IRF GB25RF120K

PD - 94552
GB25RF120K
IGBT PIM MODULE
VCES = 1200V
Features
• Low VCE (on) Non Punch Through IGBT Technology
• Low Diode VF
• 10µs Short Circuit Capability
• Square RBSOA
• HEXFRED Antiparallel Diode with Ultrasoft Diode
Reverse Recovery Characteristics
• Positive VCE (on) Temperature Coefficient
• Ceramic DBC Substrate
• Low Stray Inductance Design
IC = 25A, TC=80°C
tsc > 10µs, TJ=150°C
VCE(on) typ. = 2.40V
ECONO2 PIM
Benefits
• Benchmark Efficiency for Motor Control
• Rugged Transient Performance
• Low EMI, Requires Less Snubbing
• Direct Mounting to Heatsink
• PCB Solderable Terminals
• Low Junction to Case Thermal Resistance
• UL Listed 
Absolute Maximum Ratings (TJ =25°C, unless otherwise indicated)
Parameter
Inverter
Ratings
Units
Collector-to-Emitter Voltage
VCES
1200
V
Gate-to-Emitter Voltage
VGES
IC
±20
Collector Current
Symbol
Test Conditions
Continuous
ICM
Diode Maximum Forward Current
Input
Repetitive Peak Reverse Voltage
Rectifier Average Output Current
Surge Current (Non Repetitive)
2
VRRM
IF(AV)
IFSM
1 device
50/60Hz sine pulse
40 / 25
25°C
80
25°C
80
25°C
198
80°C
V
20
A
250
316
As
V
Collector-to-Emitter Voltage
VCES
1200
Gate-to-Emitter Voltage
VGES
IC
±20
Continuous
ICM
PD
Power Dissipation
Repetitive Peak Reverse Voltage
Maximum Operating Junction Temperature
W
1600
sine pulse
It
Collector Current
A
Rated VRRM applied, 10ms,
2
I t (Non Repetitive)
Brake
IFM d
PD
Power Dissipation
25°C / 80°C
1 device
VRRM
TJ
—
Storage Temperature Range
TSTG
—
Isolation Voltage
VISOL
2
25°C / 80°C
25 / 15
25°C
50
A
25°C
104
W
—
1200
150
V
°C
—
-40 to +125
AC(1min.)
2500
V
Thermal and Mechanical Characteristics
Min
Typical
Maximum
Units
Junction-to-Case Inverter IGBT Thermal Resistance
—
—
0.63
°C/W
Junction-to-Case Inverter FRED Thermal Resistance
—
—
1.0
Parameter
Junction-to-Case Brake IGBT Thermal Resistance
Symbol
RTHJC
—
—
1.2
Junction-to-Case Brake Diode Thermal Resistance
—
—
2.3
Junction-to-Case Input Rectifier Thermal Resistance
—
—
0.85
Mounting Torque (M5)
2.7
—
3.3
1
Nm
www.irf.com
10/17/02
GB25RF120K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Inverter
BVCES
IGBT
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
—
VCE(on)
—
Collector-to-Emitter Breakdown Voltage
Collector-to-Emitter Voltage
1200
—
—
—
V
1.0
—
V/°C
2.40
2.70
V
2.95
3.30
Conditions
VGE = 0V, IC = 500µA
