PD- 94086 IRF5802 SMPS MOSFET HEXFET® Power MOSFET VDSS Applications l High frequency DC-DC converters Benefits l Low Gate to Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current 150V RDS(on) max 1.2Ω@VGS = 10V D 1 6 D D 2 5 D G 3 4 S ID 0.9A TSOP-6 Absolute Maximum Ratings Parameter ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. 0.9 0.7 7.0 2.0 0.02 ± 30 7.1 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJA Maximum Junction-to-Ambient Max. Units 62.5 °C/W Notes through are on page 8 www.irf.com 1 1/23/01 IRF5802 Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 150 ––– ––– 3.0 ––– ––– ––– ––– Typ. ––– 0.19 ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 1.2 Ω VGS = 10V, ID = 0.54A 5.5 V VDS = VGS, ID = 250µA 25 VDS = 150V, VGS = 0V µA 250 VDS = 120V, VGS = 0V, TJ = 125°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units Conditions 0.55 ––– ––– S VDS = 50V, ID = 0.54A ––– 4.5 6.8 ID = 0.54A ––– 1.0 1.5 nC VDS = 120V ––– 2.4 3.6 VGS = 10V, ––– 6.0 ––– VDD = 75V ––– 1.6 ––– ID = 0.54A ns ––– 7.5 ––– RG = 6.0Ω ––– 9.2 ––– VGS = 10V ––– 88 ––– VGS = 0V ––– 26 ––– VDS = 25V ––– 7.7 ––– pF ƒ = 1.0MHz ––– 110 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– 14 ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz ––– 3.0 ––– VGS = 0V, VDS = 0V to 120V Avalanche Characteristics Parameter EAS IAR Single Pulse Avalanche Energy Avalanche Current Typ. Max. Units ––– ––– 9.5 0.9 mJ A Diode Characteristics IS ISM VSD trr Qrr 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Min. Typ. Max. Units ––– ––– 1.8 ––– ––– 18 ––– ––– ––– ––– 46 55 1.3 69 83 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 0.54A, VGS = 0V TJ = 25°C, IF = 0.54A di/dt = 100A/µs D S www.irf.com IRF5802 100 10 VGS 15V 12V 10V 8.0V 7.5V 7.0V 6.5V BOTTOM 6.0V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) 10 1 6.0V 0.1 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 1 6.0V 100 2.5 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TJ = 25 ° C TJ = 150 ° C 1 V DS = 50V 20µs PULSE WIDTH 10 12 14 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 10 8 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 0.1 20µs PULSE WIDTH TJ = 150 °C 0.1 0.1 VDS , Drain-to-Source Voltage (V) 6 VGS 15V 12V 10V 8.0V 7.5V 7.0V 6.5V BOTTOM 6.0V TOP TOP ID = 0.9A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF5802 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) Coss = Cds + Cgd Ciss 100 Coss Crss 10 VGS , Gate-to-Source Voltage (V) 20 1000 1 ID = 0.54A VDS = 120V VDS = 75V VDS = 30V 16 12 8 4 0 1 10 100 0 1000 1 2 3 4 5 6 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 10 100 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.4 0.6 0.8 1.0 Fig 7. Typical Source-Drain Diode Forward Voltage 4 1 100µsec 1msec 0.1 T A = 25°C 10msec T J = 150°C Single Pulse V GS = 0 V VSD ,Source-to-Drain Voltage (V) 10 0.01 1.2 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF5802 1.0 RD VDS VGS I D , Drain Current (A) 0.8 D.U.T. RG + -VDD 0.6 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 0.4 Fig 10a. Switching Time Test Circuit 0.2 VDS 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJA ) 100 D = 0.50 0.20 10 0.10 0.05 0.02 PDM 0.01 1 SINGLE PULSE (THERMAL RESPONSE) t1 t2 0.1 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 R DS ( on) , Drain-to-Source On Resistance ( Ω ) R DS(on) , Drain-to -Source On Resistance ( Ω ) IRF5802 2.80 2.40 2.00 ID = 0.54A 1.60 1.20 0.80 6.0 7.0 8.0 9.0 6.00 4.00 VGS = 10V 2.00 0.00 10.0 11.0 12.0 13.0 14.0 15.0 0 2 VGS, Gate -to -Source Voltage (V) 4 6 ID , Drain Current (A) Fig 13. Typical On-Resistance Vs. Drain Current Fig 12. Typical On-Resistance Vs. Gate Voltage Current Regulator Same Type as D.U.T. QG VGS .2µF QGS .3µF D.U.T. + V - DS QGD 25 VG EAS , Single Pulse Avalanche Energy (mJ) 50KΩ 12V VGS 3mA Charge IG ID Current Sampling Resistors Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15 V V (B R )D S S tp L VD S D .U .T RG IA S 20V tp IAS DRIVE R + V - DD 20 15 10 5 0 25 A 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) 0.01 Ω Fig 15a&b. Unclamped Inductive Test circuit and Waveforms 6 ID 0.40A 0.70A BOTTOM 0.90A TOP Fig 15c. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF5802 TSOP-6 Package Outline TSOP-6 Part Marking Information EXAMPLE: T HIS IS AN SI3443DV PART NUMBER 3A YW T OP WAFER LOT NUMBER CODE XXXX WW = (1-26) IF PRECEDED BY LAS T DIGIT OF CALENDAR YEAR DATE CODE YEAR Y 2001 2002 2003 2004 2005 1996 1997 1998 1999 2000 1 2 3 4 5 6 7 8 9 0 WORK WEEK W 01 02 03 04 A B C D 24 25 26 X Y Z BOT TOM PART NUMBER CODE REFERENCE: 3A = SI3443DV 3B = IRF5800 3C = IRF5850 3D = IRF5851 3E = IRF5852 3I = IRF5805 3J = IRF5806 DAT E CODE EXAMPLES : YWW = 9603 = 6C YWW = 9632 = FF www.irf.com WW = (27-52) IF PRECEDED BY A LET T ER YEAR Y 2001 2002 2003 2004 2005 1996 1997 1998 1999 2000 A B C D E F G H J K WORK WEEK W 27 28 29 30 A B C D 50 51 X Y 7 IRF5802 TSOP-6 Tape & Reel Information Notes: Repetitive rating; pulse width limited by max. junction temperature. When mounted on 1 inch square copper board Coss eff. is a fixed capacitance that gives the same charging time Starting TJ = 25°C, L = 23mH as Coss while VDS is rising from 0 to 80% VDSS RG = 25Ω, IAS = 0.54A. Pulse width ≤ 400µs; duty cycle ≤ 2%. ISD ≤ 0.54A, di/dt ≤ 89A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.1/00 8 www.irf.com