18.4 13.50 G 0.488 11.9 12.4 0.567 14.4 12.01 0.469 H 11.9 11.9 0.606 15.4 12.01 (QTY 1000) IMPERIAL MIN MAX 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Consumer market. Additional storage requirement details for DirectFET products can be found in application note AN1035 on IRs Web site. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/2010 10 www.irf.com