VGE = 0V, IC = 1mA (25°C-125°C)
IC = 25A, VGE = 15V
1,2
IC = 40A, VGE = 15V
4,5
—
2.85
—
IC = 25A, VGE = 15V, TJ = 125°C
—
3.55
—
IC = 40A, VGE = 15V, TJ = 125°C
VGE(th)
Gate Threshold Voltage
4.0
5.0
6.0
∆VGE(th)
Threshold Voltage temp. coefficient
—
-10
—
ICES
Zero Gate Voltage Collector Current
—
11
100
—
750
—
IGES
Gate-to-Emitter Leakage Current
—
—
±200
Qg
Total Gate Charge (turn-on)
—
175
265
Qge
Gate-to-Emitter Charge (turn-on)
—
17.5
30
VCE = VGE, IC = 250µA
3,4,5
mV/°C VCE = VGE, IC = 1mA (25°C-125°C)
VGE = 0V, VCE = 1200V
µA
VGE = 0V, VCE = 1200V, TJ = 125°C
nA
VGE = ±20V
IC = 25A
nC
7
VCC = 400V
CT1
Qgc
Gate-to-Collector Charge (turn-on)
—
81
125
VGE = 15V
Eon
Turn-On Switching Loss
—
2450
4450
IC = 25A, VCC = 600V
Eoff
Turn-Off Switching Loss
—
2050
3200
Etot
Total Switching Loss
—
4500
7650
TJ = 25°C
Eon
Turn-On Switching Loss
—
3350
5650
IC = 25A, VCC = 600V
Eoff
Turn-Off Switching Loss
—
2850
3850
Etot
Total Switching Loss
—
6200
9500
td(on)
Turn-On delay time
—
80
104
tr
Rise time
—
50
70
td(off)
Turn-Off delay time
—
510
1000
tf
Fall time
—
230
299
Cies
Input Capacitance
—
2370
—
Coes
Output Capacitance
—
455
—
Cres
Reverse Transfer Capacitance
—
60
—
RBSOA
Reverse Bias Safe Operating Area
µJ
µJ
e
VGE = 15V, RG = 10Ω, L = 400µH
TJ = 125°C
e
IC = 25A, VCC = 600V
ns
CT4
VGE = 15V, RG = 10Ω, L = 400µH
9,11
CT4
WF1,2
10,12
VGE = 15V, RG = 10Ω, L = 400µH
CT4
TJ = 125°C
WF1
WF2
VGE = 0V
pF
VCC = 30V
f = 1.0Mhz
TJ = 150°C, IC = 80A
FULL SQUARE
6
CT2
RG = 10Ω, VGE = +15V to 0V
SCSOA
Short Circuit Safe Operating Area
10
—
—
µs
TJ = 150°C
CT3
VCC = 900V, VP = 1200V
WF4
RG = 10Ω, VGE = +15V to 0V
TJ = 125°C
Inverter
FRED
Irr
Diode Peak Reverse Recovery Current
—
35
—
A
VCC = 600V, IF = 25A, L = 400µH
13,14,15
CT4
VGE = 15V, RG = 10Ω
—
VFM
2
Diode Forward Voltage Drop
1.90
2.35
V
IF = 25A
IF = 40A
—
2.25
2.80
—
2.00
—
IF = 25A, TJ = 125°C
—
2.45
—
IF = 40A, TJ = 125°C
8
www.irf.com
GB25RF120K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Input
VFM
Rectifier IRM
Maximum Forward Voltage Drop
Maximum Reverse Leakage Current
Min. Typ. Max. Units
IF = 25A
V
—
—
1.5
—
—
0.1
mA
—
1.0
Forward Slope Resistance
—
—
10.4
mΩ
VF(TO)
Conduction Threshold Voltage
—
—
0.85
V
Brake
BVCES
Collector-to-Emitter Breakdown Voltage
1200
—
—
V
IGBT
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
—
1.6
—
V/°C
VCE(on)
—
2.30
2.50
V
—
3.00
