PD - 94552 GB25RF120K IGBT PIM MODULE VCES = 1200V Features • Low VCE (on) Non Punch Through IGBT Technology • Low Diode VF • 10µs Short Circuit Capability • Square RBSOA • HEXFRED Antiparallel Diode with Ultrasoft Diode Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate • Low Stray Inductance Design IC = 25A, TC=80°C tsc > 10µs, TJ=150°C VCE(on) typ. = 2.40V ECONO2 PIM Benefits • Benchmark Efficiency for Motor Control • Rugged Transient Performance • Low EMI, Requires Less Snubbing • Direct Mounting to Heatsink • PCB Solderable Terminals • Low Junction to Case Thermal Resistance • UL Listed Absolute Maximum Ratings (TJ =25°C, unless otherwise indicated) Parameter Inverter Ratings Units Collector-to-Emitter Voltage VCES 1200 V Gate-to-Emitter Voltage VGES IC ±20 Collector Current Symbol Test Conditions Continuous ICM Diode Maximum Forward Current Input Repetitive Peak Reverse Voltage Rectifier Average Output Current Surge Current (Non Repetitive) 2 VRRM IF(AV) IFSM 1 device 50/60Hz sine pulse 40 / 25 25°C 80 25°C 80 25°C 198 80°C V 20 A 250 316 As V Collector-to-Emitter Voltage VCES 1200 Gate-to-Emitter Voltage VGES IC ±20 Continuous ICM PD Power Dissipation Repetitive Peak Reverse Voltage Maximum Operating Junction Temperature W 1600 sine pulse It Collector Current A Rated VRRM applied, 10ms, 2 I t (Non Repetitive) Brake IFM d PD Power Dissipation 25°C / 80°C 1 device VRRM TJ — Storage Temperature Range TSTG — Isolation Voltage VISOL 2 25°C / 80°C 25 / 15 25°C 50 A 25°C 104 W — 1200 150 V °C — -40 to +125 AC(1min.) 2500 V Thermal and Mechanical Characteristics Min Typical Maximum Units Junction-to-Case Inverter IGBT Thermal Resistance — — 0.63 °C/W Junction-to-Case Inverter FRED Thermal Resistance — — 1.0 Parameter Junction-to-Case Brake IGBT Thermal Resistance Symbol RTHJC — — 1.2 Junction-to-Case Brake Diode Thermal Resistance — — 2.3 Junction-to-Case Input Rectifier Thermal Resistance — — 0.85 Mounting Torque (M5) 2.7 — 3.3 1 Nm www.irf.com 10/17/02 GB25RF120K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Inverter BVCES IGBT ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) — Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage 1200 — — — V 1.0 — V/°C 2.40 2.70 V 2.95 3.30 Conditions VGE = 0V, IC = 500µA VGE = 0V, IC = 1mA (25°C-125°C) IC = 25A, VGE = 15V 1,2 IC = 40A, VGE = 15V 4,5 — 2.85 — IC = 25A, VGE = 15V, TJ = 125°C — 3.55 — IC = 40A, VGE = 15V, TJ = 125°C VGE(th) Gate Threshold Voltage 4.0 5.0 6.0 ∆VGE(th) Threshold Voltage temp. coefficient — -10 — ICES Zero Gate Voltage Collector Current — 11 100 — 750 — IGES Gate-to-Emitter Leakage Current — — ±200 Qg Total Gate Charge (turn-on) — 175 265 Qge Gate-to-Emitter Charge (turn-on) — 17.5 30 VCE = VGE, IC = 250µA 3,4,5 mV/°C VCE = VGE, IC = 1mA (25°C-125°C) VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ = 125°C nA VGE = ±20V IC = 25A nC 7 VCC = 400V CT1 Qgc Gate-to-Collector Charge (turn-on) — 81 125 VGE = 15V Eon Turn-On Switching Loss — 2450 4450 IC = 25A, VCC = 600V Eoff Turn-Off Switching Loss — 2050 3200 Etot Total Switching Loss — 4500 7650 TJ = 25°C Eon Turn-On Switching Loss — 3350 5650 IC = 25A, VCC = 600V Eoff Turn-Off Switching Loss — 2850 3850 Etot Total Switching Loss — 6200 9500 td(on) Turn-On delay time — 80 104 tr Rise time — 50 70 td(off) Turn-Off delay time — 510 1000 tf Fall time — 230 299 Cies Input Capacitance — 2370 — Coes Output Capacitance — 455 — Cres Reverse Transfer Capacitance — 60 — RBSOA Reverse Bias Safe Operating Area µJ µJ e VGE = 15V, RG = 10Ω, L = 400µH TJ = 125°C e IC = 25A, VCC = 600V ns CT4 VGE = 15V, RG = 10Ω, L = 400µH 9,11 CT4 WF1,2 10,12 VGE = 15V, RG = 10Ω, L = 400µH CT4 TJ = 125°C WF1 WF2 VGE = 0V pF VCC = 30V f = 1.0Mhz TJ = 150°C, IC = 80A FULL SQUARE 6 CT2 RG = 10Ω, VGE = +15V to 0V SCSOA Short Circuit Safe Operating Area 10 — — µs TJ = 150°C CT3 VCC = 900V, VP = 1200V WF4 RG = 10Ω, VGE = +15V to 0V TJ = 125°C Inverter FRED Irr Diode Peak Reverse Recovery Current — 35 — A VCC = 600V, IF = 25A, L = 400µH 13,14,15 CT4 VGE = 15V, RG = 10Ω — VFM 2 Diode Forward Voltage Drop 1.90 2.35 V IF = 25A IF = 40A — 2.25 2.80 — 2.00 — IF = 25A, TJ = 125°C — 2.45 — IF = 40A, TJ = 125°C 8 www.irf.com GB25RF120K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Input VFM Rectifier IRM Maximum Forward Voltage Drop Maximum Reverse Leakage Current Min. Typ. Max. Units IF = 25A V — — 1.5 — — 0.1 mA — 1.0 Forward Slope Resistance — — 10.4 mΩ VF(TO) Conduction Threshold Voltage — — 0.85 V Brake BVCES Collector-to-Emitter Breakdown Voltage 1200 — — V IGBT ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.6 — V/°C VCE(on) — 2.30 2.50 V — 3.00 3.25 — 2.70 — 3.70 17 TJ = 25°C, VR = 1600V TJ = 150°C, VR = 1600V — rT Collector-to-Emitter Voltage Conditions TJ = 150°C VGE = 0V, IC = 500µA VGE = 0V, IC = 1mA (25°C-125°C) IC = 12.5A, VGE = 15V 20,21 IC = 25A, VGE = 15V 23,24 IC = 12.5A, VGE = 15V, TJ = 125°C — — IC = 25A, VGE = 15V, TJ = 125°C VGE(th) Gate Threshold Voltage 4.0 5.0 6.0 VCE = VGE, IC = 250µA ∆VGE(th) Threshold Voltage temp. coefficient — -10 — ICES Zero Gate Voltage Collector Current — 8.0 50 — 370 — VGE = 0V, VCE = 1200V, TJ = 125°C VGE = ±20V IGES Gate-to-Emitter Leakage Current — — ±200 Qg Total Gate Charge (turn-on) — 96 145 Qge Gate-to-Emitter Charge (turn-on) — 46 70 Qgc Gate-to-Collector Charge (turn-on) — 10 15 Eon Turn-On Switching Loss — 1050 1200 IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω, L = 400µH Eoff Turn-Off Switching Loss — 750 1000 Etot Total Switching Loss — 1800 2200 Eon Turn-On Switching Loss — 1350 1500 Eoff Turn-Off Switching Loss — 1100 1250 Etot Total Switching Loss — 2450 2750 td(on) Turn-On delay time — 50 65 tr Rise time — 36 50 td(off) Turn-Off delay time — 350 400 tf Fall time — 210 275 Cies Input Capacitance — 2370 — Coes Output Capacitance — 460 — Cres Reverse Transfer Capacitance — 60 — RBSOA Reverse Bias Safe Operating Area 22,23,24 mV/°C VCE = VGE, IC = 1mA (25°C-125°C) VGE = 0V, VCE = 1200V µA nA IC = 12.5A nC 26 VCC = 400V CT1 VGE = 15V µJ TJ = 25°C e IC = 12.5A, VCC = 600V µJ VGE = 15V, RG = 22Ω, L = 400µH TJ = 125°C e IC = 12.5A, VCC = 600V ns CT4 28,30 CT4 WF3,4 29,31 VGE = 15V, RG = 22Ω, L = 400µH CT4 TJ = 125°C WF3 WF4 VGE = 0V pF VCC = 30V f = 1.0Mhz TJ = 150°C, IC = 50A FULL SQUARE 25 CT2 RG = 22Ω, VGE = +15V to 0V TJ = 150°C SCSOA Short Circuit Safe Operating Area 10 — — µs Irr Diode Peak Reverse Recovery Current — 24 — A CT3 VCC = 900V, VP = 1200V RG = 22Ω, VGE = +15V to 0V Brake — VFM NTC VCC = 600V, IF = 12.5A, L = 400µH VGE = 15V, RG = 22Ω, TJ = 125°C Diode Diode Forward Voltage Drop R Resistance B B Value 1.90 2.10 — 2.40 2.65 — 2.00 — — 2.65 — 4538 5000 5495 V 3375 3443 CT4 IF = 8.0A IF = 16A 27 IF = 8.0A, TJ = 125°C IF = 16A, TJ = 125°C Ω TJ = 25°C 16 TJ = 100°C 468.6 493.3 518.0 3307 32,33,34 K TJ = 25 / 50 °C Note: For UL Applications, TJ is limited to +125°C. (See File E78996). Power dependent on temperature. TJ not to exceed TJ max. Energy losses include "tail" and diode reverse