3.25
—
2.70
—
3.70
17
TJ = 25°C, VR = 1600V
TJ = 150°C, VR = 1600V
—
rT
Collector-to-Emitter Voltage
Conditions
TJ = 150°C
VGE = 0V, IC = 500µA
VGE = 0V, IC = 1mA (25°C-125°C)
IC = 12.5A, VGE = 15V
20,21
IC = 25A, VGE = 15V
23,24
IC = 12.5A, VGE = 15V, TJ = 125°C
—
—
IC = 25A, VGE = 15V, TJ = 125°C
VGE(th)
Gate Threshold Voltage
4.0
5.0
6.0
VCE = VGE, IC = 250µA
∆VGE(th)
Threshold Voltage temp. coefficient
—
-10
—
ICES
Zero Gate Voltage Collector Current
—
8.0
50
—
370
—
VGE = 0V, VCE = 1200V, TJ = 125°C
VGE = ±20V
IGES
Gate-to-Emitter Leakage Current
—
—
±200
Qg
Total Gate Charge (turn-on)
—
96
145
Qge
Gate-to-Emitter Charge (turn-on)
—
46
70
Qgc
Gate-to-Collector Charge (turn-on)
—
10
15
Eon
Turn-On Switching Loss
—
1050
1200
IC = 12.5A, VCC = 600V
VGE = 15V, RG = 22Ω, L = 400µH
Eoff
Turn-Off Switching Loss
—
750
1000
Etot
Total Switching Loss
—
1800
2200
Eon
Turn-On Switching Loss
—
1350
1500
Eoff
Turn-Off Switching Loss
—
1100
1250
Etot
Total Switching Loss
—
2450
2750
td(on)
Turn-On delay time
—
50
65
tr
Rise time
—
36
50
td(off)
Turn-Off delay time
—
350
400
tf
Fall time
—
210
275
Cies
Input Capacitance
—
2370
—
Coes
Output Capacitance
—
460
—
Cres
Reverse Transfer Capacitance
—
60
—
RBSOA
Reverse Bias Safe Operating Area
22,23,24
mV/°C VCE = VGE, IC = 1mA (25°C-125°C)
VGE = 0V, VCE = 1200V
µA
nA
IC = 12.5A
nC
26
VCC = 400V
CT1
VGE = 15V
µJ
TJ = 25°C
e
IC = 12.5A, VCC = 600V
µJ
VGE = 15V, RG = 22Ω, L = 400µH
TJ = 125°C
e
IC = 12.5A, VCC = 600V
ns
CT4
28,30
CT4
WF3,4
29,31
VGE = 15V, RG = 22Ω, L = 400µH
CT4
TJ = 125°C
WF3
WF4
VGE = 0V
pF
VCC = 30V
f = 1.0Mhz
TJ = 150°C, IC = 50A
FULL SQUARE
25
CT2
RG = 22Ω, VGE = +15V to 0V
TJ = 150°C
SCSOA
Short Circuit Safe Operating Area
10
—
—
µs
Irr
Diode Peak Reverse Recovery Current
—
24
—
A
CT3
VCC = 900V, VP = 1200V
RG = 22Ω, VGE = +15V to 0V
Brake
—
VFM
NTC
VCC = 600V, IF = 12.5A, L = 400µH
VGE = 15V, RG = 22Ω, TJ = 125°C
Diode
Diode Forward Voltage Drop
R
Resistance
B
B Value
1.90
2.10
—
2.40
2.65
—
2.00
—
—
2.65
—
4538
5000
5495
V
3375
3443
CT4
IF = 8.0A
IF = 16A
27
IF = 8.0A, TJ = 125°C
IF = 16A, TJ = 125°C
Ω
TJ = 25°C
16
TJ = 100°C
468.6 493.3 518.0
3307
32,33,34
K
TJ = 25 / 50 °C
Note:
 For UL Applications, TJ is limited to +125°C. (See File E78996).
‚ Power dependent on temperature. TJ not to exceed TJ max.
ƒ Energy losses include "tail" and diode reverse recovery.