recovery. www.irf.com 3 GB25RF120K Inverter 50 50 45 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 ICE (A) ICE (A) 45 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 20 30 25 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 2 VCE (V) 3 4 5 6 VCE (V) Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 20 350 18 300 16 14 T J = 125°C 12 VCE (V) ICE (A) 250 T J = 25°C 200 150 ICE = 12.5A ICE = 25A 10 ICE = 50A 8 6 100 T J = 125°C 4 50 T J = 25°C 2 0 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 4 - Typical VCE vs. VGE TJ = 25°C Fig. 3 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 20 10000 18 Cies 16 12 Capacitance (pF) VCE (V) 14 ICE = 12.5A ICE = 25A 10 ICE = 50A 8 6 1000 Coes Cres 100 4 2 0 10 5 10 15 VGE (V) Fig.5 - Typical VCE vs. VGE TJ = 125°C 4 20 0 20 40 60 80 100 VCE (V) Fig. 6- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com GB25RF120K Inverter 16 100 14 90 400V 25°C 125°C 80 12 60 IF (A) VGE (V) 70 600V 10 8 50 40 6 30 4 20 2 10 0 0 0 50 100 150 200 0.0 1.0 2.0 Q G , Total Gate Charge (nC) Fig. 7 - Typical Gate Charge vs. VGE ICE = 25A; L = 1mH 4.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 10000 1000 tdOFF 9000 8000 tF 6000 Swiching Time (ns) 7000 Energy (µJ) 3.0 VF (V) EON 5000 4000 3000 EOFF 100 tdON tR 2000 1000 0 10 0 10 20 30 40 50 60 0 10 20 30 40 50 60 IC (A) IC (A) Fig. 9 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 10Ω; VGE= 15V Fig. 10 - Typ. Switching Time vs. IC TJ = 125°C; L = 400µH; VCE = 600V,RG = 10Ω;VGE = 15V 6000 10000 5000 Swiching Time (ns) EON Energy (µJ) 4000 EOFF 3000 2000 td OFF 1000 tF tdON 100 1000 tR 0 10 0 10 20 30 40 50 RG (Ω) Fig. 11 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V www.irf.com 0 10 20 30 40 50 RG ( Ω) Fig. 12 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V 5 GB25RF120K Inverter 40 35 RG = 4.7 Ω 35 30 RG = 10 Ω 30 25 RG = 22 Ω 25 20 RG = 47 Ω IRR (A) IRR (A) 40 20 15 15 10 10 5 5 0 0 0 10 20 30 40 50 0 60 10 20 30 40 50 RG (Ω) IF (A) Fig. 13 - Typical Diode IRR vs. IF TJ = 125°C Fig. 14 - Typical Diode IRR vs. RG TJ = 125°C; IF = 25A Thermistor 14 35 12 Thermistor Resistance ( kΩ) 40 30 IRR (A) 25 20 15 10 10 8 6 4 2 5 0 0 0 500 1000 1500 0 20 diF /dt (A/µs) 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig. 15 - Typical Diode IRR vs. diF / dt VCC = 600V; VGE = 15V; IF = 25A; TJ = 125°C Fig. 16 - Thermistor Resistance vs. Temperature Input Rectifier 100 25°C 125°C 90 80 70 IF (A) 60 50 40 30 20 10 0 0.0 1.0 2.0 3.0 VF (V) Fig. 17 - Typ. Diode Forward Characteristics tp = 80µs 6 www.irf.com GB25RF120K Inverter 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 τJ 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ Ri (°C/W) 0.120 τi (sec) 0.000439 0.201 0.009470 0.309 0.018320 τ3 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 τJ 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ Ri (°C/W) 0.140 τi (sec) 0.000230 0.257 0.602 0.002752 0.036788 τ3 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED) 900 800 45 900 40 800 90 80 tf 700 600 30 600 70 60 20 300 15 VCE (V) 400 50 400 90% test current 300 30 5% V CE 200 10 10% test current 200 5% ICE 100 0 5 100 0 0 5% V CE Eon Loss Eoff Loss -100 -0.60 -5 -0.10 0.40 0.90 1.40 Time(µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4 www.irf.com -100 9.40 40 ICE (A) 500 25 ICE (A) V CE (V) 700 TEST CURRENT 90% ICE 500 35 tr 9.60 20 10 0 -10 9.80 10.00 10.20 10.40 Time (µs) Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4 7 GB25RF120K Brake 50 50 45 45 