www.irf.com
3
GB25RF120K
Inverter
50
50
45
40
35
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
40
35
ICE (A)
ICE (A)
45
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
20
30
25
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
3
4
5
6
VCE (V)
Fig. 2 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
Fig. 1 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
20
350
18
300
16
14
T J = 125°C
12
VCE (V)
ICE (A)
250
T J = 25°C
200
150
ICE = 12.5A
ICE = 25A
10
ICE = 50A
8
6
100
T J = 125°C
4
50
T J = 25°C
2
0
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 4 - Typical VCE vs. VGE
TJ = 25°C
Fig. 3 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
20
10000
18
Cies
16
12
Capacitance (pF)
VCE (V)
14
ICE = 12.5A
ICE = 25A
10
ICE = 50A
8
6
1000
Coes
Cres
100
4
2
0
10
5
10
15
VGE (V)
Fig.5 - Typical VCE vs. VGE
TJ = 125°C
4
20
0
20
40
60
80
100
VCE (V)
Fig. 6- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
GB25RF120K
Inverter
16
100
14
90
400V
25°C
125°C
80
12
60
IF (A)
VGE (V)
70
600V
10
8
50
40
6
30
4
20
2
10
0
0
0
50
100
150
200
0.0
1.0
2.0
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Gate Charge vs. VGE
ICE = 25A; L = 1mH
4.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
10000
1000
tdOFF
9000
8000
tF
6000
Swiching Time (ns)
7000
Energy (µJ)
3.0
VF (V)
EON
5000
4000
3000
EOFF
100
tdON
tR
2000
1000
0
10
0
10
20
30
40
50
60
0
10
20
30
40
50
60
IC (A)
IC (A)
Fig. 9 - Typ. Energy Loss vs. IC
TJ = 125°C; L=400µH; VCE= 600V,RG= 10Ω; VGE= 15V
Fig. 10 - Typ. Switching Time vs. IC
TJ = 125°C; L = 400µH; VCE = 600V,RG = 10Ω;VGE = 15V
6000
10000
5000
Swiching Time (ns)
EON
Energy (µJ)
4000
EOFF
3000
2000
td OFF
1000
tF
tdON
100
1000
tR
0
10
0
10
20
30
40
50
RG (Ω)
Fig. 11 - Typ. Energy Loss vs. RG
TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V
www.irf.com
0
10
20
30
40
50
RG ( Ω)
Fig. 12 - Typ. Switching Time vs. RG
TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V
5
GB25RF120K
Inverter
40
35
RG = 4.7 Ω
35
30
RG = 10 Ω
30
25
RG = 22 Ω
25
20
RG = 47 Ω
IRR (A)
IRR (A)
40
20
15
15
10
10
5
5
0
0
0
10
20
30
40
50
0
60
10
20
30
40
50
RG (Ω)
IF (A)
Fig. 13 - Typical Diode IRR vs. IF
TJ = 125°C
Fig. 14 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 25A
Thermistor
14
35
12
Thermistor Resistance ( kΩ)
40
30
IRR (A)
25
20
15
10
10
8
6
4
2
5
0
0
0
500
1000
1500
0
20
diF /dt (A/µs)
40
60
80
100 120 140 160 180
T J , Junction Temperature (°C)
Fig. 15 - Typical Diode IRR vs. diF / dt
VCC = 600V; VGE = 15V; IF = 25A; TJ = 125°C
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
100
25°C
125°C
90
80
70
IF (A)
60
50
40
30
20
10
0
0.0
1.0
2.0
3.0
VF (V)
Fig. 17 - Typ. Diode Forward Characteristics
tp = 80µs
6
www.irf.com
GB25RF120K
Inverter
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
τJ
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
Ri (°C/W)
0.120
τi (sec)
0.000439
0.201
0.009470
0.309
0.018320
τ3
Ci= τi/Ri
Ci i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
0.02
τJ
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
Ri (°C/W)
0.140
τi (sec)
0.000230
0.257
0.602
0.002752
0.036788
τ3
Ci= τi/Ri
Ci i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED)
900
800
45
900
40
800
90
80
tf
700
600
30
600
70
60
20
300
15
VCE (V)
400
50
400
90% test current
300
30
5% V CE
200
10
10% test current
200
5% ICE
100
0
5
100
0
0
5% V CE
Eon Loss
Eoff Loss
-100
-0.60
-5
-0.10
0.40
0.90
1.40
Time(µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 125°C using Fig. CT.4
www.irf.com
-100
9.40
40
ICE (A)
500
25
ICE (A)
V CE (V)
700
TEST CURRENT
90% ICE
500
35
tr
9.60
20
10
0
-10
9.80 10.00 10.20 10.40
Time (µs)
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 125°C using Fig. CT.4