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 ICE (A) 40 25 20 30 25 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 2 VCE (V) 4 5 6 Fig. 21 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs Fig. 20 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 180 20 160 18 16 140 T J = 25°C 14 T J = 125°C 12 VCE (V) 120 ICE (A) 3 VCE (V) 100 80 60 ICE = 6.25A ICE = 12.5A 10 ICE = 25A 8 6 T J = 125°C 40 4 20 TJ = 25°C 2 0 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 23 - Typical VCE vs. VGE TJ = 25°C Fig. 22 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 20 10000 18 16 Cies 12 Capacitance (pF) VCE (V) 14 ICE = 6.25A 10 ICE = 12.5A 8 ICE = 25A 6 1000 Coes 100 Cres 4 2 0 10 5 10 15 VGE (V) Fig.24 - Typical VCE vs. VGE TJ = 125°C 8 20 0 20 40 60 80 100 VCE (V) Fig. 25- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com GB25RF120K Brake 50 16 45 14 400V 25°C 125°C 40 12 35 600V 30 IF (A) VGE (V) 10 8 25 20 6 15 4 10 2 5 0 0 0 25 50 75 100 0.0 125 1.0 2.0 Q G , Total Gate Charge (nC) Fig. 26 - Typical Gate Charge vs. VGE ICE = 12.5A; L = 1mH 4.0 5.0 Fig. 27 - Typ. Diode Forward Characteristics tp = 80µs 3000 1000 2500 Swiching Time (ns) tdOFF 2000 Energy (µJ) 3.0 VF (V) EON 1500 EOFF 1000 tF 100 tdON tR 500 0 10 0 10 20 30 40 0 10 20 IC (A) 30 40 IC (A) Fig. 28 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω; VGE= 15V 2000 Fig. 29 - Typ. Switching Time vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω;VGE= 15V 10000 EON Swiching Time (ns) Energy (µJ) 1500 EOFF 1000 tdOFF 1000 tF 100 tdON 500 tR 0 10 0 50 100 150 RG ( Ω) Fig. 30 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V www.irf.com 0 25 50 75 100 125 150 RG ( Ω) Fig. 31 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V 9 GB25RF120K Brake 45 35 RG = 4.7 Ω 40 30 35 RG = 10 Ω 25 RG = 22 Ω 25 20 IRR (A) IRR (A) 30 RG = 47 Ω 20 15 15 10 10 5 5 0 0 0 5 10 15 20 25 30 0 10 20 30 40 50 RG (Ω) IF (A) Fig. 33- Typical Diode IRR vs. RG TJ = 125°C; IF = 12.5A Fig. 32 - Typical Diode IRR vs. IF TJ = 125°C 35 30 IRR (A) 25 20 15 10 5 0 0 500 1000 1500 diF /dt (A/µs) Fig. 34 - Typical Diode IRR vs. diF / dt VCC = 600V; VGE = 15V; IF = 12.5A; TJ = 125°C 10 www.irf.com GB25RF120K Brake Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 τJ R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ τ3 Ci= τi/Ri Ci i/Ri Ri (°C/W) 0.268 τi (sec) 0.000469 0.642 0.290 0.018501 0.056904 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri 0.01 τC τ τ3 Ri (°C/W) τi (sec) 0.714 0.000489 1.193 0.020644 0.394 0.154110 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode) 800 tf 40 800 30 600 500 25 500 400 20 300 15 5% V CE V CE (V) 700 90% ICE 45 40 tr 35 600 VCE (V) 900 I CE (A) 700 45 35 TEST CURRENT 30 25 90% test current 400 300 20 I CE (A) 900 15 10% test current 200 5% ICE 100 Eof f Loss 0 -100 -0.60 10 200 5 100 0 -5 -0.10 0.40 0.90 1.40 Time(µs) Fig. WF3- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4 www.irf.com 0 5% V CE 10 5 Eon Loss 0 -100 -5 9.80 10.00 10.20 10.40 10.60 10.80 Time (µs) Fig. WF4- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4 11 GB25RF120K L L VCC 80 V + DUT DUT - 0 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT L Driver - 5V DC 360V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 12 www.irf.com GB25RF120K Econo2 PIM Package Outline Dimensions are shown in millimeters (inches) 0.25 [.0098] CONVEX Econo2 PIM Part Marking Information Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/02 www.irf.com 13