7
GB25RF120K
Brake
50
50
45
45
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
35
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
40
35
ICE (A)
40
25
20
30
25
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
4
5
6
Fig. 21 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
Fig. 20 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
180
20
160
18
16
140
T J = 25°C
14
T J = 125°C
12
VCE (V)
120
ICE (A)
3
VCE (V)
100
80
60
ICE = 6.25A
ICE = 12.5A
10
ICE = 25A
8
6
T J = 125°C
40
4
20
TJ = 25°C
2
0
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 23 - Typical VCE vs. VGE
TJ = 25°C
Fig. 22 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
20
10000
18
16
Cies
12
Capacitance (pF)
VCE (V)
14
ICE = 6.25A
10
ICE = 12.5A
8
ICE = 25A
6
1000
Coes
100
Cres
4
2
0
10
5
10
15
VGE (V)
Fig.24 - Typical VCE vs. VGE
TJ = 125°C
8
20
0
20
40
60
80
100
VCE (V)
Fig. 25- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
GB25RF120K
Brake
50
16
45
14
400V
25°C
125°C
40
12
35
600V
30
IF (A)
VGE (V)
10
8
25
20
6
15
4
10
2
5
0
0
0
25
50
75
100
0.0
125
1.0
2.0
Q G , Total Gate Charge (nC)
Fig. 26 - Typical Gate Charge vs. VGE
ICE = 12.5A; L = 1mH
4.0
5.0
Fig. 27 - Typ. Diode Forward Characteristics
tp = 80µs
3000
1000
2500
Swiching Time (ns)
tdOFF
2000
Energy (µJ)
3.0
VF (V)
EON
1500
EOFF
1000
tF
100
tdON
tR
500
0
10
0
10
20
30
40
0
10
20
IC (A)
30
40
IC (A)
Fig. 28 - Typ. Energy Loss vs. IC
TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω; VGE= 15V
2000
Fig. 29 - Typ. Switching Time vs. IC
TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω;VGE= 15V
10000
EON
Swiching Time (ns)
Energy (µJ)
1500
EOFF
1000
tdOFF
1000
tF
100
tdON
500
tR
0
10
0
50
100
150
RG ( Ω)
Fig. 30 - Typ. Energy Loss vs. RG
TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V
www.irf.com
0
25
50
75
100
125
150
RG ( Ω)
Fig. 31 - Typ. Switching Time vs. RG
TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V
9
GB25RF120K
Brake
45
35
RG = 4.7 Ω
40
30
35
RG = 10 Ω
25
RG = 22 Ω
25
20
IRR (A)
IRR (A)
30
RG = 47 Ω
20
15
15
10
10
5
5
0
0
0
5
10
15
20
25
30
0
10
20
30
40
50
RG (Ω)
IF (A)
Fig. 33- Typical Diode IRR vs. RG
TJ = 125°C; IF = 12.5A
Fig. 32 - Typical Diode IRR vs. IF
TJ = 125°C
35
30
IRR (A)
25
20
15
10
5
0
0
500
1000
1500
diF /dt (A/µs)
Fig. 34 - Typical Diode IRR vs. diF / dt
VCC = 600V; VGE = 15V; IF = 12.5A; TJ = 125°C
10
www.irf.com
GB25RF120K
Brake
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
τ3
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
0.268
τi (sec)
0.000469
0.642
0.290
0.018501
0.056904
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.01
τC
τ
τ3
Ri (°C/W) τi (sec)
0.714
0.000489
1.193
0.020644
0.394
0.154110
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode)
800
tf
40
800
30
600
500
25
500
400
20
300
15
5% V CE
V CE (V)
700
90% ICE
45
40
tr
35
600
VCE (V)
900
I CE (A)
700
45
35
TEST CURRENT
30
25
90% test current
400
300
20
I CE (A)
900
15
10% test current
200
5% ICE
100
Eof f Loss
0
-100
-0.60
10
200
5
100
0
-5
-0.10
0.40
0.90
1.40
Time(µs)
Fig. WF3- Typ. Turn-off Loss Waveform
@ TJ = 125°C using Fig. CT.4
www.irf.com
0
5% V CE
10
5
Eon Loss
0
-100
-5
9.80 10.00 10.20 10.40 10.60 10.80
Time (µs)
Fig. WF4- Typ. Turn-on Loss Waveform
@ TJ = 125°C using Fig. CT.4
11
GB25RF120K
L
L
VCC
80 V +
DUT
DUT
-
0
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
L
Driver
- 5V
DC
360V
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
12
www.irf.com
GB25RF120K
Econo2 PIM Package Outline
Dimensions are shown in millimeters (inches)
0.25 [.0098] CONVEX
Econo2 PIM Part Marking Information
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/02
www.irf.com
13